低浓度剩余活性污泥涡凹气浮浓缩工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污泥浓缩是城市污水处理厂污泥处理处置的重要环节,污泥浓缩工艺主要有重力浓缩,机械浓缩和气浮浓缩。
    来自二沉池的剩余活性污泥含水率一般在99.2~99.6%,一些新工艺,如重庆大学自行研究开发的一体化氧化沟工艺,其剩余污泥经过固液分离器分离后排放,还有其它新工艺剩余污泥直接从曝气池排放,排放的剩余污泥含水率高,浓度低,在此我们称之为低浓度剩余污泥。
    涡凹气浮技术在工业废水处理中得到广泛应用,但在城市污水处理厂污泥浓缩领域中尚没有应用。
    本研究将涡凹气浮工艺引入到城市污水处理厂污泥浓缩领域;对调理剩余活性污泥用调理剂进行了优选;研究了絮凝剂、表面活性剂、固体负荷、水力负荷、刮泥方式、曝气机功率及温度等因素对低浓度剩余活性污泥涡凹气浮浓缩工艺的影响;研制并生产出了一台用于浓缩低浓度剩余活性污泥的MCAF-10改进型涡凹气浮设备,并研究了絮凝剂、表面活性剂、固体负荷、水力负荷、刮泥方式、曝气机功率及温度等因素对剩余低浓度活性污泥改进型涡凹气浮浓缩工艺的影响;对涡凹气浮及改进型涡凹气浮浓缩污泥脱水性能及出水性质进行了研究;对污泥浓缩工艺的有关机理进行了一些探讨;对涡凹气浮污泥浓缩工艺的特点进行了总结,并进行了能耗、技术经济分析。得到了以下结论:
    1、采用FO4190SH、FO4248、FO4440SH、FA920SH、AN926SHU和 PAC单污泥调理剂和PAC+FO4440SH、PAC+FO4190SH、PAC+FA920SH、PAC+AN926SHU FO4440SH+FA920SH、 FO4440SH+AN926SHU复合调理剂对污泥进行调理, 综合考虑污泥调理效果和运行管理及费用等因素,对于南昌市朝阳洲污水处理厂污泥调理,优选单污泥调理剂阳离子型聚电解质FO4440SH。
    2、采用CAF-5型涡凹气浮浓缩低浓度活性污泥时,絮凝剂采用FO4440SH,最佳投加量为1.0kg/tDS,表面活性剂采用1227,最佳投加量0.2kg/tDS,固体负荷为230kgMLSS/m3?d,水力负荷为90 m2/m3?d,出水SS为200~250mg/L,溶解性COD为30~40mg/L,污泥中的磷在浓缩过程中不会释放。
    3、研制出一台适用于低浓度剩余活性污泥浓缩的MCAF-10型改进型涡凹气浮设备,采用MCAF-10型改进型涡凹气浮工艺浓缩低浓度剩余活性污泥时,絮凝剂采用FO4440SH,最佳投加量1.0kg/tDS,表面活性剂采用1227,最佳投加量0.2kg/tDS,固体负荷为270kgMLSS/m3?d,水力负荷为110 m2/m3?d,出水SS为100~150mg/L,溶解性COD为30mg/L左右,污泥中的磷在浓缩过程中不会释放。
    
    4、改进型涡凹气浮用于浓缩低浓度剩余活性污泥时浓缩效果好,固体负荷高,出水SS低,比涡凹气浮更适合于低浓度剩余活性污泥浓缩。
    5、适量的表面活性剂能够提高污泥的浓缩效果,过多的表面活性剂由于胶束的存在,亲水性增强,降低污泥絮体与气泡的粘附,从而降低污泥浓缩效果。
    随着表面活性剂的加入,污泥表面胞外多聚物释放到外界环境中,污泥絮体比以前更容易压缩,结合水数量减少,脱水性能改善。
    涡凹气浮产生的气泡较大,污泥絮粒大小不是影响涡凹气浮污泥浓缩工艺的主要因素,污泥絮体只要达到300~400μm能够与气泡粘附即可。
    6、涡凹气浮浓缩工艺具有污泥停留时间短,污泥浓缩效果好,浓缩污泥脱水性能好,设备简单,操作方便,费用低,污泥无磷的释放等特点,适宜于低浓度剩余活性污泥的浓缩。
    7、污水处理厂剩余污泥以混合液的形式排放,不进入二沉池,直接进入涡凹气浮工艺进行浓缩,较伟统污泥浓缩工艺,可缩短污泥处理流程,避免在污泥中的磷在二沉池和重力浓缩池中释放,在经济上合理,技术上可行。
Sludge thickening process is one of the important links of waste sludge treatment and disposal in the municipal wastewater treatment plant (WWTP). It includes mainly gravity thickening, mechanical thickening and air floatation thickening.
