二硫化钼填充聚甲醛基自润滑复合材料传热特性的数值计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢-铜-塑自润滑材料是由低碳钢、铜粉、聚合物复合而成,具有抗氧化、耐腐蚀、磨合性能优异等优点,在无油及少油润滑条件下得到广泛应用。由于自润滑材料的表层为聚合物基复合材料,其传热特性对自润滑材料的摩擦磨损性能有重要影响,甚至导致其变形,不能正常工作。研究自润滑材料传热特性对于自润滑材料的开发、生产及应用有着重要的作用。
     本学位论文以钢-铜-塑自润滑材料表层为二硫化钼填充聚甲醛基的复合材料为研究对象,运用数值单元体法建立了计算填充复合材料有效导热系数的模型,针对单元体模型提出了用有限元法和等效热阻法来确定该复合材料的等效导热系数两种计算方法,并运用上述方法研究了二硫化钼含量对聚甲醛基复合材料导热系数影响规律。计算结果表明有限元法与热阻法的计算结果比较接近。
     复合材料的导热系数不仅与各相含量有关,还与填充相形状与排列方式有密切的关系:在研究填充相二硫化钼含量对复合材料导热系数影响的基础上,运用有限元法分别计算了填充相分别为球体、正方体、长方体、圆柱体的复合材料的导热系数,研究表明填充相在相同含量的情况下由于形状不同导热系数差距很大。比较了填充相在基体中横向和纵向排列方式下的导热系数,计算结果表明填充相排列方式不同也导致复合材料导热系数相差很大。
     分别对钢-铜-塑自润滑材料表层为二硫化钼填充聚甲醛基和纯聚甲醛基的试样进行了摩擦磨损实验,得到了自润滑材料的摩擦系数和试样底面中心处温度变化情况。实验结果表明表层为纯聚甲醛基比表层为二硫化钼填充聚甲醛基的自润滑材料摩擦系数和温度都要高。通过对表层为二硫化钼填充聚甲醛基的自润滑材料各层结构分析,利用传热学、摩擦学的基本原理建立了该自润滑材料在摩擦磨损实验条件下的导热模型,用有限元软件计算模拟了试样的瞬态温度场,模拟结果与实验结果能够较好地吻合。
As a general sliding bearing material, the steel-copper-plastics self-lubricating layered multi-phase materials are composed of low carbon steel, copper powder and polymer. It has better anti-oxidation, anti-corrosion and excellent running-in friction. It is widely used as self-lubricating bearing materials in case of few or no lubricating oil. However, heat transfer has an important influence on the tribological performance of the self-lubricating materials because the rubbing surface material is from polymer-based composites with lower heat transfer ability and lower melting point.
     In this thesis, it was selected polyoxymethylene (POM) composites filled by molybdenum disulfide (MoS_2) particles. A numerical method was used to establish a numerical model to predict the effective thermal conductivity. Based on this model two methods including finite element and effective heat resistance are proposed to calculate the effective thermal conductivity of the composites. It was found that their calculation results were similar.
     The thermal conductivity was not only affected by the filler content but also by the filler's shape and array in the composites. On the basis of studying the effect of M0S2 content on the effective thermal conductivity of composite, using the finite element method it was calculated the composites' effective thermal conductivity in which the filler shapes were sphere, square, rectangle and cylinder respectively. The calculation results showed that the filler shape played an important role in the aspect of effective thermal conductivity. As the filler was placed in transverse and lengthways in the composites, it gained obvious different results.
     The friction and wear experiments were carried out with the self-lubricating surface materials of pure POM or POM filled by M0S2 under end-face rubbing conditions. It was found that the friction coefficient and surface temperature of POM filled by M0S2 were lower than those of pure POM. According to the structure analyzing of each layer of self-lubricating composites filled by M0S2, the heat transfer model of the self-lubricating composites was established based on heat transfer theory, tribological principle, instant temperature distributions analyzed by using ANSYS software. The results showed that the simulation data were in good agreement with the experimental results.
