防治水稻细菌性病害生防芽孢杆菌菌株筛选及芽孢杆菌处理后水稻蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芽孢杆菌(Bacillus spp.)是一种嗜热、好氧的革兰氏阳性细菌,该菌分布广泛,其能产生抗逆性强的芽孢、多种抗生素和酶类物质,是目前生防细菌中研究和应用较多的一类细菌。本研究首先通过实验室和温室试验,筛选并获得了对水稻细菌性病害有较好防治效果的芽孢杆菌生防菌株,同时通过生防菌株防治水稻细菌性病害的田间防治试验,综合评估了芽孢杆菌生防菌株的生防效果。为了解析芽孢杆菌与植物互作的分子机理,本研究利用蛋白双向电泳技术对芽孢杆菌处理后的水稻进行蛋白组水平上的差异比较分析,进而揭示芽孢杆菌对水稻的促生抗病机制。主要研究结果如下:
     1.为了初步筛选用于防治水稻细菌性病害的芽孢杆菌生防菌株,我们在实验室条件下进行了平板抑菌实验和水稻促生实验。室内平板抑菌实验结果表明,实验室保存的14株芽孢杆菌菌株对水稻白叶枯病菌都有一定的抑菌效果,其中芽孢杆菌菌株90的抑菌效果最好,抑制率达到了60.87%。芽孢杆菌对水稻促生实验结果显示,芽孢杆菌处理对水稻有明显的促生作用,其中芽孢杆菌菌株FZB42对水稻的促生作用最为显著,水稻幼苗的株高和根长分别增加了40.9%和56.7%,芽孢杆菌菌株90、Gl-harpin、38和B3处理对水稻幼苗也有明显的促生效果,株高分别增加了31.5%、16.2%、10.0%和7.1%;根长分别增加了40.6%、26.4%、15.7%和19.1%。为了进一步评估室内试验筛选得到的芽孢杆菌菌株的生防效果,我们在温室条件下进行了芽孢杆菌防治水稻白叶枯病实验。从调查结果可知,芽孢杆菌菌株FZB42的防治效果最好,防效达到52.96%,芽孢杆菌菌株FZB24、90和38的防效也分别达到了41.01%、36.56%和30.33%。从2008年江苏省南京市和泗阳市的芽孢杆菌防治水稻白叶枯病田间试验调查结果可知,芽孢杆菌在田间自然条件下仍表现出较好的生防效果,芽孢杆菌处理的水稻叶部病情指数与对照处理相比均存在显著性差异;芽孢杆菌与化学农药交替使用能够显著提高水稻白叶枯病的田间防治效果。2009年江苏省泗阳市和湖南省益阳市的芽孢杆菌防治水稻细菌性条斑病田间结果显示,芽孢杆菌不仅对水稻细菌性条斑病也有较好的生防效果同时芽孢杆菌处理对水稻还有明显的增产作用。其中芽孢杆菌菌株B2和B9的田间防效分别达到了41.56%和36.71%,处理后的水稻产量分别增加了16.22%和14.39%。
     2.目前,有许多研究报道了芽孢杆菌能够促进植物生长和诱导植物抗病性,但芽孢杆菌与植物互作机制还不是很清楚。本研究旨在利用蛋白双向电泳技术对芽孢杆菌处理后的水稻进行蛋白组水平上的差异比较分析,进而揭示芽孢杆菌对水稻的促生抗病机制。首先为了建立芽孢杆菌处理后水稻总蛋白高分辨率蛋白双向电泳体系,本研究对水稻总蛋白提取方法和蛋白双向电泳实验条件进行了优化。结果表明:采用优化后的TCA-丙酮沉淀法提取的蛋白样品质量更高,蛋白样品的2-DE图谱清晰,不同等电点和不同分子量的蛋白可以得到很好的呈现与分离。蛋白样品上样浓度为0.4mg/mL时,2-DE图谱分辨率高、蛋白点分布均匀。等电聚焦过程中低电压多步除盐和低电压聚焦的优化方法,可以有效减少等电聚焦过程所产生的横纹,获得更加清晰的2-DE图谱,实验结果表明适用于本研究的蛋白电泳聚焦程序为250V,1h;500V,1h;800V,1h;1000V,1h;8000V聚焦至60000Vh。
     3.芽孢杆菌处理后,水稻根部和叶部中共发现了31个差异表达的蛋白点(22个上调表达,9个下调表达)。这些差异表达的蛋白包括了水稻的生长发育相关蛋白、抗病防卫反应相关蛋白、氨基酸代谢相关蛋白等。水稻细胞壁中的木葡聚糖转移酶在芽孢杆菌处理后明显的上调表达,在水稻生长发育过程中木葡聚糖转移酶参与了细胞壁葡聚糖代谢和细胞壁的调节过程,它的上调表达能够促进水稻叶部和茎部伸长从而促进水稻生长。芽孢杆菌处理后水稻中的植物抗病防卫反应相关蛋白如:谷胱甘肽-S-转移酶,过氧化物酶等也被诱导上调表达,这些蛋白的上调表达在蛋白组水平上解释了芽孢杆菌诱导水稻的抗病机制。
     4.附录中介绍了研究生在读期间的另一部分工作,转harpinxooc蛋白编码基因大豆遗传转化体系的建立。这部分工作主要是对转harpinxooc蛋白编码基因大豆遗传转化体系和实验条件进行探索和优化,建立了两种以胚尖为外植体的大豆遗传转化体系,即:农杆菌介导以胚尖为外植体的大豆遗传转化体系和基因枪介导以胚尖为外植体的大豆遗传转化体系。同时本研究构建了植物高表达载体pCAMBIA3300::hrf2及农杆菌菌株EHA105(3300::hrf2);通过草丁膦抗性筛选获得了一定数量的大豆遗传转化幼苗;大豆转化幼苗的PCR检测结果显示,两种遗传体系均获得了表达harpinxooc蛋白的大豆转基因阳性植株。本研究为实验室后续的大豆遗传转化工作提供了很好的实验基础。
Bacillus spp. is a type of biocontrol bacteria, which is ideal for the biocontrol agent.since it has characteristics like promoting plant growth; inducing resistance; generating heat resistance, salt resistance, ultraviolet resistant endospore. The experiment aimed at screening Bacillus strains of our laboratory which have better control effect of rice bacterial diseases, through laboratory, greenhouse and field experiments.