    The water content of excess sludge from secondary settling tank varies from 99.2% to 99.6%, but the water content of excess sludge, which is discharged from solid-liquid seperator for the Integrated Oxidation Ditch developed by Chongqing University, or discharged from aeration tank for some new wastewater treatment process is higher than 99.2~99.6%, Its water content is high and solid content is low, it is called low concentration excess activated sludge.
    Cavitation Air Floatation (CAF) technology has been widely applied industrial wastewater treatment, but hasn’t been used in sludge thickening field.
    In this research, CAF technology was introduced into sludge thickening in WWTP, conditioner for excess activated sludge was selected. Factors such as flocculants, surfactant, solid loading, hydraulic loading, sludge skimming method, the aerator power and temperature were investigated. A Modified Cavitation Air Floatation (MCAF) equipment for low concentration activated sludge was developed and the factors such as flocculants, surfactant, solid loading, hydraulic loading, sludge skimming method, the aerator power and temperature were investigated, too. The dewatering characteristics of thickened sludge and effluent quality from CAF and MCAF were studied. The correlative mechanism of CAF and MCAF sludge thickening process were discussed. The features of CAF thickening process were summarized. Energy consumption, technology and economic analysis were illustrated. The results are as follows:
    1、Single conditioners such as FO4440SH, FO4248, FO4190SH, PAC, FA920SH and dual conditioners such as PAC + FO4440SH, PAC + FO4190SH, PAC + FA920SH, PAC+AN926SHU, FO4440SH+FA920SH, FO4440SH+AN926SHU were used, given a comprehensive consideration of the sludge conditioning effect, operation management and cost, single conditioner FO4440SH was selected for the sludge conditioning from Chaoyangzhou WWTP.
    
    2、As CAF-5 was employed to thicken low concentration sludge, flocculant FO4440SH was added with an optimal dosage of 1.0kg/tDS, 1227 was adopted as surfactant with an optimal dosage of 0.2kg/tDS,solid loading was 230kgMLSS/m3?d,and hydraulic loading was 90 m2/m3?d. The SS and dissolved COD in the effluent was 200~250mg/L and 30~40mg/L,respectively. And P in the sludge wouldn’t release during the thickening process.
    3、MCAF-10, which is aimed to low concentration excess activated sludge, has been developed. When MCAF-10 was used to thicken low concentration activated sludge, with optimal dosage of FO4440SH and 1227 at 1.0kg/tDS and 0.2kg/tDS respectively, and with solid loading at 270kgMLSS/m3?d, hydraulic loading at 110 m2/m3?d, the SS and dissolved COD of the effluent was 100~150mg/L and 30mg/L or so,respectively. There was no P release of the sludge during the thickening process.
    4、MCAF exhibits excellent thickening efficiency with high solid loading and low SS effluent, therefore is more suitable for thickening low concentration excess sludge.
    5、A certain amount of surfactant enhances sludge thickening efficiency, while too much of it decreases the thickening efficiency due to the fact that the existing of micelle exhibits stronger hydrophilicity and decreases the adherence between sludge flocs and gas bubbles.
    With the addition of surfactant, the extra-cellular polymers in sludge surface is released to outside environment, which yields more compactable activated sludge flocs with less interstitial moisture and improved dewaterability.
    Since bubbles produced by CAF or MCAF are relatively large, the size of sludge flocs is not the key factor that affects sludge thickening for CAF or MCAF process. As long as the flocs’ size reach 300~400μm, they can adhere to gas bubbles.
