大气湍流中光波前的时空特性探测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自适应光学通过对动态波前畸变的实时探测、校正,使光学系统能够克服大气湍流的动态扰动,保持良好的成像效果。为了评价自适应波前校正系统应对大气湍流的能力,大气湍流强度的测量一直是自适应光学领域的重要课题。Greenwood频率和大气相干长度r0能够从时间域和空间域表达光束受湍流扰动的综合强度。因此,本论文对上述两个参数的测量统计方法进行了深入研究。
     本论文首先设计了一种适用于测量大气湍流时空特性的微小孔径Shack-Hartmann波前探测器。根据惠更斯-菲涅尔衍射理论模拟出微透镜后的衍射光斑分布图,并在1/e2信噪临界原则的基础上合理地设定了衍射光斑的直径。针对探测噪声,分析了传统单一阂值法在弱信号探测时存在的问题,提出逐点扣除阂值噪声的办法,较好地消除了噪声影响,提高了Shack-Hartmann波前探测器质心计算精度。应用Zemax光学设计软件设计了与500mm口径天文望远镜匹配的Shack-Hartmann波前探测器转接镜头及其测量大气湍流时空特性的光学系统。利用400nm-750nm波段进行畸变波面探测,750nm以上的波段用于动态跟踪,可以解决天文望远镜跟踪天体目标时的抖动问题。
     分析了传统差分星点像运动法(DIMM)在波面上采用一对点对大气相干长度r0统计的缺陷。提出畸变波面上正方形分布的十二对点的差分星点像运动统计方法,从空间角度上增加了大气相干长度r0采样的统计数量,同时从空间群的概念来说增加了中心对称统计,大幅降低了统计时间,仅使用300ms采样300幅畸变波面即可完成对大气相干长度r0的统计,得出稳定的ro值,其波动范围只有±3%,解决了长期以来大气相干长度r0测定误差大的问题。
     研究了大气湍流时间域参数Greenwood频率。分析了Terry J.Brennan等人为缩短统计时间在空间上大幅增加统计量、仅在相邻两幅畸变波面上选取多点的位相差值进行频率成分统计的方法,实验证明其统计量仍然不够。因此,从时间上增加统计样本长度,连续采集300幅畸变波面,兼顾了时间和空间对湍流扰动统计量上的要求,获得的Greenwood频率波动范围只有±2%,而采样时间仅需300ms,兼具即时性、准确性,解决了长期以来湍流频率测定的可信度问题。
     本论文经过对测量大气湍流时空特性统计方法的不断改进,获得了准确的统计结果。本论文涉及了大气湍流基本理论、衍射光学、光学系统设计及计算机技术的广泛知识,是多学科交织集成的研究结果。
Through measuring and correcting the dynamic aberrated wavefront on real time, adaptive optics system could remove the external disturbance and obtain near diffractive limit image.To evaluate the performence of adaptive optics system against atmospheric turbulence, the measurement of atmospheric turbulence intensity has become an important issue in adaptive optics. Greenwood frequency and atmospheric coherent length ro can describe the coherence of beam transmitting through atmospheric turbulence and the global intensity of turbulence from both time domain and space domain. Hence, in this thesis, we study the mensurement techniques and statistical characteristics of these two parameters mentioned above.
     A method to design a Shack-Hartmann wavefront sensor with small aperture used to measure the time-space characteristics of atmospheric turbulence was presented at first.According to the Huygens-Fresnel diffraction theory, the microlens diffraction intensity distribution along propagation direction was simulated, and the diameter of the diffraction spot was obtained reasonably. And then, In order to improve detection accuracy,this paper presents a threshold selection method. This method effectively eliminates the noise, and improves the WoC (weight of centroid) calculation precision of the Shack-Hartmann wavefront sensor. The transfer lens of Shack-Hartmann wavefront sensor and optic system were designed with Zemax, and they will be installed on500mm diameter telescope for atmospheric turbulence measurement.
     The trembling problem when tracking celetial object with telescope was solved with dynamic tracking technology. Light with waveband400nm-750nm was used for distorted wavefront detection, while light waveband above750nm was used for dynamic tracking.