     1. It was showed with antagonistic activity on NA plates that, Bacillus strains preserved in our laboratory had good antibacterial effect of rice bacterial blight. Bacillus strain90showed antibacterial circle diameter28mm, the inhibition rate reached60.87%. Bacillus strain G1-harpin showed antibacterial circle diameter24mm, the inhibition rate reached52.17%. The inhibition rate of Bacillus strain38reached60.87%. The experiment of Bacillus on rice plant growth results showed that, shoot lengths and root lengths of rice seedlings were increased obviously after Bacillus treatment. Treatment with Bacillus strain FZB42resulted in greatest beneficial effects on rice growth, as root and shoot lengths increased by40.9%and56.7%, respectively. Bacillus strains90, G1-harpin,38and B3increased shoot lengths by31.5%,16.2%,10.0%and7.1%, respectively, while root lengths were increased by40.6%,26.4%,15.7%and19.1%, respectively. The experiment results of greenhouse and field control of rice bacterial diseases showed, Bacillus strains from our lab also had good control effect of rice bacterial disease under natural conditions, and the optimized formulation of Bacillus strains and chemical bactericide could significantly improve the field control effect.
     2. Aimed to get the high-resolution two-dimensional gel electrophoresis system, the method of protein extraction and the experimental conditions were optimized in the present study. The results showed that the quality of rice protein using the optimized TCA-acetone precipitation method was better and the2-DE images were clearer, proteins with defferent isoelectric point and Molecular Weight were separated well. When the protein concentration loading for2-DE was0.4mg/mL, the good protein pattern with protein spots distributing equably and ayllabify could be obtained. The method of many steps wiping off salt and low voltage for isoelectro focusing in IEF process could reduce the cross striation and the good2-DE images were obtained.
     3. Reports suggest that Bacillus spp. can be used to increase plant growth and resistance to disease, but the molecular mechanisms underlying the interaction between Bacillus spp. and plant is not completely understood. In the present study, to clarify these underlying mechanisms, the interaction between Bacillus spp. and rice was investigated using two-dimensional gel electrophoresis. Through comparative analysis, a total of31differentially expressed proteins were obtained upon Bacillus spp. treatment, including22proteins that were up-regulated and nine that were down-regulated. These data indicated that certain proteins involved in plant growth and development were up-regulated, such as xyloglucan endotransglycosylase. Interestingly, proteins involved in defense were also up-regulated, including peroxidases, glutathione S-transferases and kinases. Thus, proteins associated with disease resistance characteristics were induced in the plants after exposure to Bacillus spp. In addition, several proteins involved in protein-and lipid metabolism showed significant changes in expression. Overall, this present study demonstrates that Bacillus spp. can up-regulate the expression of proteins related to plant growth and defense, and lead to enhanced plant growth and disease resistance.
     4. Appendix one showed one important part of my research work, tow soybean transformation systems for expression of harpinxooc protein were established. This study aimed to optimize the experimental conditions in the soybean transformation process, establish tow soybean transformation system used soybean embryonic tip, agrobacterium-mediated soybean transformation and biolistic-mediated soybean transformation. The vector pCAMBIA3300::hrf2and agrobacterium strain EHA105(3300::hrf2) were designed for soybean transformation. Following the glufosinate selection, many acclimatized plantlets were obtained. The results of PCR detection for soybean transgenic seedlings showed that transgenic positive plants were obtained using these two soybean transformation systems. The research established the experimental foundation for next work.
引文
[1]Adhikari TB, Joseph CM, Yang GP, Phillips DA & Nelson LM (2001) Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice. Canadian Journal of Microbiology 47:916-924.
    [2]Asaka O & Shoda M (1996) Biocontrol of Rhizoctonia solani Damping-Off of Tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081-4085.
    [3]Avila L, Lopera C, Restrepo S & Cepero de Garcia M (2007) Diversity of a fungal endophyte community isolated from two Espeletia species and its biocontrol potential against plant pathogens. Phytopathology 91:S5-S6.
    [4]Bacon CW, Yates IE, Hinton DM & Meredith F (2001) Biological control of Fusarium moniliforme in maize. Environmental Health Perspectives 109:325-332.
    [5]Barea JM, Andrade G, Bianciotto VV, et al. (1998) Impact on arbuscular mycorrhiza formation of pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl Environ Microbiol 64:2304-2307.
    [6]Bochalli R (1959) [Friedrich Loeffler, his life & works; on the occasion of 75th return of the anniversary of the discovery of the diphtheria bacillus]. Med Monatsschr 13:59-62.
    [7]Chen XH, Vater J, Piel J, et al. (2006) Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB42. JBacteriol 188:4024-4036.
    [8]Dennett JA, Lampman RL, Novak RJ & Meisch MV (2000) Evaluation of methylated soy oil and water-based formulations of Bacillus thuringiensis var. israelensis and Golden Bear Oil (R) (gb-1111) against Anopheles quadrimaculatus larvae in small rice plots. Journal of the American Mosquito Control Association 16:342-345.
    [9]Dilley RA (2004) On why thylakoids energize ATP formation using either delocalized or localized proton gradients-a Ca2+ mediated role in thylakoid stress responses. Photosynthesis Research 80: 245-263.
    [10]Figueiredo M, Martinez C, Burity H & Chanway C (2008) Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.) World Journal of Microbiology and Biotechnology 24:1187-1193.
    [11]Foldes T, Banhegyi I, Herpai Z, Varga L & Szigeti J (2000) Isolation of Bacillus strains from the rhizosphere of cereals and in vitro screening for antagonism against phytopathogenic, food-borne pathogenic and spoilage micro-organisms. Journal of Applied Microbiology 89:840-846.
    [12]Fravel DR & Lewis JA (1992) Production, Formulation and Delivery of Beneficial Microbes for Biocontrol of Plant-Pathogens. Pesticide Formulations and Application Systems:11th Volume 1112: 173-179.
    [13]Gardener BBM (2009) Biocontrol of Plant Pathogens and Plant Growth Promotion by Bacillus. Recent Developments in Management of Plant Diseases 1:71-79.
    [14]Grujic M (1982) [100th anniversary of the discovery of the tuberculosis bacillus. The life and work of Robert Koch]. Plucne Bolesti Tuberk 34:5-7.
