模糊滑模控制及其在机电系统中应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技和生产的迅速发展,所研究的机电系统越来越复杂,对自动化控制的控制精度、响应速度、系统的稳定性与适应能力的要求也越来越高。然而,由于机电系统存在强非线性、外部扰动、参数时变等因素的影响,采用常规控制算法实现机电系统控制时,难以满足其不断提高的性能要求。针对机电控制系统的上述问题,本论文以滑模变结构控制理论为主要架构,引入了模糊自适应系统实现滑模变结构控制器的参数在线自适应调整,并以Lyapunov准则为控制系统稳定性分析的理论基础,分别以提高控制系统的实时性和鲁棒性为目标,设计了两种控制器来处理上述问题。
     针对模糊滑模控制器(FSMC)的实时性问题,设计了增强型模糊滑模控制器(EFSMC)。在确保被控非线性系统的全局渐进稳定基础上,提出了以局部线性化模糊自适应调节系统调整滑模控制器增益的控制方法,使得系统状态在快速趋近被控系统滑模面的同时,模糊自适应系统的模糊规则大大减少,提高了控制系统计算效率,从而保证了整个控制系统的实时性要求。
     另外,以进一步提高控制系统鲁棒性,降低抖振为目的,本论文还提出了模糊自适应动态滑模控制器(FADSMC),实现对被控系统的有效控制。实际系统中,由于存在系统不确定性、外部扰动以及量测噪声等不利因素,采用常规控制器难以获得平滑的控制输出,尤其是对一类要求输出控制力及其变化率作为伺服系统目标输入的被控系统,以(U(k)-U(k-1))/Δt=ΔU来计算控制力变化率的方式,将导致变化率输出产生较大的波动,从而造成被控系统的不稳定。而动态滑模控制器能够直接输出控制力的变化率,且控制力可通过对控制力变化率进行积分来求得,因而输出的控制力较为平滑,滑模控制器的抖振现象能够得到有效缓解。同时,模糊自适应调节系统的采用也使得该控制器具有快速反应能力,进一步提高了控制系统的鲁棒性。
     本论文利用三个模拟系统以及一个实验系统,来验证所提出的控制器性能。分别是:(1)以增强型模糊滑模控制器控制二自由度机械手和三自由度并行机械手模拟系统,来验证所提出增强型模糊滑模控制器的有效性与实时性。(2)以模糊自适应动态滑模控制器实现对1/4车主动悬架系统的有效控制,与被动悬架系统、线性二次型Gauss最优控制(LQG)以及常规滑模控制系统(CSMC)控制的主动悬架系统相比较,仿真实验结果表明该主动悬架系统的鲁棒性得到有效提高。(3)建立基于dSPACE的AMT自动离合器快速原型实验系统来验证所提出的增强型模糊滑模控制器和模糊自适应动态滑模控制器的有效性。所有模拟仿真和实验结果表明,所提出的控制器具有良好的控制性能。
The electromechanical system is more and more complicated with the rapid development of science and technique, and the requirement of precision, respond time, stability and adaptive ability is also improved. However, due to the non-linear dynamic characteristic of electromechanical system, external disturbance and parameter uncertainty, it is difficult to be control precisely such nonlinear-system when adopting the conventional control arithmetic. In this paper, two control arithmetics based on the sliding mode controller are proposed for the purpose of improving the robustness and real-time requirement, respectively. The sliding and global stability of these two controllers are approved in terms of Lyapunov full quadratic form. The fuzzy logic adaptive system is introduced to tune the parameters of sliding mode controller. The performance of controlled system is improved effectively by adopting the proposed fuzzy sliding mode controllers.
     However, the expensive computing requirement of the complicated algorithm in fuzzy sliding mode controller (FSMC) may limit its on-line application to the complicated electromechanical system. Therefore, the enhanced fuzzy sliding mode controller (EFSMC) is proposed to improve the real-time requirement of the non-linear controlled system. The region-wise linear fuzzy adaptive system is adopted to tune the gain of the sliding mode controller, which can force the states of controlled system hit the sliding mode surface, quickly. The number of the fuzzy rules for the fuzzy logic adaptive tuner is also reduced. As a result, the complexity of FSMC is reduced, which ensure the real-time requirement of the controlled system.
