汽车主动悬架容错控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车工业技术发展和人们消费水平提高,汽车乘坐舒适性、操纵稳定性、使用可靠性及安全性越来越被人们所重视。汽车主动悬架由汽车悬架、传感器、控制器和作动器组成。采用主动控制能明显改善其性能,提高汽车乘坐舒适性、汽车操纵稳定性等性能。但在汽车主动悬架系统中,元器件使用时间增加、老化、疲劳等原因,将导致系统参数发生微小变化,导致系统出现参数不确定性,影响系统控制鲁棒性。传感器作为主动悬架系统信号测量通道主要元件、作动器作为主动悬架系统控制输入通道主要元件,一旦出现故障,都将造成完好无故障情况下设计的控制器误控制,甚至出现控制效果部分或完全丧失,原预期控制效果无法达到。再者,若控制单元发生故障,主动悬架系统将出现紊乱现象。这些既影响汽车乘坐舒适性,也影响汽车操纵稳定性、使用可靠性和品质。
     本文以汽车主动悬架为研究对象,结合当前汽车主动悬架控制均基于元部件完好无故障进行研究而存在的不足或缺陷,基于容错控制理论,以汽车主动悬架控制可靠性和使用品质提高、悬架设计方法优化为目标,针对汽车主动悬架传感器故障和作动器故障进行故障检测、诊断与隔离技术研究,针对带有故障的汽车主动悬架进行容错控制策略研究。主要包括以下内容:
     (1)全面、深入分析汽车主动悬架作动器故障和传感器故障情况,建立作动器故障模型和传感器故障模型。结合汽车主动悬架模型分别建立传感器故障时故障悬架模型、作动器故障时故障悬架模型及悬架系统参数摄动和作动器故障同时存在时的故障悬架模型。
     (2)针对汽车主动悬架作动器故障,基于残差信息的方法研究汽车主动悬架系统故障检测、诊断与隔离技术。针对汽车主动悬架传感器故障,首先基于残差信息的方法研究故障检测、诊断与隔离技术。然后基于Kalman滤波器组对传感器故障进行定量化检测与隔离研究。
     (3)考虑汽车主动悬架7自由度整车系统同时存在参数摄动和作动器故障情况,运用线性矩阵不等式方法推导和设计最优鲁棒容错控制器。运用所设计的最优鲁棒容错控制器对故障悬架进行被动容错控制研究。分别在正常H_2/H_∞控制器和最优鲁棒容错控制器控制下,既对完好无故障主动悬架7自由度整车进行性能控制对比研究,也对故障悬架进行性能控制对比研究。
     (4)针对输出反馈控制的汽车主动悬架7自由度整车出现传感器故障情况,利用自适应理论和线性矩阵不等式方法推导设计传感器故障估计系统。研究汽车主动悬架传感器各类常见故障估计问题。在传感器故障估计系统设计和故障估计基础上,基于信号重构方法对出现传感器故障的汽车故障悬架进行主动容错控制研究。对主动控制下的完好无故障汽车主动悬架与主动容错控制下的故障悬架性能进行仿真对比研究。
     (5)针对作动器出现故障的汽车主动悬架7自由度整车,设计一种对路面干扰输入具有干扰抑制作用的鲁棒观测器。通过鲁棒观测器获得汽车主动悬架输出残差实现作动器故障检测与在线辨识研究。在此基础上,基于控制律重组方法设计主动容错控制律,并对作动器出现故障的故障悬架进行主动容错控制研究。也对主动控制下的完好无故障汽车主动悬架与主动容错控制下的故障悬架的性能进行仿真对比研究。
     (6)为验证主动容错控制理论研究成果,构建汽车半主动悬架1/4车试验台架。通过试验获取电磁阀式阻尼可调减振器力—速度特性关系数据。在这一试验数据基础上,针对汽车半主动悬架作动器故障情况,基于LabView进行硬件在环主动容错控制试验研究。硬件在环试验中,既对完好无故障汽车半主动悬架进行主动控制试验,也对出现作动器故障的故障悬架进行主动容错控制试验。对主动控制下的完好无故障汽车半主动悬架与主动容错控制下的故障悬架性能进行对比研究。
     (7)最后,对全文研究工作与研究成果进行总结。结合研究实践,对下一步深入研究提出研究方向和建议。
With the development of vehicle industry technology and the raise of comsuption level, peoplepay more and more attention to vehicle ride comfortable, operation stability, use reliability andsecurity.Vehicl active suspension system is made up of vehicle suspension and sensors and controllerand actuators. Its performance, such as vehicle ride comfortable and vehicle operation stability etc,can be obviously improved by active control on vehicle active suspension. But in vehicle activesuspension system, some cause from increase use time and fatigue and ageing of component willresult in minuscule variation of system parameters and parameters uncertainty which will affectcontrol robust performance. Once sensor which is major component of signal measure channel andactuator which is major component of control input channel have fault, then those will result in faultcontrol of controller designed under intact condition, even partial or whole forfeit of control effect,so as not to achieve desired effect. In addition, if a controller has fault, then vehicle activesuspension system will emerge disorder phenomenon. All of this will not only affect vehicle ridecomfortable but also affect vehicle operation stability and use reliability and quality.