    [15]Hantke K (2001) Iron and metal regulation in bacteria. Current Opinion in Microbiology 4: 172-177.
    [16]Hiradate S, Yoshida S, Sugie H, Yada H & Fujii Y (2002) Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 61:693-698.
    [17]Liu Y, Chen Z, Ng TB, Zhang J, Zhou M, Song F & Lu F (2007) Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides 28: 553-559.
    [18]M TS (1987) Control of Rizoctonia by Bacillus subtilis. Trasactions of the Mycological Society Japan 28:483-493.
    [19]Mishra S & Arora NK (2012) Evaluation of rhizospheric Pseudomonas and Bacillus as biocontrol tool for Xanthomonas campestris pv campestris. World J Microbiol Biotechnol 28:693-702.
    [20]Moyne AL, Cleveland TE & Tuzun S (2004) Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. Fems Microbiology Letters 234:43-49.
    [21]Moyne AL, Shelby R, Cleveland TE & Tuzun S (2001) Bacillomycin D:an iturin with antifungal activity against Aspergillus flavus. Journal of Applied Microbiology 90:622-629.
    [22]Ongena M & Jacques P (2008) Bacillus lipopeptides:versatile weapons for plant disease biocontrol. Trends Microbiol 16:115-125.
    [23]Perez-Garcia A, Romero D & de Vicente A (2011) Plant protection and growth stimulation by microorganisms:biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology 22:187-193.
    [24]Raupach GS & Kloepper JW (1998) Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158-1164.
    [25]Roh JY, Choi JY, Li MS, Jin BR & Je YH (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. Journal of Microbiology and Biotechnology 17:547-559.
    [26]Schadewaldt H (1982) [History of the discovery of the tubercle bacillus]. Med Welt 33:419-426.
    [27]Yuan XP, Wang J, Yao HY & Venant N (2005) Separation and identification of endoxylanases from Bacillus subtilis and their actions on wheat bran insoluble dietary fibre. Process Biochemistry 40: 2339-2343.
    [28]Zheng G & Slavik MF (1999) Isolation, partial purification and characterization of a bacteriocin produced by a newly isolated Bacillus subtilis strain. LettAppl Microbiol 28:363-367.
    [29]Zhou X, Kloepper J, Reddy M & Zhang S (2011) Management of bacterial panicle blight of rice with beneficial Bacillus strains. Phytopathology 101:S270-S270.
    [30]杜立新,曹克强,冉红凡等(2004)枯草芽孢杆菌BS-208和BS-209菌株在番茄叶面及土壤中定殖能力的研究.河北农业大学学报03:1570-1573.
    [31]高学文,Huong Pham,王金生等(2003)枯草芽孢杆菌B2菌株产生的抑菌活性物质分析.中国生物防治04:1005-1009.
    [32]高学文,Huong Pham,王金生等(2003)枯草芽孢杆菌B2菌株产生的表面活性素变异体的纯化和鉴定.微生物学报05:17-21.
    [33]顾真荣,韩长安(2001)产几丁质酶芽孢杆菌的筛选鉴定和酶活力测定.上海农业学报03:392-394.
    [34]顾真荣,韩长安(2002)枯草芽孢杆菌G_3防治植病盆栽试验.上海农业学报01:173-176.
    [35]黄曦,许兰兰,黄庶识等(2010)枯草芽孢杆菌在抑制植物病原菌中的研究进展.生物技术通报01:29-34.
    [36]黄现青,别小妹,袁勇军等(2008)枯草芽孢杆菌fmbJ产脂肽抑制点青霉效果及其桃防腐试验.农业工程学报01:17-23.
    [37]李晶,杨谦,王玉霞等(2008)生防枯草芽孢杆菌B29菌株抗菌物质的初步研究.中国生物工程杂志02:37-42.
    [38]李晶,杨谦,赵晓宇等(2009)枯草芽孢杆菌B29菌株防治黄瓜枯萎病的田间效果及安全性评价初报.中国蔬菜02:42-45.
    [39]李晶,赵晓宇,孟利强等(2010)生防枯草芽孢杆菌B29菌株抗菌蛋白的质谱分析.黑龙江科学02:62-64.
    [40]李瑞芳,赵玉峰,刘冰等(2010)具有稻瘟病菌拮抗活性的枯草芽孢杆菌的分离与鉴定.河南农业科学03:21-27.
    [41]林福呈(2003)枯草芽孢杆菌(Bacillus subtilis)S9对植物病原真菌的溶菌作用.植物病理学报02:27-32.
    [42]刘永峰,陈志谊,周明国等(2005)枯草芽孢杆菌B-916胞外抗菌蛋白质的性质.江苏农业学报04:42-46.
    [43]卢美贞,姚艳玲,忻雅等(2005)影响苏云金芽孢杆菌基因在转基因植物中表达的因素.细胞生物学杂志05:63-67.
    [44]陆群,吴林森(1998)抗生素H4750-B的发酵、分离及结构鉴定.中国抗生素杂志04:51-54.
    [45]陆群,吴林森(1998)新抗生素H4750-D_2的研究——发酵、分离、结构鉴定和生物活性.中国抗生素杂志05:27-31.
    [46]邱小燕,张敏,万津瑜等(2010)枯草芽孢杆菌的定殖能力及对玉米纹枯病的防治效果.四川农业大学学报04:34-37.
    [47]王瑞刚,李高,王水平等(2005)枯草芽孢杆菌纤溶酶基因在转基因烟草组织中的分泌表达.西北植物学报07:24-26.
    [48]王雅平,潘乃穟,陈章良等(1993)枯草芽孢杆菌TG26防病增产效应的研究.生物防治通报02:35-37.
    [49]尹华群,罗宽,邓正平等(2004)烟草青枯病内生拮抗细菌的鉴定及小区防效的初步测定.中国生物防治03:21-25.
    [50]张桂英,张君成(2004)甘蔗黑穗病菌拮抗性芽孢杆菌的抗菌作用与伊枯草菌素A的产生有关.广西科学03:37-41.
    [51]张荣胜,刘永锋,陈志谊(2011)水稻细菌性条斑病菌拮抗细菌的筛选、评价与应用研究.中国生物防治学报04:171-174.
    [52]赵新林,赵思峰(2011)枯草芽孢杆菌对植物病害生物防治的作用机理.湖北农业科学15:137-143.
