稀土碳酸盐和磷酸盐微纳米颗粒的控制合成及功能性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土发光材料在显示、照明、X射线影像、太阳能光电转换、激光以及生物工程等方面都有广泛的应用前景,因而日益受到人们的重视。随着科学技术发展要求的提高和资源节约型社会的发展要求,稀土发光材料也正在向纳米化、球形化和多功能化的方向发展。与此同时,纳米级别的稀土发光材料还在免疫分析、生物传感、生物成像、载药等方面具有潜在应用价值。因此,本研究将稀土离子的荧光特性与Gd3+的顺磁性相结合,采用不同的合成方法,制备一系列磁性-荧光双功能Gd2(CO3)3:Ln3+纳米粒子。同时寻求一种适合于工业应用的简单化学法合成小尺寸高亮度的磷酸镧铈铽(LAP)绿色荧光粉。具体内容包括:
     [1]以CTAB为表面活性剂,正丁醇为助表面活性剂,正己烷为溶剂,以GdCl3和Na2CO3为原料,采用反相微乳液法,制备Gd2(CO3)3:Tb纳米粒子,并以在该微乳液中添加TEOS的方式,一步合成Gd2(CO3)3:Tb@SiO2纳米粒子。采用扫描电镜(SEM)、透射电镜(TEM)对纳米粒子的形貌和粒径进行表征,采用红外光谱(IR)、元素分析(EDS)等对纳米粒子的成分进行分析,结果表明纳米粒子为核壳结构,其核为Gd2(CO3)3:Tb,粒径为8-10nm,外面包裹的SiO2的厚度为3-5nm。该纳米粒子在波长为λ=225nm的光源激发下,发出发射光谱在544nm左右的绿光,发光性质良好;且在溶液体系和细胞环境中均可以进行良好的T1磁共振成像和荧光成像,该粒子能对NCI-H460肺癌细胞以及对SGC7901胃癌细胞成功标记,通过MTT法测试出纳米粒子在62.5μg/mL-500μg/mL的浓度范围内的毒性很小,具有很好的生物相容性。
     [2]采用尿素均相沉淀法制备出粒度均匀的Ln3+掺杂Gd2O(CO3)2纳米粒子及球形Gd2O3:Eu粉体,利用SEM、TEM、IR、XRD等对纳米粒子的结构和颗粒特征进行了分析,考查了沉淀时间以及表面活性剂的添加对纳米粒子的形貌和粒径的影响,并对Eu3+/Tb3+掺杂的纳米粒子的荧光性质进行了测试。结果表明,随着沉淀时间的延长,纳米粒子的形貌由球形变为菱形,尺寸亦不断增大,加入表面分散剂后,粒子的分散性更好。球形Gd2O(CO3)2:Tb@PVP纳米粒子在波长为λ=274nm的光源激发下,发出543nm左右的绿光,且该纳米粒子在溶液体系和细胞环境中均可以进行良好的T1磁共振成像和荧光成像,通过两种功能的成像优势的结合提高了检测肿瘤细胞的灵敏度和准确度,表明其在生物应用方面的潜在应用价值。
     [3]采用水热法制备出尺寸细小、均匀的球形Gd2(CO3)3纳米粒子,通过掺杂Eu3+及Tb3+,使其具有荧光性质。采用SEM、TEM、IR、XRD等对纳米粒子的物相和颗粒特征进行了分析。结果表明:所合成的纳米粒子的物相、形貌、尺寸均随着水热条件的改变而又所改变,并最终影响纳米粒子的性质。初步探讨了Gd2(CO3)3纳米粒子的水热结晶机理,并总结了在水热条件下制备适合生物应用的球形Gd2(CO3)3纳米粒子的反应条件。
     [4]通过机械化学研磨法制备出LaPO4:Ce,Tb前驱体,再将前驱体在还原气氛中煅烧得到LaPO4:Ce,Tb荧光粉。采用SEM)、XRD、荧光光谱(FL)对产物的结构、形貌和荧光性质进行了表征,结果表明研磨时间、煅烧温度、是否洗涤、及助溶剂的添加等条件对荧光粉亮度及形貌均有影响。采用该方法可以制备出比商用铝酸盐绿粉(CAT)亮度更高、颗粒更为细小均匀的LaPO4:Ce,Tb绿色荧光粉。该方法温和、简便、环境友好、具有工业应用价值。
     [5]采用共沉淀法制备磷酸镧铈铽前驱体,再将前驱体在还原气氛中煅烧,得到类球形的LAP绿色荧光粉。采用SEM、XRD、FL对产物的结构和荧光性质进行了表征,考查沉淀条件对产物的物相、形貌、荧光性质的影响。结果表明,沉淀陈化时间、加料方式、离子浓度、pH等对产物的形貌均有影响。
Rare Earth Luminescent materials have attracted more attention due to their abroad applications in displaying, lighting, bioimaging, solar photoelectric conversion, laser and biological engineering, In order to meet the demand of the resource-saving society, rare earth luminescent materials are also developing to the direction of multi-functionallization, nanocrystllization and spheroidization. Meanwhile, the nanosacle rare earth luminescent material has the potential application value in biosensing, immunoassay, biological imaging, and drug loading. The aim of this study was to prepare Ln3+doped Gd2(CO3)3magnetic-fluorescent bifunctional nanoparticles through different synthesis methods and LaPO4:Ce,Tb(LAP) green fluorescent powders with small size and high emission brightness via simple chemical methods for industrial application. The concrete content includes:
     [1]A simple reverse microemulsion method and coating process was introduced to synthesize silica-coated Gd2(CO3)3:Tb nanoparticles. The morphology and particle size of the nanoparticles were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), energy spectrum(EDS), and infrared spectrum(IR). The results showed that nanoparticles have obvious core-shell structure and perfect spherical morphology. The particles with an average diameter of16nm, including8-10nm of Gd2(CO3)3:Tb core and3-5nm of SiO2shell, can be