     This thesis analyzed the limitation of traditional star speckle moving difference method using only one pair of points to calculate atmospheric coherence length.We increased the statistical number of light spots pair from one to twelve aligned in a square, which was completed on a Shack-Hartmann light spots array. It spatially increases the statistical number and the spatial symmetry of ro measurement so that decreased the statistical time. The results show that only three hundred of wavefront samples got in300ms is enough to obtain ro with the variation less than3%. The presented method solves the large error problem in the traditional ro measurement for a long time.
     The statistical characteristics of the temporal domain parameter, Greenwood frequency, of atmospheric turbulence was studied. In order to shorten the statistical time, Terry J.Brennan increased spacial statistics substantially, and calculate the frequency through the difference between two adjacent wavefront. The results show that it is still not enough. Therefore, in my new method, the statistical sample time length is increased, and300distortion wavefront are grabbed contineously. The requirements on both time and space are satisfied, and the variation of obtained Greenwood frequency is±2%, and the sampling time is only300ms. The presented method is real-time and accurate, which solved the problem of poor reliability of measuring turbulence frequency since a long time.
     After the continuous improvement of the statistical methods of measuring atmospheric turbulence spatial and temporal characteristics, I obtain accurate statistical results.In this thesis, atmospheric turbulence theory and diffractive optics are involved; optical system design, computer technique are utilized, these research achievements integrate lots of subjects.
引文
[1]I. Newton,"Optics," in Great Books of the Western World (R. M. Hutchins, ed.),1952,34, Chicago:Encyclopedia of Brittanica
    [2]饶瑞中.光在湍流大气中的传播[M].合肥:安徽工业出版社,2005:1-10
    [3]N. A. Kolmogorov,Dissipation of energy in the locally isotropic turbulence [J]. Comptes rendus (Doklady) de l'Academie des Sciences de l'U. R. S. S,1941,32:16-18
    [4]N. A. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynold's numbers[J].Comptes rendus (Doklady) de l' Academie des Sciences de l'U. R. S. S,1941,30:301-305
    [5]V. I. Tatarski, Wave Propagation in a Turbulent Medium[M], New York:McGraw-Hill Book Company Inc,1961
    [6]D. F. Buscher, J. T. Armstrong, C. A. Hummel, A. Quirrenbach, D. Mozurkewich, K. J. Johnston, C. S. Denison, M. M. Colavita, M. Shao, Interferometric seeing measurements on Mt. Wilson:power spectra and outer scales[J], Applied Optics,1995,34:1081-1096
    [7]N. S. Nightingale, D. F. Buscher, Interferometer seeing measurements at the La Palma Observatory[J]. Monthly Notices of the Royal Astronomical Society,1991,251:155-166
    [8]J. W. Q'Byrne, Seeing measurements using a shearing interferometer[J]. Publications of the Astronomical Society of the Pacific,1988,100:1169-1177
    [9]M. M. Colavita, M. Shao, D. H. Staelin, Atmospheric phase measurements with the Mark Ⅲ stellar interferometer[J]. Applied Optics,1987,26:4106-4112
    [10]Babcock H W.The possibility of compensating astronomical seeing[J]. Publ. Astrron. Soc. PAC,1953,65:229-236