    [53]朱文静,伍辉军,高学文(2011)芽孢杆菌对大豆根腐病防治效果研究.大豆科学04:34-37.
    [1]Bae SH, Harris AG, Hains PG, et al. (2003) Strategies for the enrichment and identification of basic proteins in proteome projects. Proteomics 3:569-579.
    [2]Cahill DJ (2001) Protein and antibody arrays and their medical applications. J Immunol Methods 250:81-91.
    [3]Chen F, Yuan Y, Li Q & He Z (2007) Proteomic analysis of rice plasma membrane reveals proteins involved in early defense response to bacterial blight. Proteomics 7:1529-1539.
    [4]Chi F, Yang P, Han F, Jing Y & Shen S (2010) Proteomic analysis of rice seedlings infected by Sinorhizobium meliloti 1021. Proteomics 10:1861-1874.
    [5]Djordjevic MA (2004) Sinorhizobium meliloti metabolism in the root nodule:a proteomic perspective. Proteomics 4:1859-1872.
    [6]Eickhoff H, Konthur Z, Lueking A, et al. (2002) Protein array technology:the tool to bridge genomics and proteomics. Adv Biochem Eng Biotechnol 77:103-112.
    [7]Evans C, Noirel J, Ow SY, et al. (2012) An insight into iTRAQ:where do we stand now? Anal Bioanal Chem.
    [8]Hurkman WJ & Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81:802-806.
    [9]Kandasamy S, Loganathan K, Muthuraj R, et al. (2009) Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling. Proteome Science 7.
    [10]Kim ST, Yu S, Kim SG, et al. (2004) Proteome analysis of rice blast fungus (Magnaporthe grisea) proteome during appressorium formation. Proteomics 4:3579-3587.
    [11]Kim ST, Kim SG, Hwang DH, et al. (2004) Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics 4:3569-3578.
    [12]Latterich M, Abramovitz M & Leyland-Jones B (2008) Proteomics:new technologies and clinical applications. Eur J Cancer 44:2737-2741.
    [13]Lehner I, Niehof M & Borlak J (2003) An optimized method for the isolation and identification of membrane proteins. Electrophoresis 24:1795-1808.
    [14]Liao M, Li Y & Wang Z (2009) Identification of elicitor-responsive proteins in rice leaves by a proteomic approach. Proteomics 9:2809-2819.
    [15]Lopez MF & Pluskal MG (2003) Protein micro- and macroarrays:digitizing the proteome. J Chromatogr B Analyt Technol Biomed Life Sci 787:19-27.
    [16]Mahmood T, Kakishima M & Komatsu S (2009) Proteome analysis of probenazole-effect in rice-bacterial blight interactions. Protein Pept Lett 16:1041-1052.
    [17]Mahmood T, Jan A, Kakishima M & Komatsu S (2006) Proteomic analysis of bacterial-blight defense-responsive proteins in rice leaf blades. Proteomics 6:6053-6065.
    [18]Saravanan RS & Rose JKC (2004) A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues. Proteomics 4:2522-2532.
    [19]Shenton MR, Berberich T, Kamo M, Yamashita T, Taira H & Terauchi R (2012) Use of intercellular washing fluid to investigate the secreted proteome of the rice-Magnaporthe interaction. J Plant Res 125:311-316.
    [20]Wang W, Vignani R, Scali M & Cresti M (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27:2782-2786.
    [21]Yu CL, Yan SP, Wang CC, et al. (2008) Pathogenesis-related proteins in somatic hybrid rice induced by bacterial blight. Phytochemistry 69:1989-1996.
    [1]Bacon CW, Yates IE, Hinton DM & Meredith F (2001) Biological control of Fusarium moniliforme in maize. Environmental Health Perspectives 109:325-332.
    [2]Bais HP, Fall R & Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307-319.
    [3]Bilang J & Sturm A (1995) Cloning and Characterization of a Glutathione-S-Transferase That Can Be Photolabeled with 5-Azido-Indole-3-Acetic Acid. Plant Physiology 109:253-260.
    [4]Caruso C, Chilosi G, Leonardi L, Bertini L, Magro P, Buonocorey & Caporale C (2001) A basic peroxidase from wheat kernel with antifungal activity. Phytochemistry 58:743-750.
    [5]Catala C, Rose JK & Bennett AB (1997) Auxin regulation and spatial localization of an endo-1,4-beta-D-glucanase and a xyloglucan endotransglycosylase in expanding tomato hypocotyls. Plant Journal 12:417-426.
    [6]Chen XH, Vater J, Piel J, et al. (2006) Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. JBacteriol 188:4024-4036.
    [7]Conn S, Curtin C, Bezier A, Franco C & Zhang W (2008) Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. Journal of Experimental Botany 59: 3621-3634.
    [8]Dong-Dong Niu H-XL, Chun-Hao Jiang, Yun-Peng Wang (2011) The Plant Growth-Promoting Rhizobacterium Bacillus cereus AR156 Induces Systemic Resistance in Arabidopsis thaliana by Simultaneously Activating Salicylate- and Jasmonate/Ethylene-Dependent Signaling Pathways. MPMI24:533-542.
    [9]Figueiredo M, Martinez C, Burity H & Chanway C (2008) Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.) World Journal of Microbiology and Biotechnology 24:1187-1193.
    [10]Glick BR, Penrose DM & Li JP (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of Theoretical Biology 190:63-68.
    [11]Gutierrez-Manero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR & Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum 111:206-211.
    [12]Hayes JD & McLellan LI (1999) Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res 31:273-300.
    [13]Hernandez-Nistal J, Martin I, Labrador E & Dopico B (2010) The immunolocation of XTH1 in embryonic axes during chickpea germination and seedling growth confirms its function in cell elongation and vascular differentiation. J Exp Bot 61:4231-4238.
    [14]Hilaire E, Young SA, Willard LH, et al. (2001) Vascular defense responses in rice:peroxidase accumulation in xylem parenchyma cells and xylem wall thickening. Mol Plant Microbe Interact 14: 1411-1419.
    [15]Idris EE, Iglesias DJ, Talon M & Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Molecular Plant-Microbe Interactions 20:619-626.
    [16]Idriss EE, Makarewicz O, Farouk A, et al. (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148: 2097-2109.