     In addition, in order to improve the robustness of the controlled system and alleviate the chattering phenomenon, the dynamic sliding mode controller with fuzzy adaptive tuning (FADSMC) is proposed in this paper. For a real controlled system, the external disturbance and measuring noise must be considered during the design of the controller. Therefore, it is difficult to obtain the smooth control output for the conventional controller. Especially, for a class of controlled system which require the control force and its change as the control input of the servo system, the discontinuous jump will occur when the (U(k)-U(k-1))/Δt=ΔU is adopted to compute the change of control force. Then, the controlled system will not work stably and the robustness and control precision is reduced. However, the change of control force can be obtained by adopting the dynamic sliding mode controller. The control force can be easily obtained from the integral of its change. A smoother control force can be obtained and the chattering phenomenon is also alleviated. The fuzzy adaptive system is introduced to improve the robustness and stability of the controlled system.
     In this paper, three simulation systems and an experiment system are adopted to demonstrate the proposed controllers. (1) A 2 degree of freedom (DOF) polar manipulator and a 3-DOF parallel manipulator simulation system have been carried out to demonstrate the performance of the proposed the proposed EFSMC controller. (2) The proposed FADSMC controller is applied in the active suspension system to improve its performance. The simulation results are compared with that of the passive suspension, LQG control active suspension and CSMC control active suspension system. (3) The rapid prototype experiment of the automated clutch of AMT based on the dSPACE is designed to demonstrate the performance of the proposed EFSMC and FADSMC. The simulation and experimental results show that the better performance can be obtained by adopting the proposed controllers.
引文
[1] Lyapunov, A.M. The general problem of motion stability, in Russian. Translated in French, Ann, Fac. Sci. Toulouse 9, 1907,203-474
    [2] Kalman, R.E. and Bertram, J.E. Control system analysis and design via the“Second Method”of Lyapunov I: Continuous-Time Systems, Jounal of Basic Engineering, 1960, 394-400
    [3] Salle, L.J. and Lefschetz, S. Stability by Lyapunov’s direct method, Academic Press, 1961
    [4] Popov, V.M. Hyperstability of automatic control systems, Springer Verlag, New York, 1973
    [5] Kalman, R.E. Lyapunov function for the lur’e in automatic control, In Proceedings of the National Academmy of Sciences, 1963, 49: 201-205
    [6] Yakubovisch, V.A. Solution of certain matrix inequalities in the stability theory of nonlinear control systems, Dokl. Akad. Nauk. USSR, 143, 1962
    [7] Drenick, R.F. and Shahbender, A. Adaptive sevomechansims,”AIEE Transactions, 1957, 76: 286-292
    [8] Zadeh, L.A. Fuzzy Sets, Information and Control, 1965, 8: 338-353
    [9] Mamdani, E.H. Application of fuzzy algorithms for control a simple dynamic plant, Proc. Of IEEE, 1974, 121(12): 1585-1588
    [10] Holmblad, L.P. and ?stergaard, J.J. Control of a cement kiln by fuzzy logic, In: Gupta, M.M., and E. Sanchez, eds., Fuzzy Information and Decision Processes, North-Holland, Amsterdam, 1982, 298-409
    [11] Takagi, T. and Sugeno, M. Fuzzy identification of systems and its applications to modelling and control, IEEE Trans. Systems, Man and Cybernatics, 1985, 15(1): 116-132