     Considering vehicle active suspension system as object and combining the exiting shortage andproblem of the current vehicle avtive suspension control research which is based on intactcomponent, based on the fault-tolerant control theory and aimed to improvement of controlreliability and use quality and optimization of suspension design methods, the dissertation authorinvestigates technology of fault detection and diagnosis and isolation on vehicle active suspensionwith sensor fault or actuator fault, key technology of fault-tolerant control on vehicle activesuspension system with faults. The main research work of dissertation includes the followingaspects:
     (1)Fault actuator model and fault sensor model were built on the basis of in-depth and overallanalysis of their fault probability in vehicle active suspension system.Fault suspension model withsensor fault and fault suspension model with actuator fault were built respectively, and so was faultsuspension model with parameter disturbance and actuator fault simultaneously.
     (2)Considering actuator fault of vehicle active suspension system, technology of fault detectionand diagnosis and isolation were researched on vehicle active suspension system based on residualerror information. Considering sensor fault of vehicle active suspension system, firstly, technologyof fault detection and diagnosis and isolation were researched on vehicle active suspension systembased on residual error information. Then, so were fault detection and isolation based on Kalmanfilter groups.
     (3)Considering the parameter disturbance and actuator faults of seven-degree-of-freedomvehicle with active suspension system, optimal robust fault-tolerant controller is derived and designed by linear matrix inequality method. Research of passive fault-tolerant control on fullvehicle with fault suspension system is made. Not only performance comparison between the intactseven-degree-of-freedom vehicle with active suspension system and fault suspension under thenormalH_2/H_∞controller is made, but also that under optimal robust fault-tolerant controller ismade too.
     (4)By adaptive theory and linear matrix inequality methods, sensor fault estimation system isderived and designed for seven-degree-of-freedom vehicle with output feedback control activesuspension system which sensor break down. The sensor ordinary faults is estimated and studied. Onthe basis of the design of sensor faults estimation system and the estimation of sensor faults activefault-tolerant control on fault suspension system is researched based on sensor signal reconfiguration.Performance comparison between the intact vehicle active suspension system controlled by activecontrol law and fault suspension system controlled by active fault-tolerant control law is made.
     (5)Considering seven-degree-of-freedom vehicle with active suspension system whichactuator breaks down, a robust observer is designed to restrain disturb road input. Detection andon-line diagnosis of actuator fault is realized by output residual error obtained from the robustobserver. Base on this, active fault-tolerant control based on control law reconfiguration is designedand active fault-tolerant control is researched for vehicle active suspension system with actuatorfault. Performance comparison between the intact vehicle active suspension system controlled byactive control law and fault suspension system controlled by active fault-tolerant control law is madetoo.