    6、Besides its simple unit, convenient operating and low cost, CAF thickening process possesses a short
引文
郑一军. 推进城市污水资源化. 保障水资源可持续利用. 21世纪国际城市污水处理及资源化发展战略研讨会与展览会. 会议论文. 2001.12
    建设部. 2002年城市建设统计公报. 2003
    张自杰主编. 排水工程(第三版). 北京:中国建筑工业出版社.1996
    Simona Cizinska, et al .Thicking of Waste Activated Sludge by Biological Floatation .Wat.Res., 1992, 26(2): 139~144
    刘军.生物气浮法浓缩剩余活性污泥工艺的研究. [博士学位论文] .上海:同济大学. 1999. 3
    范懋功等.空穴气浮法处理昆明第二造纸厂废水.给水排水.1997, 23(8): 32~34
    宁平等. CAF涡凹气浮-混凝沉降工艺在造纸废水处理中的应用. 环境工程. 1998, 23(4):7~9
    张统等.CAF涡凹气浮系统—CASS工艺处理造纸中段废水.云南环境科学.2000, 19(8): 136~139
    黄其明等.涡凹气浮(CAF)-生物接触氧化工艺处理纸箱生产废水.工业用水与废水.2001, 32(3): 39~40
    韩爱民等.涡凹气浮法及在废纸再生造纸中的应用.工业水处理.2002, 22(4): 49~50
    李剑超等.中国造纸废水处理实践与研究.工业水处理.2002, 22(1): 9~15
    沈彩琴等.用CAF涡凹气浮设备处理含油废水.上海环境科学.2001,20(10),506~507
    杨淑静等.加压溶气气浮与涡凹气浮工艺在铁路污水处理中的应用比较.铁道劳动安全卫生与环保.2001, 28(2): 78~81
    邹茂荣等.涡凹气浮(CAF)在石化废水处理中的应用.工业用水与废水.2000, 31(4): 34~35
    于德爽等.水解酸化-气浮-SBR工艺处理亚麻废水.给水排水.2002, 28(4): 32~33
    宁平等.CAF 涡凹气浮-SBR 法在屠宰废水处理中的应用.环境工程.2001, 19(3): 14~16
    邹茂荣等.沥青厂废水处理工程设计.给水排水.2001, 27(1): 43~44
    贾秋平等. CAF涡凹气浮-生物接触氧化工艺在制革废水处理中的应用. 环境保护与科学. 2003,29(4):20~22
    王文忠. THK引气气浮系统的研制与应用. 城市环境与城市生态,2002,15(1):29~31
    邓荣森等.四川省城市污水处理示范工程.给水排水.2001,27(4):1~4
    张辰. 城市污泥集约化处理.给水排水. 2002,28(4):21~22
    
    文一波.城市污水处理发展近况与问题.给水排水. 1995,15(9):20~22
    郭茜等.上海城市污水处理现状.中国给水排水.1999,15(2):32~33
    G .Tchobanoglous, et al. ,Wastewater engineering–treatment, disposal and reuse (3rd edition ), New York, Mo Graw-Hill ,773.