    [17]Jan A, Yang G, Nakamura H, et al. (2004) Characterization of a xyloglucan endotransglucosylase gene that is up-regulated by gibberellin in rice. Plant Physiol 136:3670-3681.
    [18]Jo HJ, Lee JJ & Kong KH (2011) A plant-specific tau class glutathione S-transferase from Oryza sativa with very high activity against 1-chloro-2,4-dinitrobenzene and chloroacetanilide herbicides. Pesticide Biochemistry and Physiology 101:265-269.
    [19]Kampranis SC, Damianova R, Atallah M, Toby G, Kondi G, Tsichlis PN & Makris AM (2000) A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast. Journal of Biological Chemistry 275:29207-29216.
    [20]Kawaoka A, Matsunaga E, Endo S, Kondo S, Yoshida K, Shinmyo A & Ebinuma H (2003) Ectopic expression of a horseradish peroxidase enhances growth rate and increases oxidative stress resistance in hybrid aspen. Plant Physiol 132:1177-1185.
    [21]Kim S, Takahashi M, Higuchi K, et al. (2005) Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants. Plant and Cell Physiology 46:1809-1818.
    [22]Li HG, Xue DW, Gao ZY, et al. (2009) A putative lipase gene EXTRA GLUME1 regulates both empty-glume fate and spikelet development in rice. Plant Journal 57:593-605.
    [23]Li ZS, Alfenito M, Rea PA, Walbot V & Dixon RA (1997) Vacuolar uptake of the phytoalexin medicarpin by the glutathione conjugate pump. Phytochemistry 45:689-693.
    [24]Liu Y, Chen Z, Ng TB, Zhang J, Zhou M, Song F & Lu F (2007) Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides 28: 553-559.
    [25]Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annual Review of Plant Physiology and Plant Molecular Biology 47:127-158.
    [26]Mueller LA, Goodman CD, Silady RA & Walbot V (2000) AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol 123: 1561-1570.
    [27]Ongena M & Jacques P (2008) Bacillus lipopeptides:versatile weapons for plant disease biocontrol. Trends Microbiol 16:115-125.
    [28]Potter I & Fry SC (1993) Xyloglucan endotransglycosylase activity in pea internodes. Effects of applied gibberellic acid. Plant Physiol 103:235-241.
    [29]Quiroga M, Guerrero C, Botella MA, et al. (2000) A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol 122:1119-1127.
    [30]Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW & Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017-1026.
    [31]Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW & Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927-4932.
    [32]Sappl PG, Carroll AJ, Clifton R, Lister R, Whelan J, Millar AH & Singh KB (2009) The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. Plant Journal 58:53-68.
    [33]Schunmann PHD, Smith RC, Lang V, Matthews PR & Chandler PM (1997) Expression of XET-related genes and its relation to elongation in leaves of barley (Hordeum vulgare L.). Plant Cell and Environment 20:1439-1450.
    [34]Shai Wang, H. J. Wu, Xue wen Gao, et al. Molecular Mechanism of Plant Growth Promotion and Induced Systemic Resistance to Tobacco Mosaic Virus by Bacillus spp. Journal of Microbiology and Biotechnology 10:1250-1258
    [35]Zettl R, Schell J & Palme K (1994) Photoaffinity labeling of Arabidopsis thaliana plasma membrane vesicles by 5-azido-[7-3H]indole-3-acetic acid:identification of a glutathione S-transferase. Proc Natl Acad Sci USA 91:689-693.
    [36]曹慧,许雪峰,张勇等(2002)高等植物的铁营养.植物生理学通讯02:52-56.
    [37]胡一鸿,李向阳,莫亿伟(2009)植物草酸氧化酶.生命的化学02:63-67.
    [38]申红芸,熊宏春,左元梅(2011)植物吸收和转运铁的分子生理机制研究进展.植物营养与肥料学报06:21-27.
    [39]王育花,肖国樱(2009)烟酰胺合成酶基因在植物铁胁迫应答反应中的功能.生命科学研究04:16-23.
    [40]赵新林,赵思峰(2011)枯草芽孢杆菌对植物病害生物防治的作用机理.湖北农业科学15:167-172.
    [1]Avila L, Lopera C, Restrepo S & Cepero de Garcia M (2007) Diversity of a fungal endophyte community isolated from two Espeletia species and its biocontrol potential against plant pathogens. Phytopathology 97:S5-S6.
    [2]Barea JM, Andrade G, Bianciotto VV, et al. (1998) Impact on arbuscular mycorrhiza formation of pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl Environ Microbiol 64:2304-2307.
    [3]Bochalli R (1959) [Friedrich Loeffler, his life & works; on the occasion of 75th return of the anniversary of the discovery of the diphtheria bacillus]. Med Monatsschr 13:59-62.
    [4]Dennett JA, Lampman RL, Novak RJ & Meisch MV (2000) Evaluation of methylated soy oil and water-based formulations of Bacillus thuringiensis var. israelensis and Golden Bear Oil (R) (gb-1111) against Anopheles quadrimaculatus larvae in small rice plots. Journal of the American Mosquito Control Association 16:342-345.
    [5]Fravel DR & Lewis JA (1992) Production, Formulation and Delivery of Beneficial Microbes for Biocontrol of Plant-Pathogens. Pesticide Formulations and Application Systems:11th Volume 1112: 173-179.
    [6]Grujic M (1982) [100th anniversary of the discovery of the tuberculosis bacillus. The life and work of Robert Koch]. Plucne Bolesti Tuberk 34:5-7.
    [7]Ji GH, Wei LF, He YQ, Wu YP & Bai XH (2008) Biological control of rice bacterial blight by Lysobacter antibioticus strain 13-1. Biological Control 45:288-296.
    [8]Perez-Garcia A, Romero D & de Vicente A (2011) Plant protection and growth stimulation by microorganisms:biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology 22:187-193.
    [9]Schadewaldt H (1982) [History of the discovery of the tubercle bacillus]. Med Welt 33:419-426.
    [10]Velusamy P, Immanuel JE, Gnanamanickam SS & Thomashow L (2006) Biological control of rice bacterial blight by plant-associated bacteria producing 2,4-diacetylphloroglucinol. Canadian Journal of Microbiology 52:56-65.
    [11]Yuan XP, Wang J, Yao HY & Venant N (2005) Separation and identification of endoxylanases from Bacillus subtilis and their actions on wheat bran insoluble dietary fibre. Process Biochemistry 40: 2339-2343.