     (6)In order to prove the theory result of active fault-tolerant, test bench of quarter vehicle withsemi-active suspension system is constructed. Force-speed performance relational datas of solenoidvalve damper which damper force is adjustable is obtained by test. Base on test datas, hardware-in--the-loop active fault-tolerant control test based on LabView is researched for vehicle semi-activesuspension with actuator fault. In the course of hardware-in-the-loop test, both active control test forintact vehicle semi-active suspension and active fault-tolerant control test for fault suspension withactuator fault is made. Performance comparison between the intact vehicle semi-active suspensionsystem controlled by active control law and fault suspension system controlled by active fault-tolerant control law is made.
     (7)In the end, the research work and research achievement of the whole dissertation isconcluded. Besides, combining the practice of research, the area and suggestion that need detailedresearch are poined out.
引文
[1] D.Crolla(英),喻凡.车辆动力学及其控制[M].北京:人民交通出版社,2004.
    [2](美)T.D.Gillespie.车辆动力学基础[M].赵六奇,金达锋,译.北京:清华大学出版社,2006.
    [3]寇发荣,方宗德.汽车可控悬架系统的研究进展[J].汽车工程,2007,29(5):426~~432.
    [4] S.Hidaka, Y.K.Ahn, S.Morishita. Adaptive vibration control by a variabledamping dynamic absorber using ER fluid[J].Journal of vibration andacoustics,1999,121:373~378.
    [5] N.Jalili.A Comparative study and analysis of semi-active vibration controlsystems[J].Journal of Vibration and Acoustics,October2002,124:593~605.
    [6] R.A.Williams.Automotive active suspension part2practical considerations[C].Proceeding Instrument Mechanic Engineering Part D,1997,211:427~443.
    [7] R.S.Sharp, D.A.Crolla. Road vehicle suspension system design a review[J].Vehicle System Dynamics,1987,16:167~192.
    [8]张玉春,王良曦,丛华.汽车主动悬挂控制的研究现状和未来挑战[J].控制理论与应用,2004,21(1):139~144.
    [9] D.Karnopp, M.J.Crosby, R.A.Harwood.Vibration control using semi-activeforce generators[J].ASME Journal of Engineering for Industry,1974,96(2):619~626.
    [10]陈龙,李德超等.车辆半主动悬架自适应模糊控制[J].农业机械学报,2001,32(6):1~4.
    [11] D.Karnopp. Active and semi-active vibration isolation[J].ASME Journalof Mechanical Design,1995,117B(6):177~185.
    [12]汪若尘,江浩斌,张效良,等.阻尼非线性半主动悬架的建模与控制[J].农业机械学报,2008,39(12):14~17.
    [13]郑玲,邓兆祥,李以农.基于电流变减振器的汽车半主动悬架最优控制[J].重庆大学学报,2003,26(7):2~5.
    [14]赵亮,文桂林,韩旭,刘桂萍,黄雨华.基于磁流变阻尼器的车辆半主动悬架最优控制的研究[J].汽车工程,2008,30(4):340~344.
    [15] Yao G Z, Yap F F, Chen G, et al. MR damper and its application for semi-active control of vehicle suspension system[J].Mechatronics,2002,12:963~973.
    [16]夏光,唐希雯,王洪成,等.汽车电磁阀式半主动悬架控制系统设计[J].合肥工业大学学报(自然科学版),2012,35(1):22~65.
    [17] S.S.Parthasarathy, Y.G.Srinivasa. Design of an active suspension system for aquarter-car road vehicle model using model reference control[J] Journal ofSystems and Control Engineering,2006,220(2):91~107.
    [18] Yao J L, Zheng J Q, Cai W Y. Sliding mode model-following control of automobilesemi-active suspension system[J]. Transactions of the Chinese Society forAgricultural Machinery,2008,39(4)5~8.
    [19]李国勇.最优控制理论与应用[M].北京:国防工业出版社,2008.