    [12] Utkin, V.I. Variable structure system with sliding modes, IEEE Trans. Automatic Control, 1977, 22(2): 212-222
    [13] Slotine, J.J.E. Sliding controller design for nonlinear systems, Int. Journal of Control, 1984, 40(2): 421-433
    [14] Slotine, J.J.E. and Li, W. Applied nonlinear control, Prentice-Hall, EnglewoodCliffs, New Jersey, 1991
    [15] Palm, R. Robust control by fuzzy sliding mode, Automatica, 1994, 30(9): 1429-1437
    [16] Nowacki, Z. Owczarz, D. Wozniak, P. On the robustness of fuzzy control of an overhead crane, IEEE International Symposium on Industrial Electronics, 1996, 1: 433-437
    [17] Wu, J.C., Liu, T.S. Fuzzy control stabilization with applications to motorcycle control, IEEE Trans. Systems, Man and Cybernetics, Part B, 1996, 26(6): 836-847
    [18] Wang, W.J. and Lin, H.R. Fuzzy control design for the trajectory tracking on uncertain nonlinear systems, IEEE Trans. Fuzzy Systems, 1999, 7(1): 53-62
    [19] Erbatur, K., Kaynak, O., and Sabanovic, A. et al. Fuzzy adaptive sliding mode control of a direct drive robot, Robotics and Autonomous Systems, 1996, 19: 215-227
    [20] Fung, R.F., Chen, K.W. and Yen, J.Y. Fuzzy sliding mode controlled sliding-crank mechanism using a PM synchronous servo motor drive, Int. Jour. of Mechanics Sciences, 1999, 41(3): 337-355
    [21]金耀初,蒋静坪.一类非线性系统的模糊变结构控制及应用.控制与决策, 1992,7(1): 36-40
    [22] Wang, J., Rad, A.B. and Chan, P.T. Indirect sdaptive fuzzy sliding mode control: Part I: fuzzy switiching, Fuzzy Sets and Systems, 2001, 122: 21-30
    [23] Liang, C.Y. and Su, J.P. A new approach to the design of a fuzzy sliding mode controller, Fuzzy Sets and Systems, 2003, 139: 111-124
    [24] Huang, G.C. and Lin, S.C. Stability approach to fuzzy control design for nonlinear systems, Fuzzy Sets and Systems, 1992, 48: 269-278
    [25] Kim, S.W. and Lee, J.J. Design of a fuzzy controller with fuzzy sliding surface, Fuzzy Sets and Systems, 1995, 71: 359-367
    [26] Wang, L.X. Fuzzy systems are universal approximation, Proc. IEEE Internat. Conf. Fuzzy Systems, 1992, 1163-1170
    [27] Yin, K.T. and Lee, C.S. Fuzzy model-reference adaptive control, IEEE Trans. Syst. Man, Cybern, 1995, 5(12): 1606-1170
    [28]王积伟,陆一心,吴振顺.现代控制理论与工程.北京:高等教育出版社, 2003
    [29] LEE, C. C. Fuzzy logic in control systems: Fuzzy Logic Controller-Part I, IEEETransactions on Systems, Man and Cybernetics, 1990, 20(2): 404-418
    [30]张知星,孙春在,水谷英二.神经-模糊和软计算.西安:西安交通大学出版社. 2000
    [31] Brartolini, G. and Zolezzi, T. Variable structure systems nonlinear in the control law, IEEE Transactions on Automatic Control 1985, 30(7): 681-684
    [32] Nicosia, S., Tomei, P. Model reference adaptive control algorithms for industry robots, Automatica, 1984, 20: 635-644
    [33] Da, F.P. and Song, W.Z. Fuzzy neural networks for direct adaptive control, IEEE Transactions on Industrial Electronics, 2003, 50(3): 507-513
    [34] Young, K.D. Controller design for a manipulator using theory of variable structure systems, IEEE Transactions on Systems, Man and Cybernetics SMC-8, 1978, 101-109
    [35] Slotine, J.J. and Sastry, S.S. Tracking control of nonlinear systems using sliding surfaces with application to robot manipulators, International journal of control, 1983, 38: 465-492
    [36] Jafarov, E.M.,Parlakc, M.N.A., and Istefanopulos, Y. A new variable structure PID-Controller design for robot manipulators, IEEE Trans. on Control Systems Technology, 2005, 13(1): 122-130.