dispersed well in water. As in vitro cell imaging of the nanoprobe shows, the nanoprobe accomplished delivery to gastric SGC7901cancer cells successfully in a short time, as well as NCI-H460lung cancer cells. Furthermore, it presents no evidence of cell toxicity or adverse affect on kidney cell growth under high dose, which makes the nanoprobe's optical bio-imaging modality available. The possibility of using the nanoprobes for magnetic resonance imaging is also demonstrated, and the nanoprobe diplays a clear T1-weighted effect and could potentially serve as bimodal T1-positive contrast agent. Therefore, the new nanoprobe formed from carbonate nanoprobe doped with rare earth ions provides the dual modality of optical and magnetic resonance imaging. A new type of dual modal nanoprobe to combine optical and magnetic resonance bioimaging was developed.
     [2] Ln3+doped Gd2O(CO3)2nanoparticles with uniform particle size have been prepared via urea homogeneous precipitation. The properties of as-prepared nanoparticles were characterized by SEM, TEM, XRD and IR. The fluorescent properties and magnetic resonance relaxivity were measured and the effect of the sedimentation time on the morphology and particle size was examined. The results showed that the morphology of the nanoparticles was changed from spherical to diamond with reflux time increased from2h to10h, and the size was growing too. The spherical Gd2O(CO3)2:Tb@pvp emit bright green light at about543nm under274nm excitation, and would be a good T1MRI contrast agent in solution and a good optical imaging agent in cell environment. The sensitivity and accuracy of detection of the tumor cells would be improved through combining these two functions. It indicated that Gd2O(CO3)2:Tb nanoparticles provides the dual modality of optical and magnetic resonance imaging. At the same time, nanosized spherical Gd2O3:Fu fluorescent powder could be obtained by calcination of the Gd2O(CO3)2:Fu precipitate at800℃.
     [3] Spherical Ln3+doped Gd2(CO3)3nanoparticles with uniform particle size were prepared by a simple hydrothermal method. The morphology and particle size of the as prepared particles were characterized by SEM, TEM, XRD and IR. The results showed that the morphology, phase structure, particle size and the properties of the nanoparticles would be changed with the hydrothermal conditions. The hydrothermal crystallization mechanism of the nanoparticles was preliminary discussed.
     [4] LaPO4:Ce,Tb phosphor was prepared by a rreduction calcination of the precursor obtained by the simple mechanical grinding method. The results of SEM, XRD and FL showed that the luminance and morphology of the phosphors were affected by the synthesis conditons including grinding time, calcination temperature, washing method and the cosolvent used. The as-prepared nanosized green LaPO4:Ce,Tb phosphors showed higher brightness and smaller size than the current commercial aluminate green powder (CAT). This method provides potential applicaton in large scale industrial production because of its characterization of simple, mild, and environment friendly.