    [20] S.H.Sadati, S.Malekzadeh, M.Ghasemi. Optimal control of an8-DOF vehicle activesuspension system using Kalman observer[J]. Shock and Vibration,2008,15(5):493~503.
    [21] N.Giorgetti, A.Bemporad, H.E.Tseng, D.Hrovat. Hybrid model predictive controlapplication towards optimal semi-active suspension[J].IEEE International Symp-osium on Industrial Electronics,2005,1:391~397.
    [22] P.Tina, G.Alessandro, S.Carla. Constrained optimal control: An application tosemiactive suspension systems[J].International Journal of System Science,2010,41(7):797~811.
    [23] M.V.C.Rao, V.Prahlad. A tunable fuzzy logic controller for vehicle-activesuspension systems[J].Fuzzy Sets and Systems,1997,85:11~21.
    [24] Wang W, Xue Y B, Song Y L, Du X C. Fuzzy-PID control strategy for an activesuspension based on optimal control laws with genetic algorithm[J].Journal ofVibration and Shock,2012,31(22):157~162.
    [25] Zhang J J, Han W S, Gao R Z. Fuzzy sliding mode control for semi-active suspensionsystem[J].Advanced Materials Research,2011,268-270:1595~1600.
    [26] Yuan C Y, Teng Y F, Yin X Y. Study of active suspension based on fuzzy neuralnetwork control[J].Applied Mechanics and Materials,2013,251:201~205.
    [27]陈无畏祝辉.基于状态识别的整车操纵性和平顺性的协调控制[J].机械工程学报,2011,47(6):121~129.
    [28]初长宝,陈无畏,刘翔宇,黄明.基于ARM7的汽车底盘系统分层式协调控制试验研究[J].汽车工程,2009,31(11):1037~1041.
    [29]陈无畏,周慧会,刘翔宇.汽车ESP与ASS分层协调控制研究[J].机械工程学报,2009,45(8):190~196.
    [30]陈无畏,孙启启,胡延平,朱茂飞.基于干扰抑制的汽车转向与悬架系统的集成控制[J].机械工程学报,2007,43(11):98~104.
    [31]杨柳青,陈无畏,初长宝.汽车主动悬架与ABS系统联合控制研究[J].合肥工业大学学报(自然科学版),2006,29(6):767~771.
    [32]杨柳青.汽车半主动悬架与ABS系统的协调控制仿真研究[D].合肥:合肥工业大学,2006.4.
    [33] Bao W N, Zhang X H, Zhao Y S, ZhangY Q, A fuzzy sliding mode controller for anair spring active suspension[J].Applied Mechanics and Materials,2011,66:350~355.
    [34] Yang L, Zhao Y Z, Chen S Z, Wu Z C. Neural network model reference control forsemi-active hydro-pneumatic suspension[J]. Beijing Ligong Daxue Xuebao,2011,31(1):24~28.
    [35] Tang C Y, Li H, Zhou W, Zhou S W, Zhao G Y.Control technology of vehicle activesuspension based on genetic algorithm and neural network[J].Transactions of theChinese Society for Agricultural Machinery,2009,40(2):6~11.
    [36] M.Narges, S.A.Khaki, L.Batool. Robust model reference adaptive control of activesuspension system[C]//14th Mediterranean Conference on Control andAutomation,Mediterranean,2006,1~6.
    [37] M.M.Fateh, M.M.Zirkohi. Adaptive impedance control of a hydra-ulic suspensionsystem using particle swarm optimization[J].Vehicle System Dynamics:Internati-onal Journal of Vehicle Mechanics and Mobility,2011,49(12):1951~1965.
    [38] S.Sebastian, H.K.Uwe. Wheel load oriented control of semi-active and activesuspension systems using pre-located road sampling[C]//Proceedings of theFisita2012World Automotive Congress,2012,201:167~182.
    [39]闻新,张洪钺,周露.控制系统的故障诊断和容错控制[M].北京:机械工业出版社,1998.
    [40]周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社,2000.