    [37] Choi,S.B., Park, D.W. and Cho, M.S. Position control of a parallel link manipulator using electro-rheological valve actuators, Mechatronics, 2001, 11: 157-181
    [38] Ha, Q.P., Rye, D.C. and Durrant-Whyte H.F. Fuzzy moving sliding control with application to robotic manipulators, Automatica, 1999, 35: 607-616
    [39] Abdelhameed, M.M. Enhancement of sliding mode controller by fuzzy logic with application to robotic manipulators, Mechatrionics, 2005, 15: 439-458
    [40] Rojko, A. and Jezernik, K. Sliding-mode motion controller with adaptive fuzzy disturbance estimation, IEEE Transactions on Industrical Electronics, 2004, 51(5): 963-971
    [41] Wai, R.J. and Lin, F.J.“Fuzzy Neural Network Sliding Mode Position Controller for Induction Servo Motor Drive,”IEE Proc-Electr. Power Appl, VOL.146, NO.3, 1999, 297-308
    [42] Hwang, C.L. A novel Takagi-Sugeno-based robust adaptive fuzzy sliding-modecontroller,”IEEE Transactions on Fuzzy Systems, 2004, 5(12): 676-687
    [43]余志生汽车理论,北京:机械工业出版社, 1989
    [44] Ryba, D. Improvement in dynamic characteristics of automobile suspension systems part II-three-mass Systems, Vehicle System Dynamics, 1974, 3: 58-98
    [45] Hrovat, D. Optimal active suspension structures for quarter-car vehicle models,”Automatica, 1990, 26(5): 845-860.
    [46] Hrovat, D. and Hubbard, M. A comparison between jerk optimal and acceleration optimal vibration isolation, 1987, 112(2): 201-210
    [47] Karnopp, D.C.,Corsby,M.J., and Harwood, R.A. Vibration control using semi-active force generators, Trans. ASME, J. of Engineering for Industry, 1974, 96: 619-626
    [48] Caponetto, R., Diamante, O., Fargione, G. et al. A soft computing approach to fuzzy sky-hook control of semi-active suspension, IEEE Trans. Control Systems Technology, 2003, 11(6): 786-798
    [49] Choi, S.B., Choi, Y.T., and Park, D.W. A sliding mode control of a full-car electrorheological suspension system via hardware in-the-Loop simulation, Trans. ASME Journal of Dynamic Systems, Measurement, and Control, 2000, 122: 114-121
    [50] Sharp, R.S. and Crolla, D.A. Road vehicle suspension system design - A review, Vehicle System Dynamics, 1987, 16: 167-192
    [51] Bender, E.K. Optimal linear preview control with application to vehicle suspension, Trans. ASME Journal of Basic Engineering, 1968, 90: 213-221
    [52] Doyle, J. Glover, K. Khargonekar, P.P. and Francis, B.A. State space solution to standard H 2 and H∞control problems, IEEE Trans. Autom. Control, AC-34, 1989, 831-847
    [53] Moran, A. and Nagai, M. Analysis and design of active suspensions by H∞robust control theory, JSME Int. J. III, 1992, 35: 427-437
    [54] Chen, H., Liu, Z. Y. and Sun, P. Y. Application of constrained H∞control to active suspension systems on half-car models,”ASME, Journal of Dynamic Systems, Measurement, and Control, 2005, 127: 345-354
    [55] Thompson, G.A. and Pearce, C.E.M. Direct computation of the performance indexfor an optimally controlled active suspension with preview applied to a half-car model,”Vehicle System Dynamics, 2001, 35(2): 121-137
    [56] Yeh, E.C. and Tsao, Y.J. Fuzzy preview control scheme of active suspension for rough road, Int. Journal of Vehicle Design, 1995, 15(12): 168-180