    [12]Zhou X, Kloepper J, Reddy M & Zhang S (2011) Management of bacterial panicle blight of rice with beneficial Bacillus strains. Phytopathology 101:S270-S270.
    [13]黄曦,许兰兰,黄庶识等(2010)枯草芽孢杆菌在抑制植物病原菌中的研究进展.生物技术通报01:25-29.
    [14]蒋振海,汪万青,尹晓娣等.(1984)防治水稻白叶枯病抗菌素筛选方法的研究.湖北农业科学05:73-77.
    [15]李瑞芳,赵玉峰,刘冰等(2010)具有稻瘟病菌拮抗活性的枯草芽孢杆菌的分离与鉴定.河南农业科学03:23-27.
    [16]徐增富,邱国华,董春等.(1994)水稻白叶枯病菌的桔抗菌的筛选及其抗菌物质的研究.中山大学学报(自然科学版)03:38-42.
    [17]尹小乐,陈志谊,刘永锋等.(2011)稻曲病拮抗细菌的筛选与评价.江苏农业学报05:43-47.
    [18]张芬,刘邮洲,刘永锋.(2011)水稻稻瘟病菌拮抗细菌的筛选与鉴定.江苏农业学报03:41-45.
    [19]赵新华,李德葆.(2000)白叶枯病菌拮抗菌筛选及水稻叶围微生物互作研究初报.中国水稻科学03:17-23.
    [20]朱文静,伍辉军,高学文(2011)芽孢杆菌对大豆根腐病防治效果研究.大豆科学04:34-37.
    [1]Ahsan N, Lee DG, Alam I, et al. (2008) Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Proteomics 8:3561-3576.
    [2]Bae SH, Harris AG, Hains PG, et al. (2003) Strategies for the enrichment and identification of basic proteins in proteome projects. Proteomics 3:569-579.
    [3]Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254.
    [4]Cahill DJ (2001) Protein and antibody arrays and their medical applications. J Immunol Methods 250:81-91.
    [5]Chen F, Yuan Y, Li Q & He Z (2007) Proteomic analysis of rice plasma membrane reveals proteins involved in early defense response to bacterial blight. Proteomics 7:1529-1539.
    [6]Carpentier SC, Witters E, Laukens K, Deckers P, Swennen R & Panis B (2005) Preparation of protein extracts from recalcitrant plant tissues:an evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics 5:2497-2507.
    [7]Espagne C, Martinez A, Valot B, Meinnel T & Giglione C (2007) Alternative and effective proteomic analysis in Arabidopsis. Proteomics 7:3788-3799.
    [8]Hurkman WJ & Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81:802-806.
    [9]Lehner I, Niehof M & Borlak J (2003) An optimized method for the isolation and identification of membrane proteins. Electrophoresis 24:1795-1808.
    [10]Saravanan RS & Rose JKC (2004) A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues. Proteomics 4:2522-2532.
    [11]Sarma AD, Oehrle NW & Emerich DW (2008) Plant protein isolation and stabilization for enhanced resolution of two-dimensional polyacrylamide gel electrophoresis. Anal Biochem 379: 192-195.
    [12]Wang W, Vignani R, Scali M & Cresti M (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27:2782-2786.
    [13]Wang W, Scali M, Vignani R, Spadafora A, Sensi E, Mazzuca S & Cresti M (2003) Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds. Electrophoresis 24:2369-2375.
    [14]Xie H, Pan S, Liu S, Ye K & Huo K (2007) A novel method of protein extraction from perennial Bupleurum root for 2-DE. Electrophoresis 28:871-875.
    [1]Adhikari TB, Joseph CM, Yang GP, Phillips DA & Nelson LM (2001) Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice. Canadian Journal of Microbiology 47:916-924.
    [2]Ahsan N, Lee DG, Alam I, et al. (2008) Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Proteomics 8:3561-3576.
    [3]Asaka O & Shoda M (1996) Biocontrol of Rhizoctonia solani Damping-Off of Tomato with Bacillus subtilis RB14. Appl Environ Mierobiol 62:4081-4085.
    [4]Avila L, Lopera C, Restrepo S & Cepero de Garcia M (2007) Diversity of a fungal endophyte community isolated from two Espeletia species and its biocontrol potential against plant pathogens. Phytopathology 97:S5-S6.
    [5]Bacon CW, Yates IE, Hinton DM & Meredith F (2001) Biological control of Fusarium moniliforme in maize. Environmental Health Perspectives 109:325-332.
    [6]Bae SH, Harris AG, Hains PG, et al. (2003) Strategies for the enrichment and identification of basic proteins in proteome projects. Proteomics 3:569-579.
    [7]Bais HP, Fall R & Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307-319.
    [8]Barea JM, Andrade G, Bianciotto VV, et al. (1998) Impact on arbuscular mycorrhiza formation of pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl Environ Microbiol 64:2304-2307.
    [9]Bilang J & Sturm A (1995) Cloning and Characterization of a Glutathione-S-Transferase That Can Be Photolabeled with 5-Azido-Indole-3-Acetic Acid. Plant Physiology 109:253-260.
    [10]Bochalli R (1959) [Friedrich Loeffler, his life & works; on the occasion of 75th return of the anniversary of the discovery of the diphtheria bacillus]. Med Monatsschr 13:59-62.
    [11]Cahill DJ (2001) Protein and antibody arrays and their medical applications. J Immunol Methods 250:81-91.
    [12]Caruso C, Chilosi G, Caporale C, et al. (2001) A basic peroxidase from wheat kernel with antifungal activity. Phytochemistry 58:743-750.
    [13]Catala C, Rose JK & Bennett AB (1997) Auxin regulation and spatial localization of an endo-1,4-beta-D-glucanase and a xyloglucan endotransglycosylase in expanding tomato hypocotyls. Plant Journal 12:417-426.
    [14]Chen F, Yuan Y, Li Q & He Z (2007) Proteomic analysis of rice plasma membrane reveals proteins involved in early defense response to bacterial blight. Proteomics 7:1529-1539.
    [15]Chen XH, Vater J, Piel J, et al. (2006) Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. JBacteriol 188:4024-4036.
    [16]Chi F, Yang P, Han F, Jing Y & Shen S (2010) Proteomic analysis of rice seedlings infected by Sinorhizobium meliloti 1021. Proteomics 10:1861-1874.