    [41]叶银忠,潘日芳,蒋慰孙.动态系统的故障检测与诊断方法[J].信息与控制,1985,6:27~34.
    [42] R.V.Beard.Failure accommodation in linear systems through self-reorganization[D].Massachusetts Institute of Technology,1971.
    [43] R.K.Mehra, J.Peschon. An innovation approach of fault detection and diagnosisin dynamics[J].Automatics,1971,7(5):637~640.
    [44]胡昌华,许化龙.控制系统故障诊断与容错技术的分析和设计[M].国防工业出版社,2000.
    [45] P.M.Frank. Analytical and qualitative mode based fault diagnosis—a survey andsome new results[J].European Journal Control,1989,5(2):6~28.
    [46] D.Juricic, M.Zele. Robust detection of sensor faults by means of a statisticaltest[J].Automatica,2002,38:737~742.
    [47] M.Staroswiecki, G.Comtet-varga. Analytical redundancy relations for fault dete-ction and isolation for nonlinear systems[J].IEEE Transaction on AutomaticControl,1999,44(12):1879~1884.
    [48] F.Caliskan, C.M.Hajiyev. Aircraft sensor fault diagnosis based on kalman filterinnovation sequence[C]//Proceedings of37th Conference on Decision&Control.Tampa,1998,1313~1314.
    [49] C.Commault, J.M.Dion, O.Sename, R.Motyeian. Observer based fault detection forstructured systems[J].IEEE Transaction on Automatic Control,2002,47(12):2073~2079.
    [50] M.Saif,Y.Guan. A new approach to robust fault detection and identification[J].IEEE Transaction on Aerospace and Electronic Systems,1993,29(3):684~695.
    [51] J.Chen,R.J.Patton. Optimal filtering and robust fault diagnosis of stochasticsystems with unknown disturbances[J].IEEE Proceedings of Control TheoryApplication,1996,143(1):31~36.
    [52] Zhang J Q, Yan Y. A wavelet-based approach to abrupt fault detection and diagnosisof sensors[J].IEEE Transactions on Instrumentation and Measurement,2001,50(5):1389~1396.
    [53] Zhang X D, M.M.Polycarpou, T.Parisini. A robust detection and isolation schemefor abrupt and incipient faults in nonlinear systems[J].IEEE Transaction onAutomatic Control,2002,47(4):576~593.
    [54] M.Blangke, M.Staroswiecki, Wu N E.Concepts and methods in fault tolerant control[C]//Proceeding of the American Control Conference.Arlington,2001.2606~2620.
    [55]张育林,李东旭,动态系统故障诊断理论与应用[M].长沙:国防科技大学出版社,1997.
    [56] W.H.Pierce. Failure-tolerant computer design[M].Academic Press Inc,New York:1965.
    [57]王仲生.智能容错技术及应用[M].北京:国防工业出版社,2002.
    [58] A.Levis. Challenges to control:a collective view,report of the workshop heldat the University of Santa Clara,1986[J].IEEE Transaction on Automatic Control,1987,32(4):274~285.
    [59] K.J.Astrom. Intelligent control[C]//Proceeding of First Europe Control Confere-nce, Grenoble,1991,2328~2329.
    [60] Chen J, R.J.Patton. Robust model-based fault diagnosis for dynamics systems[M].Boston:Kluwer Academic Publishers,1999.
    [61] J.S.Eterno, D.P.Looze, J.L.Weiss, A.S.Willsky. Design issues for fault-tolerantrestructurable aircraft control[C]//Proceedings of24th Conference on Decision&Control,Fort Lauderdale,1985:900~905.
    [62] Gao Z, P.J.Antsaklis. Stability of the pseudo-inverse method for reconfigurablecontrol[J].International Journal of Control,1991,51(3):717~729.
    [63] Gao Z, P.J.Antsaklis.Reconfigurable control systems design via perfect modelfollowing[J].International Journal of Control,1992,56(3):783~798.