    [57] Rao, M.V.C. and Prahald, V. Tunable fuzzy logic controller for vehicle active suspension system, Fuzzy Sets and Systems, 1997, 85: 11-21
    [58] Sunwoo, M., Cheok, K. C. and Huang, N. J. Model reference adaptive control for vehicle active suspension systems, IEEE Transactions on Industrial Electronics, 1991, 38(3): 217-221
    [59] Kim, C. and Ro, P. I. A sliding mode controller for vehicle active suspension systems with non-linearities, Proc. Instn. Mech. Engrs., Part D: J. Automobile Eng., 1998, 212: 79-92
    [60] Rajamani, R. and Hedrick, J. K. Adaptive observers for active automotive suspensions: Theory and Experiment, IEEE Transactions on control systems technology, 1995, 3(1): 86-93
    [61] Ramsbottom, M., Crolla, D. A. and Plummer, A. R. Robust adaptive control of an active vehicle suspension system, Proc. Instn. Mech. Engrs., Part D: J. Automobile Eng., 1999, 213: 1-17
    [62] Zaremba, A., Hampo, R. and Hrovat, D. Optimal active suspension design using constrained optimization, Journal of Sound and vibration, 1997, 27(3): 351-364
    [63] Yu, F., Zhang, J. W. and Crolla, D. A. A study of a Kalman filter active vehicle suspension system using correlation of front and rear wheel road inputs, Proc. Instn. Mech. Engrs., Part D: J. Automobile Eng., 2000, 214: 493-502
    [64] Rattasiri, W. and Halgamuge, S. K. Computationally advantageous and stable hierarchical fuzzy systems for active suspension, IEEE Transactions on Industrial Electronics, 2003, 50(1): 48-61
    [65] Huang, S. J. and Chao, H. C. Fuzzy logic controller for a vehicle active suspension system, Proc. Instn. Mech. Engrs., Part D: J. Automobile Eng., 2000, 214: 1-12
    [66] D’Amato, F. J. and Viassolo, D. E. Fuzzy control for active suspensions, Mechatronics, 2000, 10: 897-920
    [67] Yoshimura, T., Kume, A. and Kurimoto, M. et al. Construction of an active suspension system of a quarter car model using the concept of sliding mode control,Journal of Sound and Vibration, 2001, 239(2): 187-199
    [68] Ting, C. S., Li, T. H. and Kung, F. C. Design of fuzzy controller for active suspension system, Mechatronics, 1995, 4(5): 365-383
    [69] Chen, H. Y. and Huang, S. J. Functional approximation-based adaptive sliding control with fuzzy compensation for an active suspension system, Proc. Instn. Mech. Engrs., Part D: J. Automobile Eng., 2005, 219: 1271-1280
    [70] Nizar, A. H., Lahdhiri, T. and Joo, D. S. et al. Sliding mode neural network inference fuzzy logic control for active suspension systems. IEEE Transaction on Fuzzy Systems, 2002, 10(2): 234-246
    [71]马志敏.主动悬架控制策略的研究及其在CA6440轻型客车上的应用. [博士学位论文].长春:吉林大学车辆工程系,2001
    [72]丁科.车辆主动悬架自适应控制及智能控制研究. [博士学位论文].北京:北京理工大学控制理论与控制工程系,2001
    [73]方敏,史明光,陈无畏.汽车主动悬架多目标H 2 /H∞混合控制.农业机械学报, 2005,36(3): 4-7
    [74]方敏,应艳杰,汪洪波,陈无畏基于整车转向模型的汽车主动悬架控制研究.中国机械工程,2006,17(4): 431-434
    [75]孙建民.车辆主动悬架系统控制技术研究. [博士学位论文].哈尔滨:哈尔滨工程大学轮机工程系,2003
    [76] Aoyama, Y., Kawabata, K., Hasegawa, A. et al. Development of the full active suspension by Nissan,”SAE Serious Paper, 901747, 1990
    [77] Fukushima, N. and Irie, N. Improvement in high-speed safety through active suspension control, Vehicle Research Laboratory, Nissan Motor Co., Ltd, 1990