    [11]Robert J. Noll.Zernike polynomials and atmospheric turbulence[J].Opt. Soc. Am.1976,66:207-211
    [12]V. A. Dorezyuk, A. F. Naumov, V. I. Shmalgauzen, Control of liquid crystal correctors in adaptive optical systems[J]. Sov. Phys. Tech. Phys.,1989,34:1384
    [13]W. Klaus, et. al., Adaptive LC lens array and its applications[C]. SPIE,1999,3635:66-73
    [14]D. Dayton, J. Gonglewski, S. Restaino, J. Martin, J. Phillips, M. Hartman, S. Browne, P. Kervin, J. Snodgrass, N. Heimann, M. Shilko, R. Pohle, B. Carrion, C. Smith, D. Thiel.Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites [J]. Optics Express,2002,10:1508-1519
    [15]F. V. Martin, P. M. Prieto, P. Artal, Correction of the aberrations in the human eye with a liquid crystal spatial light modulator:limits to performance [J]. Opt. Soc. Am. A,1998,15:2552-2562
    [16]A. Awwal, B. Bauman, D. Gavel, S. S. Olivier, S. Jones, J. L. Hardy, T. Barnes, J. S. Werner, Characterization and Operation of a liquid crystal adaptive optics phoropter[C].SPIE,2003,5169:104-122
    [17]W. Quan, Z. Wang, G. Mu, L. Ning, Correction of the aberration in the human eyes with SVAG1thin film transistor liquid crystal display[J]. Optik,2003,114:1-5
    [18]K. C. Cho, C. H. Lin, S. J. Chen, Compact retinal imaging system with liquid crystal spatial light modulation adaptive optics device[C]. SPIE,2007,6426:64261X.1-64261X.7
    [19]X. Wang, D. Wilson, R. Muller, P. Maker, D. Psaltis, Liquid crystal blazed grating beam deflector[J]. Applied Optics,2000,39:6545-6555
    [20]S. Serati and J. Stockley, Advanced liquid crystal on silicon optical phased arrays[J]. IEEE,2002
    [21]J. Stockley, S. Serati, Advances in liquid crystal beam steering[C].SPIE,2004,5550:32-39
    [22]N. V. Tabiryan, S. R. Nersisyan, Large angle beam sterring using all optical liquid crystal spatial light modulator[J]. Applied Physics Letters,2004,84:5145-5147
    [23]S. Serati and J. Stockley, Advances in liquid crystal based devices for wave front control and beamsteering[C].SPIE,2005,5894:58940K.1-58940K.13
    [24]Z. Cao, L. Xuan, L. Hu, Y. Liu, Q. Mu, D. Li, Investigation of optical testing with a phase only liquid crystal spatial light modulator[J].Optics Express,2005,13:1059-1065
    [25]大卫·吕埃勒.机遇与混沌[M].上海:上海世纪出版集团.2005
    [26]Matthew R. Brooks, Matthew E.Goda, Atmospheric simulation using a liquid crystal wavefront controlling device[C].SPIE,2004,5553:258-268
    [27]J.O.欣茨.湍流[M].北京:科学出版社.1987:48-50
    [28]李晓峰.星地激光通信链路原理与技术[M].北京:国防工业出版社.1992:76-203
    [29]马春林.大气传输特性对激光探测性能影响研究[D]:[硕士学位论文].西安:西安电子科技大学无线电物理系,2008
    [30]温雅婷.塔克拉玛干沙漠腹地近地层湍流特征的观测研究[D]:[硕士学位论文].南京:南京信息工程大学气候系统与全球变化,2008
    [31]周丹.近地面大气湍流特性的研究[D]:[硕士学位论文].北京:中国科学院云南天文台,2002
    [32]李新阳,姜文汉,王春红,等.激光实际大气水平传输湍流畸变波前的功率分析:波前相位与格林伍德频率[J].光学学报,2000,20(8):1035-1042
    [33]汪建业,刘晓春,饶瑞中,等.大气相干长度的昼夜观测[J].强激光与粒子束,2004,16(1):1-4
    [34]曹召良.液晶自适应光学系统应用研究[D]:[博士学位论文].北京:中国科学院长春光学精密机械与物理研究所,2008
    [35]D.P.Greenwood,D.L.Fried.Power spectra requirements for wave front compensative system[J].Opt.Soc.Am.,1976,66:193-206
    [36]Earl J.Spillar.Measurements of atmospheric parameters using the SOR atmospheric monitor[C].SPIE,2011,8038:1-9