    [64] Jiang J.Design of Reconfigurable control system using eigenstructure assignments[J].International Journal of Control,1994,59(2):395~410.
    [65] M.M. Polycarpou.Fault acommodation of a class of multivariable nonlinear dynami-cal systems[J].IEEE Transaction on Automatic Control,2001,46(5):736~742.
    [66] Zhang Y,Jiang J.Intergrated active fault-tolerant control using IMM approach[J].IEEE Transaction Aerosplane Electronic System,2001,37(4):1221~1235.
    [67] I.Kaminer, M.Antonio, Pascoal, et al.A Velocity algorithm for the implementationof gain-scheduled controllers[J].Automatica,1995,31(8):1185~1192.
    [68] Zhou D H, P.M.Frank. Fault diagnostics and fault tolerant control[J].IEEETransaction on Aerospace and Electronic Systems,1998,34(2):420~427.
    [69]周东华,王庆林.一种非线性系统容错控制的混合方法[J].控制与决策,1997,12(2):167~170.
    [70] Tang H J,Zhang X M,Chen S Z.RobustH∞fault-tolerant controller design foruncertain descriptor delay system[C]//Proceedings of the5th World Congresson intelligent Control and Automation,Hangzhou,2004,1534~1538.
    [71] B.Marx, D.Koenig, D.Georges. Robust fault-tolerant control for descriptor syst-ems[J].IEEE Transactions on Automatic Control,2004,49(10):1869~1875.
    [72] J.Farrell, T.Berger, B.D.Appleby. Using learning techniques to accommodateunanticipated Faults[J]. IEEE Control Systems Magazine,1993,13(3):40~49.
    [73] K.Keiwan, N.Dirk, K.Dirk, et al.Fault diagnosis of an active suspension controlsystem[J].6th IFAC Symposium on Fault Detection,Suspervision and Safety ofTechnical Processes IFAC Proceedings Volumes,2006,6(1):498~503.
    [74] T.Weispfenning. Fault detection and diagnosis of components of the vehiclevertical dynamics. Meccanica,1997,32(5),59~472.
    [75] D.Fischer, M.Borner, J.Schmitt, et al. Fault detection for lateral and verticalvehicle dynamics. Control and Engineering Practice,2006,15(3),315~324.
    [76] H.B.Moncada, J.A.Marin. Fault detection for a bus suspension Model using an utkinobserver[C]//2011Electronics, Robotics and Automotive Mechanics Conference,2011,246~251.
    [77] F.Daniel, K.Eberhard, I.Rolf. Fault detection for an active vehicle suspension[C]//Proceedings of The2003American Control Conference,Colorado,2003,4377~4382.
    [78] M.Borner, H.Straky, T.Weispfenning,R.Isermann. Model based fault detection ofvehicle suspension and hydraulic brake systems[J].Mechatronics,2002,12(8):999~1010.
    [79] A.Yetendje, M.Seron, J.DeDona. Diagnosis and actuator fault tolerant controlin vehicle active suspension[C]//Third International Conference on Informationand Automation for Sustainability,2007,Melbourne,153~158.
    [80] P.Gaspar, Z.Szabo, J.Bokor. Design of reconfigurable and fault-tolerant on LPVmethods[C]//Proceedings of The47th IEEE Conference on Decision and Control,Cancun,Mexico,2008,5384~5389.
    [81] P.Gaspar, Z.Szabo, J.Bokor. The design of a reconfigurable suspension controlsystem based on an FDI filter[C]//16th Mediterrane an Conference on Controland Automation.Ajaccio,2008:446~450.
    [82] A.Chamseddine, H.Noura, M.Ouladsine. Sensor fault detection, identfication andfault tolerant control: application to active suspension[C]//Proceedings ofthe2006American Control Conference,Minneapolis,USA,2006,2351~2356.
    [83] A.Chamseddine, H.Noura. Control and sensor fault tolerance of vehicle activesuspension[J].IEEE Transactions on Control Systems Techology,2008,16(3):416~433.