     [5] LaP04:Ce,Tb phosphor was prepared by a reduction calcination of the precursor obtained by a simple co-precipitation method. The results of SEM, XRD and FL showed the luminescence and morphology of the phosphors were also influenced by the aging time, feeding mode, ionic concentration and pH value.
引文
[]] Shen J, Sun L D, Yan C H. Luminescent rare earth nanomaterials for bioprobe applications[J]. Dalton Transactions,2008 (42):5687-5697.
    [2]Stewart W W. Lucifer dyes—highly fluorescent dyes for biological tracing[J].1981.21.
    [3]Titus J A, Haugland R, Sharrow S O, et al. Texas red, a hydrophilic, red-emitting flourophore for use with flourescein in dual parameter flow microfluorometric and fluorescence microscopic studies[J]. Journal of immunological methods,1982,50(2):193-204.
    [4]Yu M, Shi M, Chen Z, et al. Highly Sensitive and Fast Responsive Fluorescence Turn-On Chemodosimeter for Cu2+ and Its Application in Live Cell Imaging[J]. Chemistry-A European Journal,2008,14(23):6892-6900.
    [5]Michalet X, Pinaud F F, Bentolila L A, et al. Quantum dots for live cells, in vivo imaging, and diagnostics[J]. Science,2005,307(5709):538-544.
    [6]Loss D, DiVincenzo D P. Quantum computation with quantum dots[J]. Physical Review A, 1998,57(1):120.
    [7]Gao X, Cui Y, Levenson R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dotsf J]. Nature biotechnology,2004,22(8):969-976.
    [8]Larson D R, Zipfel W R, Williams R M, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo[J]. Science,2003,300(5624):1434-1436.
    [9]B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, et al, (CdSe)ZnS Core Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites[J]. The Journal of Physical Chemistry B,1997,101(46):9463-9475.
    [10]Chan W C W, Maxwell D J, Gao X, et al. Luminescent quantum dots for multiplexed biological detection and imaging[J]. Current opinion in biotechnology,2002,13(1):40-46.
    [11]Wu X, Liu H, Liu J, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots[J]. Nature biotechnology,2002,21(1): 41-46.
    [12]Derfus A M, Chan W C W, Bhatia S N. Probing the cytotoxicity of semiconductor quantum dots[J]. Nano letters,2004,4(1):11-18.
    [13]Hardman R. A toxicologic review of quantum dots:toxicity depends on physicochemical and environmental factors[J]. Environmental health perspectives,2006,114(2):165.
    [14]Wegh R T, Donker H, Oskam K D, et al. Visible quantum cutting in LiGdF4:Eu3+through downconversion[J]. Science,1999,283(5402):663-666..
    [15]Hemmila I, Dakubu S, Mukkala V M, et al. Europium as a label in time-resolved immunofluorometric assays[J]. Analytical biochemistry,1984,137(2):335-343.
    [16]Soini E, Kojola H. Time-resolved fluorometer for lanthanide chelates-a new generation of nonisotopic immunoassays[J]. Clinical Chemistry,1983,29(1):65-68.
    [17]Feng J, Shan G, Maquieira A, et al. Functionalized europium oxide nanoparticles used as a fluorescent label in an immunoassay for atrazine[J]. Analytical Chemistry,2003,75(19): 5282-5286..
    [18]Nichkova M, Dosev D, Gee S J, et al. Microarray immunoassay for phenoxybenzoic acid using polymer encapsulated Eu:Gd2O3 nanoparticles as fluorescent labels[J]. Analytical chemistry,2005,77(21):6864-6873.
    [19]Nichkova M, Dosev D, Perron R, et al. Eu3+-doped Gd2O3 nanoparticles as reporters for optical detection and visualization of antibodies patterned by microcontact printing[J]. Analytical and bioanalytical chemistry,2006,384(3):631-637.
    [20]Louis C, Bazzi R, Marquette C A, et al. Nanosized hybrid particles with double luminescence for biological labeling[J]. Chemistry of materials,2005,17(7):1673-1682.
    [21]李文静,敖登高娃,张佩麟.以铕离子为荧光探针测定痕量依诺沙星[J].稀土,2005,26(4):46-48.
    [22]Rodriguez-Liviano S, Becerro A I, Alcantara D, et al. Synthesis and Properties of Multifunctional Tetragonal Eu:GdPO4 Nanocubes for Optical and Magnetic Resonance Imaging Applications[J]. Inorganic Chemistry,2012.