    [37]John E.Kaufmann.Performance limits of high-rate space-to-ground optical communications through the turbulent atmospheric channel[C].SPIE,2011,2381:171-182
    [38]Miao Yu,Mikhail A.Vorontsov.Bandwidth estimation for adaptive optical systems based on stochastic parallel gradient descent optimization[C].SPIE,2004,5553:189-199
    [39]Terry J.Brennan,David C.Mann.Estimation of optical turbulence characteristics from Shack Hartmann wavefront sensor measurements[C].SPIE,2010,7816:1-16
    [40]D.L.Fried, Statistics of a geometric representation of wavefront distortion [J]. Opt. Soc. Am.,1965,55:1427-1435
    [41]D.L.Fried,Limiting resolution looking down through the atmosphere [J]. Opt.Soc. Am.,1966,56:1380-1384
    [42]D.L.Fried.Optical resolution looking down through the atmosphere[J]. Opt.Soc. Am.,1966,56:1372-1379
    [43]D.L.Fried.Differential angle of arrival theory,evaluation,and measurement feasibility [J].Radio Sci.,1975,10:71-76
    [44]F.Roddier.The effects of atmospheric turbulence in optical astronomy[J]. Prog. Optics.,1981,19:281-376
    [45]Ann C.Slavin, A.Laurie Wells,Robert Q.Fugate,et al..A comparison of three methods of measuring the atmospheric coherence length[C]. Proc.SPIE,1997,3125:241-249
    [46]David Dayton,Bob Pierson,Brian Spielbusch.Atmospheric structure function measurement with a Shack-Hartmann wavefront sensor[J].Optics Letters,1992,17(24):1737-1739
    [47]T.Travouillon,M.C.B.Ashley,M.G.Burton,et al..Automated Shack-Hartmann seeing measurements at the South Pole [J]. A&A,2003,409:1169-1173
    [48]O.von der Luhe.Estimating Fried's parameter from a time series of an arbitrary resolved object imaged through atmospheric turbulence[J]. J.Opt.Soc.Am.A,1984,1(5):510-519
    [49]A.Tokovinin.From Differential image motion to seeing[J].The Astronomical Society of the Pacific,2002,114:1156-1166
    [50]黄宏华,姚永帮,饶瑞中.四孔差分像运动测量大气相干长度的方法研究[J].强激光与粒子束,2007,19(3):357-360
    [51]倪志波,黄宏华,黄印博,等Dome效应对四孔大气相干长度仪系统性能的影响[J].强激光与粒子束,2010,22(11):2551-2555
    [52]Travis S.Taylor, Don A.Gregory, Laboratory simulation of atmospheric turbulence-induced optical wavefront distortion[J].Optics&Laser Technology,2002,34:665-669
    [53]Matthew R. Brooks, Matthew E.Goda, Atmospheric simulation using a liquid crystal wavefront controlling device[C].SPIE,2004,5553:258-268
    [54]Thu-Lan Kelly, David F. Buscher, Paul Clark, et al., Dual-conjugate wavefront generation for adaptive optics[J].Optics express,2000,17(20):368-374
    [55]Nicolas Roddier, Atmospheric wavefront simulation using Zernike polynomials [J]. Optical engineering,1990,29(10):1174-1180
    [56]Michael C.Roggemann, Byron M.Welsh, Dennis Montera, Troy A.Rhoadarmer, Method for simulating atmospheric turbulence phase effects for multiple time slices and anisoplanatic conditions[J]. Applied optics,1995,34(20):4037-4051
    [57]Cressida M.Harding, Rachel A.Johnston, Richard G.Lane, Fast simulation of a Kolmogorov phase screen[J].Applied optics,1999,38(11):2161-2170
    [58]Dennis A.Montera, Brent L.Ellerbroek, James M.Brown Ⅱ, A phase and slope screen generator for spatially and temporally correlated unlimited length sequences [C]. SPIE,1998,3353:1070-1079
    [59]R G Lane, A Glindemann and J C Dainty, Simulation of a Kolmogorov phase screen[J].Waves in Random Media,1992,2:209-224