    [17]Choi O, Kim J, Kim J, Jeong Y, Moon J, Park C & Hwang I (2008) Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16. Plant Physiology 146: 657.
    [18]Conn S, Curtin C, Bezier A, Franco C & Zhang W (2008) Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. Journal of Experimental Botany 59: 3621-3634.
    [19]Dennett JA, Lampman RL, Novak RJ & Meisch MV (2000) Evaluation of methylated soy oil and water-based formulations of Bacillus thuringiensis var. israelensis and Golden Bear Oil (R) (gb-1111) against Anopheles quadrimaculatus larvae in small rice plots. Journal of the American Mosquito Control Association 16:342-345.
    [20]Dilley RA (2004) On why thylakoids energize ATP formation using either delocalized or localized proton gradients-a Ca2+ mediated role in thylakoid stress responses. Photosynthesis Research 80: 245-263.
    [21]Djordjevic MA (2004) Sinorhizobium meliloti metabolism in the root nodule:a proteomic perspective. Proteomics 4:1859-1872.
    [22]Dong-Dong Niu H-XL, Chun-Hao Jiang, Yun-Peng Wang (2011) The Plant Growth-Promoting Rhizobacterium Bacillus cereus AR156 Induces Systemic Resistance in Arabidopsis thaliana by Simultaneously Activating Salicylate-and Jasmonate/Ethylene-Dependent Signaling Pathways. MPM 24:533-542.
    [23]Eickhoff H, Konthur Z, Lueking A, et al. (2002) Protein array technology:the tool to bridge genomics and proteomics. Adv Biochem Eng Biotechnol 77:103-112.
    [24]Evans C, Noirel J, Ow SY, et al. (2012) An insight into iTRAQ:where do we stand now? Anal Bioanal Chem.
    [25]Figueiredo M, Martinez C, Burity H& Chanway C (2008) Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.) World Journal of Microbiology and Biotechnology 24:1187-1193.
    [26]Foldes T, Banhegyi I, Herpai Z, Varga L & Szigeti J (2000) Isolation of Bacillus strains from the rhizosphere of cereals and in vitro screening for antagonism against phytopathogenic, food-borne pathogenic and spoilage micro-organisms. Journal of Applied Microbiology 89:840-846.
    [27]Fravel DR & Lewis JA (1992) Production, Formulation and Delivery of Beneficial Microbes for Biocontrol of Plant-Pathogens. Pesticide Formulations and Application Systems:11th Volume 1112: 173-179.
    [28]Gardener BBM (2009) Biocontrol of Plant Pathogens and Plant Growth Promotion by Bacillus. Recent Developments in Management of Plant Diseases 1:71-79.
    [29]Glick BR, Penrose DM & Li JP (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of Theoretical Biology 190:63-68.
    [30]Grujic M (1982) [100th anniversary of the discovery of the tuberculosis bacillus. The life and work of Robert Koch]. Plucne Bolesti Tuberk 34:5-7.
    [31]Gutierrez-Manero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR & Talon M (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum 111:206-211.
    [32]Hantke K (2001) Iron and metal regulation in bacteria. Current Opinion in Microbiology 4: 172-177.
    [33]Hayes JD & McLellan LI (1999) Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res 31:273-300.
    [34]Hernandez-Nistal J, Martin I, Labrador E & Dopico B (2010) The immunolocation of XTH1 in embryonic axes during chickpea germination and seedling growth confirms its function in cell elongation and vascular differentiation. JExp Bot 61:4231-4238.
    [35]Hilaire E, Young SA, Willard LH, et al. (2001) Vascular defense responses in rice:peroxidase accumulation in xylem parenchyma cells and xylem wall thickening. Mol Plant Microbe Interact 14: 1411-1419.
    [36]Hiradate S, Yoshida S, Sugie H, Yada H & Fujii Y (2002) Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 61:693-698.
    [37]Hurkman WJ & Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81:802-806.
    [38]Idris EE, Bochow H, Borriss R, et al. (2004) Use of Bacillus subtilis as biocontrol agent. VI. Phytohormone-like action of culture filtrates prepared from plant growth-promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus subtilis FZB37. Zeitschrift Fur Pflanzenkrankheiten Und Pflanzenschutz-Journal of Plant Diseases and Protection 111:583-597.
    [39]Idris EE, Iglesias DJ, Talon M & Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Molecular Plant-Microbe Interactions 20:619-626.
    [40]Jan A, Yang G, Nakamura H, et al. (2004) Characterization of a xyloglucan endotransglucosylase gene that is up-regulated by gibberellin in rice. Plant Physiol 136:3670-3681.
    [41]Ji GH, Wei LF, He YQ, Wu YP & Bai XH (2008) Biological control of rice bacterial blight by Lysobacter antibioticus strain 13-1. Biological Control 45:288-296.
    [42]Jo HJ, Lee JJ & Kong KH (2011) A plant-specific tau class glutathione S-transferase from Oryza sativa with very high activity against 1-chloro-2,4-dinitrobenzene and chloroacetanilide herbicides. Pesticide Biochemistry and Physiology 101:265-269.
    [43]Kampranis SC, Damianova R, Atallah M, Toby G, Kondi G, Tsichlis PN & Makris AM (2000) A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast. Journal of Biological Chemistry 275:29207-29216.
    [44]Kandasamy S, Loganathan K, Muthuraj R, et al. (2009) Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling. Proteome Science 7.
    [45]Kawaoka A, Matsunaga E, Endo S, Kondo S, Yoshida K, Shinmyo A & Ebinuma H (2003) Ectopic expression of a horseradish peroxidase enhances growth rate and increases oxidative stress resistance in hybrid aspen. Plant Physiol 132:1177-1185.
    [46]Kim S, Takahashi M, Higuchi K, et al. (2005) Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants. Plant and Cell Physiology 46:1809-1818.
    [47]Kim ST, Yu S, Kim SG, et al. (2004) Proteome analysis of rice blast fungus (Magnaporthe grisea) proteome during appressorium formation. Proteomics 4:3579-3587.
    [48]Kim ST, Kim SG, Hwang DH, et al. (2004) Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics 4:3569-3578.
    [49]Latterich M, Abramovitz M & Leyland-Jones B (2008) Proteomics:new technologies and clinical applications. Eur JCancer 44:2737-2741.