    [23]Beaurepaire E, Buissette V, Sauviat M P, et al. Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single-molecule level[J]. Nano Letters,2004,4(11):2079-2083.
    [24]Chen G, Ohulchanskyy T Y, Liu S, et al. Core/Shell NaGdF4:Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications[J]. ACS nano,2012,6(4):2969-2977.
    [25]Vetrone F, Naccache R, Mahalingam V, et al. The active-core/active-shell approach:A strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles[J]. Advanced Functional Materials,2009,19(18):2924-2929.
    [26]Mo M, Liwen Y, Guozhong R, et al. Solvothermal synthesis, cubic structure and multicolor upconversion emission of ultrasmall monodisperse lanthanide-doped BaYF5 nanocrystals[J]. Journal of Luminescence,2011,131(7):1482-1486.
    [27]Das G K, Tan T T Y. Rare-Earth-Doped and Codoped Y2O3 Nanomaterials as Potential Bioimaging Probes[J]. The Journal of Physical Chemistry C,2008,112(30):11211-11217.
    [28]Tanabe S, Hayashi H, Hanada T, et al. Fluorescence properties of Er3 ions in glass ceramics containing LaF3 nanocrystals[J]. Optical Materials,2002,19(3):343-349..
    [29]Corstjens P, Li S, Zuiderwijk M, et al. Infrared up-converting phosphors for bioassays[C]//IEE Proceedings-Nanobiotechnology. IET Digital Library,2005,152(2): 64-72.
    [30]van de Rijke F, Zijlmans H, Li S, et al. Up-converting phosphor reporters for nucleic acid microarrays[J]. Nature biotechnology,2001,19(3):273-276.
    [31]Zijlmans H, Bonnet J, Burton J, et al. Detection of cell and tissue surface antigens using up-converting phosphors:a new reporter technology[J]. Analytical biochemistry,1999, 267(1):30-36.
    [32]Chen G, Ohulchanskyy T Y, Kumar R, et al. Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence[J]. ACS nano,2010,4(6):3163-3168..
    [33]van de Rijke F, Zijlmans H, Li S, et al. Up-converting phosphor reporters for nucleic acid microarrays[J]. Nature biotechnology,2001,19(3):273-276.
    [34]Lim S F, Riehn R, Ryu W S, et al. In vivo and scanning electron microscopy imaging of upconverting nanophosphors in Caenorhabditis elegans[J]. Nano letters,2006,6(2): 169-174..
    [35]S. Sivakumar, P.R. Diamente, F.C.J.M. van Veggel, Silica-Coated Ln3+-Doped LaF3 Nanoparticles as Robust Down-and Upconverting Biolabels[J], Chemistry-A European Journal,2006,12(22):5878-5884.
    [36]G. Yi, H. Lu, S. Zhao, et al, Synthesis,Characterization, and Biological Application of Size-Controlled Nanocrystalline NaYF4:Yb,Er Infrared-to-Visible Up-Conversion Phosphors[J], Nano Letters,2004,94(11):2191-2196.
    [37]Zeng J H, Su J, Li Z H, et al. Synthesis and upconversion luminescence of hexagonal-Phase NaYF4:Yb, Er3+ phosphors of controlled size and morphology[J]. Advanced Materials,2005, 17(17):2119-2123.
    [38]Chen Z, Chen H, Hu H, et al. Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels[J]. Journal of the American Chemical Society,2008,130(10):3023-3029.
    [39]Li Z, Zhang Y, Jiang S. Multicolor core/shell-structured upconversion fluorescent nanoparticles[J]. Advanced Materials,2008,20(24):4765-4769.
    [40]Idris N M, Li Z, Ye L, et al. Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles[J]. Biomaterials,2009,30(28):5104-5113.
    [41]Mai H X, Zhang Y W, Si R, et al. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties[J]. Journal of the American Chemical Society, 2006,128(19):6426-6436.
    [42]Yi G S, Chow G M. Synthesis of Hexagonal-Phase NaYF4:Yb, Er and NaYF4:Yb, Tm Nanocrystals with Efficient Up-Conversion Fluorescence [J]. Advanced Functional Materials,2006,16(18):2324-2329.
    [43]Cheon J, Lee J H. Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology[J]. Accounts of chemical research,2008,41(12):1630-1640.
    [44]Wu W, He Q, Chen H, et al. Sonochemical synthesis, structure and magnetic properties of air-stable Fe3O4/Au nanoparticles[J]. Nanotechnology,2007,18(14):145609.