    [60]Byron M. Welsh, A Fourier Series Based Atmospheric Phase Screen Generator for Simulating Anisoplanatic Geometries and Temporal Evolution[C].SPIE3125:327-338
    [61]Vincent Michau, Gerard Rousset, Francis Mendez, etc., Hartmann-Shack wavefront sensor for laser diode testing[C]. SPIE,1989,1131:160-167
    [62]Beckers J.M., Adaptive optics for astronomy:principles, performance, and application[J]. Annu. Rev. Astron. Astrophys.1993,31:13-62
    [63]Shack R. V,Platt B.C.Production and use of a lenticular Hartmann screen[J]. Opt.Soc.Am,1971,61:656
    [64]Bruno TL,Wirth A,Jankevics AJ.Applying Hartmann wavefront sensing technology to precision optical testing of the Hubble space telescope correctors [C]. SPIE,1993,1920:328-336
    [65]Schmutz LE.Hartmann sensing at adaptive optics associates[C].SPIE1987,779:13-17
    [66]Welsh BM,Ellerbroek BL,Roggemann MC,Rennington TL.Fundamental performance comparison of a Hartmann and a shearing interferometer wavefront sensor[J].Appl Opt,1995,34:4186-4195
    [67]Johnston DC,Ellerbro BL,pompea SM.Curvature sensing analysis[C]. SPIE1994,2201:528-538
    [68]Lofdahl MG,Scharmer GB,Wei W.Calibration of a deformable mirror and Strehl ratio measurements by use of phase diversity[J].Appl Opt.2000,39:94-103
    [69]Irwan R,Lane RG. Analysis of optimal centroid estimation applied to Shack-Hartmann sensing[J].Appl opt.1999,38:6737-6743
    [70]Yang D,Chen J,Zhou H,Buckley S.New algorithm to calculate the center of laser reflections[C].SPIE1998,3306:54-58
    [71]Lin PP,Kuo CT.A3-D surface geometry measurement technique using optical fringe projection[J].Laser.Eng.1999,8:159-174
    [72]BAR J,BRENNER K H.Realization of refractive continuousphase elements with high design freedom mask structured ionexchange[C].SPIE,2011,4437:50-59
    [73]John E.Greivenkamp,Daniel G.Smith.Graphical approach to Shack-Hartmann lenslet array design[J].Optical Engineering.2008,47:1-4
    [74]穆全全.液晶自适应光学技术的工程化研究[D]:[博士学位论文].北京:中国科学院长春光学精密机械与物理研究所,2010
    [75]夏明亮.高精度人眼像差哈特曼探测器的研制[D]:[博士学位论文].北京:中国科学院长春光学精密机械与物理研究所,2011
    [76]郁道银,谈恒英.工程光学[M].北京:机械工业出版社,1998,338-343
    [77]李锡善,蒋海英,蒋安民.光学玻璃的色散特性测量及近似计算方法的讨论[J].光学学报,1995,15(2):206-211
    [78]R.J.Sasiela.Electromagnetic wave propagation-Evaluation and application of Mellin transforms[J].Springer Series on Wave Phenomena,Springer-Verlag,Berlin,1994
    [79]Suss公司产品目录:Microlens arrays-catalog2011.Products&Solutions
    [80]郑彬,凌宁.高速倾斜镜的频率响应函数测量[J].光电工程,1999,26(5):58-62
    [81]刘敏.快速倾斜镜的建模与模型参考自适应控制技术研究[J].光学技术,2008,34(1):108-112
    [82]张慧敏,李新阳.大气湍流畸变相位屏的数值模拟方法研究[J].光电工程,2006,33(1):14-19
    [83]李博.自适应光学探测及信号处理方法研究[D]:[博士学位论文].北京:北京理工大学,2002
    [84]邱荣,吴健,杨春平,王小东,刘森.0.45-0.95μm太阳辐射在大气中的传输计算[J].大气与环境光学学报,2006,1(1):21-26
    [85]詹杰,郭瑞鹏,饶瑞中.可见到近红外波段整层大气透过率测量[J].大气与环境光学学报,2006,1(1):179-183
    [86]Andor CCD相机使用手册http://www. andor. com/
    [87]Thierry Fusco,Jean-Marc Conan,Vincent Michau,Gerard Rousset,Laurent M Mugnier. Isoplanatic angle and optimal guide star separation for multiconjugate adaptive optics[C].SPIE,2000,4007:1044
    [88]周仁忠,阎吉祥.自适应光学理论.(第一版)[M].北京:北京理工大学出版社,1996
    [89]G.C.Valley.Isoplanatic degradation of tilt correction and short-term imaging systems [J]. Appl.Opt.,1980,19:574
    [90]饶长辉,姜文汉,凌宁.应用哈特曼-夏克波前传感器测量大气湍流参数[J].光学学报,2000,20(9):1201-1207.