    [84] J.W.Kim, H.C.Lee. Sensor fault detection and isolation algorithm for a continuousdamping control system[C]//Proceedings of the Institution of Mechanical Engine-ers, Part D: Journal of Automobile Engineering,2011,225:1347~1364.
    [85] H.S.Kim, H.C.Lee. Fault-tolerant control algorithm for a four-corner closed-Loopair suspension system[J].IEEE Transactions on Industrial Electronics,2011,58(10):4866~4879.
    [86] H.S.Kim, H.C.Lee. Model-based fault-tolerant control for an automotive airsuspension control system[J].Proceedings of the Institution of Mechanical Engi-neers,Part D:Journal of Automobile Engineering,2011,225(11):1462~1480.
    [87] Zhang Z Z,Zhang L L,Long Z Q,Active fault tolerant control for maglev trainagainst accelerometer failure[C]//Proceedings of the2009IEEE InternationalConference on Robotics and Biomimetics,Guilin,2009,1356~1360.
    [88] Wei X K, Liu H, Qin Y. Fault diagnosis of rail vehicle suspension systems byusing GLRT[J].2011Chinese Control and Decision Conference2011:1932~1936.
    [89] Xue S, Long Z Q, He G, et al. Sensor fault diagnosis of maglev train based onkalman filter group[C]//2012Fifteenth International Conference on IntelligentComputation Technology and Automation,2012,312~316.
    [90] Long Z Q, Xue S, He G, et al.Fault-diagnosis for the accelerometer of maglevsuspension system based on signal comparison[J].Yi Qi Yi Biao Xue Bao,2011,32(12):2641~2647.
    [91]张志勇,文桂林,钟志华.车辆主动悬架的混合H2/H∞最优保性能控制[J].汽车工程,2007,29(7):606~610.
    [92]吴忠强,陈金钉,王志君等.基于T-S模型的主动悬架保性能控制研究[J].汽车工程,2007,29(11):975~980.
    [93]刘玉梅,苏建,曹晓宁,等.基于模糊数学的汽车悬架系统故障诊断方法[J].吉林大学学报(工学版),2009,39(2):220~224.
    [94] Liu Y M, Cao X N, Su J, et al.Suspension system fault diagnosis method basedon fuzzy mathematics[C]//The Nineth International Conference on ElectronicMeasurement&Instruments,2009,210~214.
    [95] Li H, Gao H, Liu H, et al.Fault-tolerant H control for active suspension vehiclesystems with actuator faults[C]//Proceedings of the Institution of MechanicalEngineers. Part I: Journal of Systems and Control Engineering,2012,226(3):348~363.
    [96]余志生.汽车理论[M].北京:机械工业出版社,2003.
    [97] Crolla D,喻凡.车辆动力学及其控制[M].北京:人民交通出版社,2003.
    [98] S.Ikenaga, F.L.Lewis, J.Campos, et al.Active suspension control of groundvehicle based on a full-vehicle model[C]//Proceedings of the American ControlConfere-nce,Chicago,2000,4019~4024.
    [99]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005.
    [100] H.Dirman. PID Controller design for semi-active car suspension based on modelfrom intelligent system identification[C]//2010Second InternationalConference on Computer Engineering and Applications,Bali island,2010:60~63.
    [101] Chen M, Tong C N. Robust fault-tolerant stabilization withH∞index constrainsfor uncertain systems based on LMI[J].Computer Simulation,2009,26(11):186~190.
    [102]杨伟,章卫国,杨朝旭等.容错飞行控制系统[M].西安:西北工业大学出版社,2007.
    [103] Yu Fan,Crolla D A.An optimal self-tuning controller for an active suspension[J].Vehical System Dynamics,1998,29(1):51~65.
    [104]方敏,汪洪波,陈无畏.汽车主动悬架系统H∞控制器的降阶[J].控制理论与应用,2007,24(4):553~560.
    [105]俞立.鲁棒控制——线性矩阵不等式处理方法[M].北京:清华大学出版社,2002.