    唐建国等. 污水处理厂污泥处理处置技术介绍. 污泥处理处置技术与装备国际研讨会. 中国土木工程学会水工业分会排水委员会. 2003:12~34
    高廷耀主编. 水污染控制工程. 北京:高等教育出版社. 1989
    何品晶主编.城市污泥处理与利用.北京:科学出版社. 2003
    柯建明等. 北京市城市污水污泥处理和处置问题研究. 中国沼气,2000,18(3):35~38
    Rajeshwar D, Tyagi et, al. Bacterial leaching of toxic metals from municipal sludge: influence of sludge characteristic, Wat. Environ. Res. 1993,65(3): 196~204
    赵庆祥编著. 污泥资源化技术. 北京:化学工业出版社. 2002
    周少奇编著. 城市污泥处理处置与资源化. 广州:华南理工大学出版社. 2002
    许泽美主编. 水工业工程设计手册—废水处理及再用. 北京:中国建筑工业出版社. 2002
    张自杰主编. 废水处理理论与设计. 北京:中国建筑工业出版社. 2003
    金儒霖等. 污泥处置. 北京:中国建筑工业出版社. 1982
    H J Kiuru . Development of Disolved Air Flotation Technology from the First Generation to the Newest One .Wat. Sci. Tech ., 2001, 43(8): 1-7
    胡锋平等. Biowin工艺及其在挪威Gross污水处理厂中的应用. 给水排水20002 ,28(10):1~3
    M. Sugahara,et al. Parameters influencing sludge thickening by dissolved air flotation,Wat.Sci.Tech. 1993 , 28 (1): 87-90
    Tai Hak Chung, et al. Significance of pressure and recirculation in sludge thickening by dissolved air floatation. Wat.Sci.Tech.,1997,36(12): 223~230
    Harish Arora,et al. Evalution of dissolved air floatation process for water clarification and Sludge thickening . Wat.Sci.Tech. ,1995, 31(3.4): 137-147
    L.R.J. van Vuuren, et al .Thickening of sludges by dissolved air flotation. Water Science and Technology. 1989 ,21(12): 1771~1774
    Gao, Tingyao, et al . Two-phase anaerobic digestion of floatation thickening sludge . Journal of Tongji University.1999,27 (1):43-46
    姚毅. 溶气气浮法浓缩剩余活性污泥. 上海环境科学. 1986, 7(6): 4-7
    何群彪等. 剩余活性污泥气浮浓缩技术研究. 同济大学学报,1995, 23(4):417~419
    北京市政设计研究院主编. 简明排水设计手册. 北京:中国建筑工业出版社. 1990.6
    丁亚兰主编. 国内外废水处理工程设计实例. 北京:化学工业出版社. 2000.5
    
    王洪臣主编. 城市污水处理厂运行控制与维护管理. 北京:科学出版社. 1997
    Dohanyos, et al. Enhancement of sludge anaerobic digestion by using of a special thickening centrifuge .Water Science and Technology. ,1997,36(11):145~153
    曾科等. 城市污水厂污泥浓缩新技术的应用. 安全与环境学报. 2002,2(1):57~58
    张超英等. 浓缩脱水一体化设备的设计选型. 中国给水排水. 2000,16(2):35~37
    陈金梅等. 污泥浓缩脱水一体化设备在TEDA污水处理厂的应用,中国土木工程学会水工业分会排水委员会第四届第一次年会论文集,2001.7
    尹军等.我国城市污水污泥的特性与处理现状.中国给水排水,2003,19(13) :21~24
    管满. 污泥浓缩脱水一体化技术应用探讨. 山西建筑,2001,27(8):151~152
    章北平译. 污水处理能耗与能效. 北京:能源出版社. 1996
    胡锋平等.城市污水处理厂污泥浓缩工艺的应用与研究进展.污泥处理处置技术与装备国际研讨会. 中国土木工程学会水工业分会排水委员会. 2003 :207~211
    Leif Ydsteb?. et al. Experience with Biological Nutrient Removal at Low Temperatures. Water Environ Res.,2000,72(4):444~454
    郝晓地等. 欧洲城市污水处理技术新概念--可持续生物除磷脱氮工艺(上). 给水排水. 2002, 28(6):6~11
    邓荣森等.从运行方式看氧化沟技术的发展.给水排水. 2000,26(3):19~21
    邓荣森等.一体化氧化沟固液分离和回流机理研究.环境科学学报. 1999,19(3):241~245
    王涛等.一体化氧化沟侧沟固液分离器分离效果研究.中国给水排水. 1999,15(3):17~19
    江霜英. 水处理中有机絮凝剂的研究. [博士学位论文] . 上海:同济大学. 1999
    朱南文. 城市污水厂污泥农用处置相关的处理技术的研究. [博士学位论文] .上海:同济大学. 2000
    Metcalf and Eddy. Wastewater engineering—treatment,disposal and reuse. McGraw—Hill. International Editions,Civil Engineering Series Singapore. The third edition.1991,766—879