    [91]David J.Butler, Enrico Marchetti, Jochen Bahr, Wenli Xu, Stefan Hippler, Markus Kasper, Todolphe Conan.Phase screens for astronomical multi-conjugate adaptive-optics:application to MAPS[C]. SPIE,2003,4839:623-634
    [92]张骏,曾宗泳,肖黎明,马成胜,翁宁泉,用于波前补偿实验的对流湍流系统的光学特性[J].光学学报,1997,17(9):1259-1263
    [93]凌宁,自适应光学波前校正器[J].光学技术,1998(3):12-16
    [94]Sandrine Thomas. A simple turbulence simulator for adaptive optics[C]. SPIE,2004,5490:766-773
    [95]M.A.A.Neil, M.J.Booth, T.Wilson.Dynamic wave-front generation for the characterization and testing of optical systems[J]. Optics letters,1998,23(23):1849-1851
    [96]Doo Jin Cho, Samuel T.Thdurman, J.T.Donner, G.Michael Morris.Characteristics of a128×128liquid-crystal spatial light modulator for wave-front generation[J]. Optics letters,1998,23(12):969-971
    [97]David Dayton, Steve Sandven, Steve Browne, John Gonglewski.Multi-segment spatial light modulators for the simulation of Kolmogorov turbulence[C].SPIE,1998,3432:73-74
    [98]Micheal K.Giles, Anthony Seward, Mikhail A. Vorontsov, Jungtae Rha, Ray Jimenez.Setting up a liquid crystal phase screen to simulate atmospheric turbulence [C].SPIE,2000,4124:89-97
    [99]Travis S.Taylor, Don A.Gregory. Laboratory simulation of atmospheric turbulence-induced optical wavefront distortion[J].Optics&Laser Technology,2002,34:665-669
    [100]Matthew R. Brooks, Matthew E.Goda.Atmospheric simulation using a liquid crystal wavefront controlling device[C].SPIE,2004,5553:258-268
    [101]Nicolas Roddier.Atmospheric wavefront simulation using Zernike polynomials [J]. Optical engineering,1990,29(10):1174-1180
    [102]Michael C.Roggemann, Byron M.Welsh, Dennis Montera, Troy A.Rhoadarmer. Method for simulating atmospheric turbulence phase effects for multiple time slices and anisoplanatic conditions[J].Applied optics,1995,34(20):4037-4051
    [103]Cressida M.Harding, Rachel A.Johnston, Richard G.Lane.Fast simulation of a Kolmogorov phase screen[J]. Applied Optics,1999,38(11):2161-2170
    [104]Dennis A.Montera, Brent L.Ellerbroek, James M.Brown II. A phase and slope screen generator for spatially and temporally correlated unlimited length sequences [C]. SPIE,1998,3353:1070-1079
    [105]R G Lane, A Glindemann and J C Dainty.Simulation of a Kolmogorov phase screen[C]. Waves in Random Media,1992,2:209-224
    [106]Zernike, Fritz. Diffraction theory of the cut procedure and its improved form, the phase contrast method[J]. Physica,1934,1:689-704
    [107]钟兴,金光,王栋,等.共轴TMA反射镜面形不规则对波前误差的影响[J].光学精密工程,2008,16(8):1516-1521
    [108]安源,金光,齐迎春,等.薄膜反射镜的单电极控制静电成形[J].光学精密工程,2009,17(8):1964-1970
    [109]王俊文,刘光杰,张湛,等.基于小波变换和Zernike矩的图像区域复制篡改鲁棒取证[J].光学精密工程,2009,17(7):1686-1693
    [110]陈波,高亮,阚珊珊,等.极紫外望远镜角分辨率评价方法[J].光学精密工程,2007,15(11):1644-1648