引文
[1]濮良贵,纪名刚.机械设计.北京:高等教育出版社,2001.
    [2]郭大威,徐桢基.滑动轴承失效分析.北京:机械工业出版社,1989.
    [3]张桂芳.滑动轴承.北京:高等教育出版社,1985.
    [4]尹延国,焦明华,谢挺.滑动轴承材料的研究进展.润滑与密封.2006,(5):183-187.
    [5]徐鸿雁.钢-铜-塑三层复合材料端面摩擦条件下的温度场研究.合肥:合肥工业大学硕士学位论文,2005.
    [6]闵新民,安继明,饶宝林,吴伯麟.聚合物基纳米复合材料热导率计算.武汉理工大学学报.2007,29(7):26-29.
    [7]沈观林,胡更开.复合材料力学.北京:清华大学出版社,2006.
    [8]马传国,容敏智,章明秋.聚合物复合材料导热模型及其应用.宇航材料工艺.2003,(3):1-4.
    [9]王荣国,武卫莉,谷万里.复合材料概论.哈尔滨:哈尔滨工业大学出版社,1999.
    [10]王亮亮.高导热聚合物基复合材料的研究.南京:南京工业大学硕士学位论文,2004.
    [11]李侃社,王琪.聚合物复合材料导热性能的研究.高分子材料科学与工程.2002,18(4):10-15.
    [12]李明伟,钟景川,尹钟大.颗粒弥散复合材料等效导热系数的估算.功能材料.2000,32(4):397-398.
    [13]张雄伟,黄锐.高分子复合导电材料及其应用发展趋势.功能材料.1994,25(6):492-499.
    [14]C.L.Choy,F.C.Thermal diffusivity and conductivity of crystalline polymers.Journal of Applied Polymers Science,2002,88(7):2325-2336.
    [15]V.L.Roldughin,V.V.Vysoctskii.Percolation properties of metal-filled polymer films,structure and mechanism of conductivity.Progress in Organic Coatings,2000,39(2):81-100
    [16]A.G.Every,Y.Tzou,D.P.H.Hasselman,R.Raj.The Effect of particle size on the thermal conductivity of ZnS/Diamond composites.ACTA Metal Mater,1992,40:123-133.
    [17]O.H.Plast,Thermal conductivity of composite materials.Rubber Process,1981,(1):9-18.
    [18]G.D.Cheng,S.T.Liu,Prediction of thermal conductivity of unidirectional fiber reinforced composites.ACTA Material Composite Science,1996,13(1):78-85.
    [19]张雄伟,黄锐.高分子复合导电材料及其应用发展趋势.功能材料.1994,25(6):492-499.
    [20]Y.Agari,A.Ueda,S.Nagai.Estimation on thermal conductivities of filled polymers.Journal of Applied Polymer Science,1986,32(7):5705-5712.
    [21]I.H.Tavman,H Akinci.Transverse thermal conductivity of fiber reinforced polymer composites.International Journal of thermo-physics,2000,27:253-261.
    [22]H W.Erik.Development and modeling of thermal conductive polymer/carbon composites.Journal of Composite,1991,25:1064-1084.
    [23]D.M.Bigg.Electrical transport measurements of a carbonblack-polymer composite.Advances in Polymer Science.1995,119:1-30.
    [24]D.M.Bigg.Metal- filled Polymers,Ed:Bhattacharya SK,Marcel Decker,New York,1986:615-618.
    [25]D.S.McLachlan,M.Blasziewicz,R.E.Newnham.Electrical resistivity of composites.Journal of American Ceramic Society,1990,73(8):2187-2203.
    [26]姚忡鹏,王端军.传热学.北京:北京理工大学出版社,2003.
    [27]赵振南.传热学.北京:高等教育出版社,2002.
    [28]张朝晖,范群波,刘颖等.ANSYS 8.0热分析教程与实例解析.北京:中国铁道出版社,2005
    [29]徐金城.铜基复合材料的制备及其性能的研究.兰州:兰州大学硕士学位论文,2003.