    [50]Lehner I, Niehof M & Borlak J (2003) An optimized method for the isolation and identification of membrane proteins. Electrophoresis 24:1795-1808.
    [51]Li HG, Xue DW, Gao ZY, et al. (2009) A putative lipase gene EXTRA GLUME1 regulates both empty-glume fate and spikelet development in rice. Plant Journal 57:593-605.
    [52]Li ZS, Alfenito M, Rea PA, Walbot V & Dixon RA (1997) Vacuolar uptake of the phytoalexin medicarpin by the glutathione conjugate pump. Phytochemistry 45:689-693.
    [53]Liao M, Li Y & Wang Z (2009) Identification of elicitor-responsive proteins in rice leaves by a proteomic approach. Proteomics 9:2809-2819.
    [54]Liu Y, Chen Z, Ng TB, Zhang J, Zhou M, Song F & Lu F (2007) Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides 28: 553-559.
    [55]Lopez MF & Pluskal MG (2003) Protein micro-and macroarrays:digitizing the proteome. J Chromatogr B Analyt Technol Biomed Life Sci 787:19-27.
    [56]M TS (1987) Control of Rizoctonia by Bacillus subtilis. Trasactions of the Mycological Society Japan 28:483-493.
    [57]Mahmood T, Kakishima M & Komatsu S (2009) Proteome analysis of probenazole-effect in rice-bacterial blight interactions. Protein Pept Lett 16:1041-1052.
    [58]Mahmood T, Jan A, Kakishima M & Komatsu S (2006) Proteomic analysis of bacterial-blight defense-responsive proteins in rice leaf blades. Proteomics 6:6053-6065.
    [59]Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annual Review of Plant Physiology and Plant Molecular Biology 47:127-158.
    [60]Mishra S & Arora NK (2012) Evaluation of rhizospheric Pseudomonas and Bacillus as biocontrol tool for Xanthomonas campestris pv campestris. World JMicrobiol Biotechnol 28:693-702.
    [61]Moyne AL, Shelby R, Cleveland TE & Tuzun S (2001) Bacillomycin D:an iturin with antifungal activity against Aspergillus flavus. Journal of Applied Microbiology 90:622-629.
    [62]Mueller LA, Goodman CD, Silady RA & Walbot V (2000) AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol 123: 1561-1570.
    [63]Ongena M & Jacques P (2008) Bacillus lipopeptides:versatile weapons for plant disease biocontrol. Trends Microbiol 16:115-125.
    [64]Perez-Garcia A, Romero D & de Vicente A (2011) Plant protection and growth stimulation by microorganisms:biotechnological applications of Bacillus in agriculture. Current Opinion in Biotechnology 22:187-193.
    [65]Potter I & Fry SC (1993) Xyloglucan endotransglycosylase activity in pea internodes. Effects of applied gibberellic acid. Plant Physiol 103:235-241.
    [66]Quiroga M, Guerrero C, Botella MA, et al. (2000) A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol 122:1119-1127.
    [67]Raupach GS & Kloepper JW (1998) Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158-1164.
    [68]Roh JY, Choi JY, Li MS, Jin BR & Je YH (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. Journal of Microbiology and Biotechnology 17:547-559.
    [69]Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW & Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017-1026.
    [70]Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW & Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927-4932.
    [71]Sappl PG, Carroll AJ, Clifton R, Lister R, Whelan J, Millar AH & Singh KB (2009) The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. Plant Journal 58:53-68.
    [72]Saravanan RS & Rose JKC (2004) A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues. Proteomics 4:2522-2532.
    [73]Sarma AD, Oehrle NW & Emerich DW (2008) Plant protein isolation and stabilization for enhanced resolution of two-dimensional polyacrylamide gel electrophoresis. Anal Biochem 379: 192-195.
    [74]Schadewaldt H (1982) [History of the discovery of the tubercle bacillus]. Med Welt 33:419-426.
    [75]Schippers B, Bakker A & Bakker P (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annual Review of Phytopathology 25: 339-358.
    [76]Schunmann PHD, Smith RC, Lang V, Matthews PR & Chandler PM (1997) Expression of XET-related genes and its relation to elongation in leaves of barley (Hordeum vulgare L.). Plant Cell and Environment 20:1439-1450.
    [77]Shenton MR, Berberich T, Kamo M, Yamashita T, Taira H & Terauchi R (2012) Use of intercellular washing fluid to investigate the secreted proteome of the rice-Magnaporthe interaction. J Plant Res 125:311-316.
    [78]van Loon L (2007) Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology 119:243-254.
    [79]Velusamy P, Immanuel JE, Gnanamanickam SS & Thomashow L (2006) Biological control of rice bacterial blight by plant-associated bacteria producing 2,4-diacetylphloroglucinol. Canadian Journal of Microbiology 52:56-65.
    [80]Wang W, Vignani R, Scali M & Cresti M (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27:2782-2786.
    [81]Yu CL, Yan SP, Wang CC, et al. (2008) Pathogenesis-related proteins in somatic hybrid rice induced by bacterial blight. Phytochemistry 69:1989-1996.
    [82]Yuan XP, Wang J, Yao HY & Venant N (2005) Separation and identification of endoxylanases from Bacillus subtilis and their actions on wheat bran insoluble dietary fibre. Process Biochemistry 40: 2339-2343.
    [83]Zettl R, Schell J & Palme K (1994) Photoaffinity labeling of Arabidopsis thaliana plasma membrane vesicles by 5-azido-[7-3H]indole-3-acetic acid:identification of a glutathione S-transferase. Proc Natl Acad Sci USA 91:689-693.
    [84]Zheng G & Slavik MF (1999) Isolation, partial purification and characterization of a bacteriocin produced by a newly isolated Bacillus subtilis strain. LettAppl Microbiol 28:363-367.
    [85]Zhou X, Kloepper J, Reddy M & Zhang S (2011) Management of bacterial panicle blight of rice with beneficial Bacillus strains. Phytopathology 101:S270-S270.
    [86]胡一鸿,李向阳 & 莫亿伟(2009)植物草酸氧化酶.生命的化学02:263-237.
    [87]申红芸,熊宏春,郭笑彤 & 左元梅(2011)植物吸收和转运铁的分子生理机制研究进展.植物营养与肥料学报06:35-39.