    [111]张伟,邓键,龙夫年,等.拼接镜面合成孔径光学系统的像质评价[J].光学精密工程,2008,16(2):208-214
    [112]莫卫东Zernike多项式拟合干涉波面的基本原则[J].空军工程大学学报(自然科学版),2002,3(3):35-38
    [113]Robert J. Noll. Zernike polynomials and atmospheric turbulence [J]. Opt. Soc. Am.,1976,66:207-211
    [114]J.Stock,G.Keller.Astronomical seeing[J].Stars and stellar systems.,1960,1:138
    [115]M.Sarazin,F.Roddier.The ESO differential image motion monitor[J]. A&A.,1990,227:294-300
    [116]Samuel V.Mautravadi,Troy A.Rhoadarmer,Robert S.Glas. Simple laboratory system for generating well-controlled atmospheric-like turbulence[J]. SPIE,2009, 7659:170-181
    [117]Wallner E.P., Optimal wave front correction using slope measurements [J].Opt.Soc.Am.1983,73:1771-1776
    [118]Welsh B.M., C.S.Gardner,Performance analysis of adaptive optics systems usingslope sensors[J].Opt.Soc.Am.A.1989,6:1913-1923
    [119]Ellerbroek B.L., First-order performance evaluation of adaptive optics for atmospheric turbulence compensation in extended field-of-view astronomical telescopes[J]. Opt.Soc.Am.A,1994,11:783-805
    [120]Ellerbroek B.L.,C.V.Loan,N.P.Phisianis,Optimizing closed-loop adaptive-optics performance with use of multiple control bandwidths [J]. Opt.Soc.Am.A.,1994,11:2871-2886
    [121]Gardner C.S.,B.M.Welsh,L.A.Thompson,Design and deformance analysis of adaptive optical telescopes using laser guide stars[J].Proc.IEEE,1990,78:1721-1743
    [122]Nisenson P., R.Barakat, Partial atmospheric correction with adaptive optics[J]. Opt.Soc.Am.A,1987,4:2249-2253
    [123]B.M.Welsh and S.C.koeffer,Remote sensing of atmospheric turbulence and transverse winds from wave-front slope measurements from crossed optical paths[J].Applied Optics,1994,33(21):4880-4833
    [124]H.X.Yan, S.S.Li, D.L.Zhang, S.Chen, Numerical simulation of an adaptive optics system with laser propagation in the atmosphere[J].Applied Optics,2000,39(18):3023-3031
    [125]Mitsuo Takeda, Hideki Ina, and Seiji Kobayashi, Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry [J]. Opt.Soc.Am,1982,72(1):156-160
    [126]姜文汉,鲜浩,沈锋.夏克-哈特曼波前传感器的探测误差[J].量子电子学报,1998,15(2):218-227
    [127]王薇,陈怀新.基于优化探测窗口的光斑质心探测方法[J].强激光与粒子束,2006,18(8):1249-1252
    [128]刘丹,闫岩,任冰强.扫描型哈特曼检测装置研究[J].强激光与粒子束,2005,17(9):1377-1381
    [129]朱彬,杨泽平,许冰.超松弛法哈特曼传感器波前重构仿真分析[J].激光与红外,2002,32(1):18-19
    [130]譫廷政,吕海宝.CCD细分技术方法研究及应用[J].光学学报,2002,22(11):1396-1399
    [131]任剑峰,饶长辉,李明全.一种Hartmann-Shack波前传感器图像的自适应阂值选取方法[J].光电工程,2002(29):1-5
    [132]沈峰,姜文汉.提高Hartmann-Shack波前传感器质心探测精度的阂值方法[J].光电工程,1997(24):1-8
    [133]饶瑞中,王世鹏,刘晓春,等.湍流大气中的激光束漂移的实验研究[J].中国激光,2000,27(11):1011-1015
    [134]Fried D L.Time-delay-induced mean-square error in adaptive optics[J]. J.Opt. Soc.Am.A,1990,7(7):1224-1225
    [135]刘超,胡立发,穆全全,等.校正水平湍流波面的自适应光学系统的带宽需求[J].光学精密工程,2010,18(10):2137-2142
    [136]谭徽松,许骏,岑学奋.三孔较差视宁度监视仪的原理和误差分析[J].云南天文台台刊,1995,4:39-44