    [78] Tabata, M., Yokoya, Y., Inoue, H. and Sato, S. Development of chassis integrated control system for the Soarer 1991,”1st International Conf. on Motion and Vibration Control, Yokohama, Japan, 1992, 784-755
    [79] Daniel J: The Case for Semi-Automatic Transmissions, Automotive Engineer, 1997, 2: 28-31
    [80]牛铭奎,程秀生,葛安林等. AMT离合器接合过程中的压力控制.吉林大学学报, 2004,34(2): 198-201
    [81]朱红军,葛安林,张广成等.电子控制机械式自动变速器.汽车电器, 2000, 1:11-13
    [82]汤霞清.机械式自动变速器的智能控制技术研究. [博士学位论文].北京:北京理工大学控制理论与控制工程系,2002
    [83]孙承顺.汽车自动离合器控制系统快速开发研究,[博士学位论文].上海:上海交通大学车辆工程系,2003
    [84]程东升.电机驱动自动离合器接合过程的动力学特性及控制研究. [博士学位论文].上海:上海交通大学车辆工程系,2003
    [85]陈俐.汽车AMT自动离合器接合过程的动力学与控制研究. [博士学位论文].上海:上海交通大学汽车工程系,2000
    [86]席军强.无刷电机驱动的自动离合器及其控制策略研究. [博士学位论文].北京:北京理工大学车辆工程,2001
    [87] Hans, T. On the theory of nonlinear dynamics and its application in vehicle systems dynamics, Vehicle System Dynamics, 1999, 31(6): 393-421
    [88] Gagnon, S. Strategic challenges in developing electric vehicle: a literature review, International Journal of Vehicle Design, Special.21, 1999, 89-109
    [89] Karihara, K. Clutch control apparatus responsive to motor and gearing control, USA Patent 476545
    [90] Sugimura, T. Clutch target position control system, USA Patent 4858131
    [91] Sliker, J.M. and Loh, R.N.K. Design of robust vehicle launch control system, IEEE Transaction on Control Systems Technology, 1996, 4(4): 326-335
    [92] David, J. and Natarajan, N. Design of optimal clutch controller for commerical trucks, 2005 American Control Conference, June 8-10, 2005, OR, USA
    [93] Horn, J., Bamberger, J., Michau, P., and Pindl, S. Flatness-based clutch control for automated manual transmissions, Control Engineering Practice, 2003, (11) 1353-1359
    [94] Montanari, M., Ronchi, F. and Rossi, C. et al. Control and performance evaluation of a clutch servo system with hydraulic actuation, Control Engineering Practice, 2004, 12: 1369-1379
    [95] Zhang, J. Chen, L. Xi, G. System dynamic modelling and adaptive optimal control for automatic clutch engagement of vehicles, Proc. Instn. Mech. Engrs. Part D: J. Automobile Engineering, 2002, 216: 983-991
    [96] Cheng, D.S., Zhang, J.W. and Ye, X.F. et al. Sliding mode control approach forelectrically controllable clutch of AMT based on the feedback linearization, Journal of Donghua University, 2003, 20(3): 88-93
    [97] Gong, J. Zhao, D.X. and Chen, Y. et al. Study on shift schedule saving energy of automatic transmission of ground vehicles, Journal of Zhejiang University SCIENCE, 2004, 5(7): 878-883
    [98]雷雨龙,葛安林,秦贵和等.电控机械式自动变速车辆起步控制品质的实验研究.农业工程学报,1998,14(3): 143-147
    [99]葛安林,雷雨龙,高义峰.电控机械式自动变速车辆坡上起步控制研究.汽车工程,1998,20(3): 150-155
    [100]雷雨龙,葛安林,李永军.离合器起步过程的控制策略.汽车工程,2000,22(4): 266-269
    [101]申水文,葛安林,罗邦杰等. AMT模糊自适应滤波技术.吉林工业大学学报,1997,27(3): 78-82
    [102]申水文,张建武,罗邦杰等. AMT离合器的综合模糊控制.汽车工程,1997,19(6): 347-351
    [103] Liu, F., Li, Y.X., Zhang, J.W., and Huang, H.C. Robust control for automated clutch of AMT vehicle, SAE paper, 2002-01-0933, 2002
    [104] Utkin, V.I. and Yang, K.D. Methods for constructing discontinuity planes in multidimensional variable structure systems, Automation and remote Control, 1978, 31: 1466-1470
    [105] Anderson, B.D.O. and Moore, J.B. Optimal control, Englewood Cliffs, NJ: Prentice-Hall, Inc, 1990