    Shieh. C and Roethal. F.J . Physical and Chemical behavior of stabilized sewage sludge blocks in seawater. Environ.Sci.Technol. 1989,23(2):121~124
    Eriksson.L.and B.Alm. Characterization of activated sludge and contioning with cationic polyeletrolytes.Wat.Sci.Tech.1993,28(1):203~212
    Durand-Pianna G. et al . Flocculation and adsorption properties of cationic polyelectrolytes toward Na-montmorillionite dilute suspensions. J.Colloid Interface Sci. 1987,11(9):474~480
    Langer.S.J and Klute.R. Rapid mixing in sludge conditioning with polymers
    
    
    Wat.Sci.Tech.1993,28(1):233~242
    李玉江等. 新型复合絮凝剂PAFS处理炼油工业废水的研究. 环境与开发. 1999,14(2):23~24
    李玉江等. 高稳定性活性硅酸SPSA在污泥脱水中的应用. 环境科学研究. 1995,8(6):32~36
    汪晓军等. 双氰胺—甲醛絮凝剂对活性污泥脱水性能的研究. 重庆环境科学. 1997,19(2):52~53
    王杰等. 两性高分子絮凝剂对造纸混合液脱水性能的研究. 环境污染治理技术与设备. 2001,2(1):34~37
    伦宁等. 两性聚丙烯酰胺在污泥脱水中的应用. 山东建材学院学报. 1999,13(2):114~116
    李多松等. KHYC型絮凝剂用于污泥脱水处理的研究. 工业水处理. 1997,17(5):22~24
    苗群等. 利用正交试验设计法对污泥脱水性能的研究. 青岛建筑工程学院学报. 1996,17(2).52~55
    Joseph Robinson et al. Use of dilatometric and drying techniques for assessing sludge dewatering characteristics. Water Environ.Res.,1992,64(1):60~68
    Yu X. and Somasundarn. P Enhanced flocculation with double flocculants. Colloids Surfaces. 1993,(81):17-23
    Senthilnathan P R and Sigler R G. Improved sludge dewatering by dual polymer conditioning Wat. Sci. Tech ., 1993,28(8): 53-57
    Chitikela S and Dentel S Dual chemical conditioning and dewatering of anaerobically digested biosolids laboratory evalutions. Water Environ Res.,1998,70(9):1062~1069
    Lee C H and Liu J C Enhanced sludge dewatering by dual polyelectrolytes conditioning . Water Research .2000,34 (18) :4430-4436
    K. Burton. Determination of DNA concentration with diphenylamine. Methods in Enzymology. 1968,12:163~166
    O. H. Lowry, et al. Protein measurement with the Folin phenol reagent. J.Biol.Chem.,1951,193:265~275
    国家环境保护局. 水和废水监测分析方法(第3版).北京:中国环境出版社. 1998
    Lotito V, Mininni G, Spinosa L, et al. Developments in laboratory evaluation of sewage sludges dewaterability. Wat. Sci.Technol., 1993,28(1):103~108
    周国成. 我国污水处理厂污泥脱水机械概论. 中国市政工程. 1995,(2):37~45
    韩洪军. 污水处理构筑物设计与计算. 哈尔滨: 哈尔滨工业大学出版社. 2002.4
    
    刘俊新等. 采用氧化沟从城市污水处理中去除氮和磷的研究. 哈尔滨建筑大学学报. 1997,30(5):36~40
    任南琪主编. 污染控制微生物学原理与应用. 北京:化学工业出版社. 2003.4
    黄晟. 城市污水处理除磷中的有关问题. 重庆环境科学. 2001,23(5):39~42
    徐亚同. 城市污水生物除磷系统的特点工艺与进展. 1994,7(2):44~48
    陈翼孙等著. 气浮净水技术的研究与应用. 上海:上海科学技术出版社. 1985.8
    王毅力等. 气浮净水技术研究及进展. 环境科学进展,1999,7(6):94~102
    魏在山等. 气浮法处理废水的研究及其进展. 安全与环境学报, 2001,1(4):14~18
    单忠健. 气泡一絮粒的粘附. 水处理技术. 1989,15(2):120~124
    J .A .Kitcheners et al. The mechanism of dissolved air floatation for potable water basic analysis and a proposal. Water Res.,1981 ,15(6):585 ~586