    [30]孔祥谦.有限单元法在传热学中的应用.北京:科学出版社,1986.
    [31]徐建宁,屈文涛,赵宁.滚动轴承的温度场和热变形分析.轴承.2006,5(1):1-3.
    [32]顾泽同.工程热应力.北京:国防工业出版社,1987.
    [33]朱伯芳.有限单元法原理与应用.北京:水利电力出版社,1992.
    [34]蒋孝煜.有限单元法基础.北京:清华大学出版社,1992.
    [35]张立新,徐长航,徐江荣,等.ANSYS7.0基础教程.北京:机械工业出版社,2004.
    [36]齐辉.混铁车罐体传热与应力的有限元计算.沈阳:东北大学硕士论文,2004.
    [37]ANSYS 公司.ANSYS热分析过程手册.北京:ANSYS公司北京工作站,2001.
    [38]徐鸿雁,魏锦,胡献国,徐玉福.钢背铜塑自润滑材料端面摩擦条件下的二维稳态热分析.轴承.2007,(7):27-31.
    [39]王洪涛,杨生荣,薛群基.聚甲醛/聚四氟乙烯共混物的摩擦学性能研 究.高分子材料科学与工程.1996,12(2):115-118.
    [40]陈金耀,曹亚,李惠林,王朝旭.聚甲醛/低密度聚乙烯共混物的摩擦磨损性能.高分子材料科学与工程.2004,20(1):104-107.
    [41]沃恒洲,胡坤宏,胡献国.纳米二硫化铝作为机械油添加的摩擦学特性研究.摩擦学学报.2004,24(1):33-37.
    [42]胡坤宏,沃恒洲,韩效钊,胡献国.纳米二硫化钼制备现状与发展趋势.现代化工.2003,23(8):14-17.
    [43]彭旭东,曾群锋.聚醚醚酮基复合材料的热性质和物理性质预测及其摩擦销三维温度场的数值模拟.摩擦学学报.2005,25(4):354-365.
    [44]陈则韶,钱军,叶一火.复合材料等效导热系数的理论推算.中国科学技术大学学报.1991,22(4):417-423.
    [45]叶宏,徐斌,王军,叶暖强,庄双勇.陶瓷微球填充型隔热涂料的有效导热系数.中国科学技术大学学报,2006,36(4):361-363.
    [46]梁基照,李锋华.NR/中空微球复合材料传热的有限元分析.橡胶工业.2004,51(10):586-589.
    [47]李明伟,钟景川,尹钟大.颗粒弥散复合材料等效导热系数的估算.功能材料.2000,32(4):397-398.
    [48]徐鸿雁,胡献国,徐玉福.基于ANSYS钢背铜塑3层复合材料端面轴承温度场分析.机械设计.2007,6(2):21-24.
    [49]K.H.Hu,Y.R.Wang,X.G..Hu.Preparation and characterization of ball-like MoS_2 nanoparticles.Materials Science and Technology,2007,23(2):242-246.
    [50]俞建卫,叶敏,焦明华.MP-Ⅰ型金属-塑料复合自润滑轴承摩擦学特性及应用研究.中外技术情报.1996,(12):22-25.
    [51]温诗铸,黄平.摩擦学原理.北京:清华大学出版社,2002.
    [52]李守新.功能梯度材料基础-制备及其热机械行为.北京:国防工业出版社,2000.
    [53]金卓仁,程继贵,夏永红,刘鸿志.梯度自润滑滑动轴承的研制.机械工程学报,2001,37(3):80-83.
    [54]刘志全,沈允文,张鹏顺.高速圆柱滚子轴承温度分布的计算与测试.机械科学与技术,1997,16(5):805-811.
    [55]白敏丽,沈胜强,陈家弊.燃烧室部件耦合系统过渡工况传热全仿真模拟研究.内燃机学报,2001,19(3):229-234.
    [56]钱滨江,等.简明传热手册.北京:中国农业出版社,1986.