    [106] Zhou, K. Doyle, J.C. and Glover, K. Robust and optimal control, Prentice-Hall, Inc, 1996
    [107]高为炳.变结构控制理论基础.北京:中国科学技术出版社,1990
    [108] DeCarlo, R.A., Zak, S.H. and Mathews, G.P. Variable structure control of nonlinear multivariable system: A tutorial, Proceedings of the IEEE, 1988, 76(3)
    [109]马壮.模糊控制及其在船舶自动舵中应用研究. [博士学位论文].南京:东南大学精密仪器及机械系,2000
    [110]杨振强.模糊神经网络控制器的设计与应用. [博士学位论文].哈尔滨:哈尔滨工业大学控制理论与控制工程系,1999
    [111] Guan, P. Liu, X.J. Liu, J.Z. Adaptive fuzzy silding mode control for flexiblestatellite, Engineering Applications of Artificial Intelligence, 2005, 18: 451-459
    [112] Lee, J.H., Ko, J.S. and Chung, S.K. et al Continuous variable structure controller for BLDDSM position control with prescribed tracking performance. IEEE Transactions on Industrial Electronics,1994, 41(5): 483-491
    [113] Choi, B.J., Kwak, S.W., Kim, B.K. Design of a single-input fuzzy logic controller and its properties, Fuzzy Sets and systems, 2001, 122: 21-30
    [114] Tong, S.C. and Li, H.X. Fuzzy adaptive sliding-mode control for MIMO nonlinear systems, IEEE Transactions on fuzzy systems, 354-360, 11(3): 2003
    [115] Fung, R. F. and Shaw, C. C. Region-wise linear fuzzy sliding mode control of the motor-mechanism systems, Journal of Sound and Vibration, 471-489, 234(3): 2000
    [116] Wang, L.X. Universal approximates by hierarchical fuzzy systems, Fuzzy set and systems, 1998, 93(2): 223-230
    [117] Pieper, J. First order dynamic sliding mode control. Proceedings of the 37th IEEE Conference on Decision & Control, Tampa, Florida, USA, 1998, 2415-2420
    [118] Huang, S. J. and Lin, W. C. Adaptive fuzzy controller with sliding surface for vehicle suspension control. IEEE Transactions on Fuzzy Systems, 2003, 11(4): 550-559
    [119] Fialho, I. and Balas, G. J. Road adaptive active suspension design using linear parameter-varyiing gain-shceduling. IEEE Transactions on Control Systems Technology, 2002, 10(1): 43-54
    [120] Chantranuwathana, S. and Peng, H. Adaptive robust force control for vehicle active suspensions, Int. J. Adapt. Control Signal Process, 2004, 18: 83-102
    [121] ISO 2631-1: 1997(E) Mechanical vibration and shock-Evaluation of human exposure to whole-body vibration-Part 1: General requirements
    [122]林茂成,赵济海起草. GB7031-1987车辆振动输入——路面平度表示法.北京:中国标准出版社,1987
    [123] Sam, Y. M., Osman, J. and Ghani, M. A class of proportional–integral sliding mode control with application to active suspension system, Systems & Control Letters, 2004, 51: 217-223
    [124] Hrovat, D. Survey of advanced suspension developments and related optimal control application. Automatica, 1997, 33(10): 1781-1817
    [125] Lin, J. S. and Kanellakopoulos, I. Nonlinear design of active suspension. IEEEControl System Mag, 1997, 17: 45-59.
    [126] Levitt, J. A. and Zorka, N. G. The influence of tire damping in quarter car active suspension models. ASME J. Dyn. Syst. Meas. Control, 1991, 113: 134-137
    [127]徐石安,江发潮.汽车离合器.北京:清华大学出版社,2004.
    [128]黄宏成,习刚,张建武.电控离合器的H∞控制及鲁棒性分析,上海交通大学学报,2001, 35(12): 1802-1807
    [129]杨叔子,杨克冲等机械工程控制基础.武汉:华中科技大学出版社,2000.
    [130] Ramaswamy, D., McGee, R. and Sivashankar, S. et al. A case study in Hardware-In-the-Loop testing: Development of an ECU for a hybrid electric vehicle. SAE Technical Paper Series, 2004-01-0303