    S.J .Neethling ,et al . Prediction of water distribution in a flowing foam . Chemical Engineering Science. ,2000,55(11):4021~4028
    罗固源. 水污染物化控制原理与技术. 北京:化学工业出版社. 2003.3
    张自杰等. 活性污泥生物学与反应动力学. 北京:中国环境科学出版社. 1989
    P. Aarne Vesilind. Role of water in sludge dewatering. Water Environment Research. 1994,66 (1) : 4~11
    F.Colin,et al. Distribution of water in sludge in relation to their mechanical dewatering . Water Res.,1995,29(8):2000~2005
    Smollen M. Moisture retention characteristics and volume reduction of municipal sludge. Wat.S.A., 1988,14(1):25~30
    Katsiris N and Kouzeli-Katsiris A. Bound water content of biological sludge in relation to filtration and dewatering. Wat. Res., 1987,21(11):1319~1327
    Heulele K H and Weisburg E. Bound water and activated sludge bulking. Swedge and Industrial Wastes,1956,28(4):558~574
    Sato H, Eto S and Suzuki H. Dewatering sludge: Relationship between amount of bound water and dewatering characteristics of alum sludge. Filtr. Sep., 1982:492~497
    Smollen M. Categories of moisture content and dewatering characteristics of biological sludge. Proceeding of the 4th World Filtration Congress, Ostend, Belgium, 22~25, April, 1986
    Tsang K R and Vesilind P A. Moisture distribution in sludge,Wat. Sci.Technol., 1990,22(12):135~142
    荆忠胜编. 表面活性剂概论. 北京:中国轻工业出版社. 2001.2
    郭祥丰等编著. 阳离子表面活性剂及应用. 北京:化学工业出版社. 2002.7
    汪祖漠等编. 两性表面活性剂. 北京:轻工业出版社1990.1
    
    Olboter L and Vogelpohl A. Influence of particle size distribution on the dewatering of organic sludges. Wat. Sci.Technol., 1993,28(1):149~157
    Nellenschulte T and Kayser R. Change of particle structure of sewage sludges during mechanical and biological processes with regard to the dewatering result. Wat. Sci.Technol., 1997,36(4):293~306
    Li D H and Ganczarczyk J J. Structure of activated sludge flocs. Biotechnol . Bioeng., 1990,35:57~65
    Novak J T , Goodman G L, Pariroo A and Huang J C. The blinding of sludge during filtration . J. Wat. Pollut. Control Fed, 1988,60:206~214
    Forster C F. Activated sludge surfaces in relation to the sludge volume index. Wat.Res.,1971,5:861~870
    Forster C F and Lewin D C. Polymer interactions at Activated sludge surfaces. Effl. Wat. Treat. J., 1972,12:520~525
    Urbain V, Block J C and Manem J. Bioflocculation in activated sludge analytic approach. Wat. Res., 1993,27(5):829~838
    Nelson T C,Huang J YC and Ramaswamui D, Decomposition of exopolysaccharide slime by a bacteriophage enzyme. Wat. Res., 1988,22(9):1185~1188
    Thomas L, Jungschaffer G and Sprossler B,Improved sludge dewatering by enzymatic treatment. Wat.Sci.Technol.,1993,28 (1):189~192
    陈东. 溶菌酶用于改善污泥脱水性能的研究. [硕士学位论文]. 上海. 同济大学. 1992
    姚毅. 活性污泥表面特性与其沉降脱水性能的关系. 中国给水排水. 1996,12(1):22~25
    陈银广.表面活性剂改进活性污泥的脱水性能及其作用机理. 环境科学. 2000,21(5):97~100
    陈银广. 改善活性污泥机械脱水性能及活性污泥法生物除铬的初步研究. [博士后研究工作报告] . 上海:同济大学. 2001
    金兆丰等编. 城市污水回用技术手册. 北京:化学工业出版社. 2004.1