    [106]陈无畏,孙启启,胡延平等.基于干扰抑制的汽车转向与悬架系统的集成控制[J].机械工程学报,2007,43(11):98~104.
    [107]王孝武.现代控制理论基础[M].北京:机械工业出版社,2003.
    [108]缑林峰,王镛根,庞大海.模型不确定性的故障检测滤波器[J].计算机仿真,2004,21(3):45~47.
    [109]同济大学数学教研室.高等数学[M].北京:高等教育出版社,1982.
    [110] I.Hwang, S.Kim, Y.Kim,et al.A survey of fault detection,isolation,and reconfig-uration Methods[J].IEEE Transactions on Control Systems Technology,2010,18(3):636~653.
    [111] T.Yoshimura, I.Teramura. Active suspension control of a one-wheel car modelusing single input rule modules fuzzy reasoning and a disturbance observer[J].Journal of Zhejiang University Science,2005,6A(4):251~256.
    [112] Campos, J.Davis, L.Lewis, et al.Active suspension control of ground vehicleheave and pitch motions[C]//Proceedings of the7th Mediterranean Conferenceon Control and Automation,Haifa,Israel,1999,28~30.
    [113] A.Guia, M.Melas, C.Seatzu, et al. Design of a predictive semi-active suspensionSystem[J].Vehicle System Dynamics,2004,41(4):277~300.
    [114]姜长生,等.现代鲁棒控制基础[M].哈尔滨:哈尔滨工业出版社,2005.
    [115] Zhou D H, Ye Y Z. Modern fault diagnosis and fault-tolerant control[M]. Beijing:Tsinghua University Book Concern,2000.
    [116]姜斌,冒泽慧,杨浩等.控制系统的故障诊断与故障调节[M].北京:国防工业出版社,2009.
    [117]王占山,张化光.故障估计的自适应观测器设计[J].东北大学学报(自然科学版),2005,26(1):221~224.
    [118] Jiang B, F.N Chowdhury. Fault estimation and accommodation for linear MIMOdiscrete-time systems[J].IEEE Transactions on Control Systems Technology,2005,13(3):493~499.
    [119]姜斌,冒泽慧,杨浩等.控制系统的故障诊断与故障调节[M].北京:国防工业出版社,2009.
    [120]陈杰平,冯武堂,郭万山等.整车磁流变减振器半主动悬架变论域模糊控制策略[J].农业机械学报,2011,42(5):8~13.
    [121] Chen S, He R, Liu H G, et al. An optimal design for suspension based on LQGcontrol[C]//International Conference on Electric Information and ControlEngineering Proceedings, Wuhan,2011:1987~1992.
    [122] Zheng L, Li Y N, Chen B K. A new semi-active suspension control strategy throughmixedH2/H∞robust technique[J].Journal of CentralSouth University ofTechnology:EnlishEdition,2010(17):332~339.
    [123]李国勇.最优控制理论与应用[M].北京:国防工业出版社,2008.
    [124] K.Zhou, Zhang R, Wei W. On the design of unknown input observers and faultdetection filters[C]//Proceedings of the6th World Congress on IntelligentControl and Automation,Dalian,China,2006:5638~5642.
    [125] Wang D J, Li Y C. Estimation of effectivness factor on-line and fault tolerantcontrol[C]//Proceedings of the Second International Conference on MachineLearning and Cybernetics,Xi’an,2003:765~770.
    [126] QC/T545-1999《汽车筒式减振器台架试验方法》[S].1999.
    [127]日本鹭宫株式会社.单通道电液伺服悬架动态性能试验台使用手册[G].2000.
    [128] P.Kyushik, K.Jiongrae, K.Dongshin. A study on the dynamic characteristics ofthe continuously variable shock absorber for semi-active damping controlsystem[C].SAE Paper2005,01:1711~1718.
    [129]孙同景,陈桂友.Freescale9S12十六位单片机原理及嵌入式开发技术[M].北京:机械工业出版社,2010.