    [45]Bourlinos A B, Bakandritsos A, Georgakilas V, et al. Surface modification of ultrafine magnetic iron oxide particles[J]. Chemistry of materials,2002,14(8):3226-3228.
    [46]Deng H, Li X, Peng Q, et al. Monodisperse Magnetic Single-Crystal Ferrite Microspheres[J]. Angewandte Chemie,2005,117(18):2842-2845.
    [47]Wang Y, Wong J F, Teng X, et al. "Pulling" nanoparticles into water:phase transfer of oleic acid stabilized monodisperse nanoparticles into aqueous solutions of a-cyclodextrin[J]. Nano Letters,2003,3(11):1555-1559.
    [48]Caravan P, Ellison J J, McMurry T J, et al. Gadolinium (III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications[J]. Chemical Reviews,1999,99(9):2293-2352.
    [49]Cheng Z, Thorek D L J, Tsourkas A. Gadolinium-Conjugated Dendrimer Nanoclusters as a Tumor-Targeted T1 Magnetic Resonance Imaging Contrast Agent[J]. Angewandte Chemie International Edition,2010,49(2):346-350.
    [50]Kim J S, Rieter W J, Taylor K M L, et al. Self-assembled hybrid nanoparticles for cancer-specific multimodal imaging[J]. Journal of the American Chemical Society,2007, 129(29):8962-8963.
    [51]Fortin M A, Petoral Jr R M, Soderlind F, et al. Polyethylene glycol-covered ultra-small Gd2O3 nanoparticles for positive contrast at 1.5 T magnetic resonance clinical scanning[J]. Nanotechnology,2007,18(39):395501.
    [52]Bridot J L, Faure A C, Laurent S, et al. Hybrid gadolinium oxide nanoparticles:multimodal contrast agents for in vivo imaging[J]. Journal of the American Chemical Society,2007, 129(16):5076-5084.
    [53]Evanics F, Diamente P R, Van Veggel F, et al. Water-soluble GdF3 and GdF3/LaF3 nanoparticles physical characterization and NMR relaxation properties[J]. Chemistry of materials,2006,18(10):2499-2505.
    .[54] Hifumi H, Yamaoka S, Tanimoto A, et al. Gadolinium-based hybrid nanoparticles as a positive MR contrast agent[J]. Journal of the American Chemical Society,2006,128(47): 15090-15091.
    [55]Seo W S, Lee J H, Sun X, et al. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents[J]. Nature materials,2006,5(12): 971-976.
    [56]Tromsdorf U I, Bruns O T, Salmen S C, et al. A highly effective, nontoxic Tj MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles[J]. Nano letters,2009,9(12): 4434-4440.
    [57]Ma Z Y, Dosev D, Nichkova M, et al. Synthesis and bio-functionalization of multifunctional magnetic Fe3O4@ Y2O3:Eu nanocomposites[J]. Journal of materials chemistry,2009,19(27): 4695-4700.
    [58]Lu H, Yi G, Zhao S, et al. Synthesis and characterization of multi-functional nanoparticles possessing magnetic, up-conversion fluorescence and bio-affinity properties[J]. Journal of Materials Chemistry,2004,14(8):1336-1341.
    [59]Dosev D, Nichkova M, Dumas R K, et al. Magnetic/luminescent core/shell particles synthesized by spray pyrolysis and their application in immunoassays with internal standard[J]. Nanotechnology,2007,18(5):055102.
    [60]Son A, Dhirapong A, Dosev D K, et al. Rapid and quantitative DNA analysis of genetic mutations for polycystic kidney disease (PKD) using magnetic/luminescent nanoparticles[J]. Analytical and bioanalytical chemistry,2008,390(7):1829-1835.
    [61]Son A, Dosev D, Nichkova M, et al. Quantitative DNA hybridization in solution using magnetic/luminescent core-shell nanoparticles[J]. Analytical biochemistry,2007,370(2): 186-194.
    [62]Son A, Nichkova M, Dosev D, et al. Luminescent lanthanide nanoparticles as labels in DNA microarrays for quantification of methyl tertiary butyl ether degrading bacteria[J]. Journal of nanoscience and nanotechnology,2008,8(5):2463-2467.
    [63]Ju Q, Tu D, Liu Y, et al. Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/magnetic multimodal bioprobes[J]. Journal of the American Chemical Society,2011,134(2):1323-1330.
    [64]Wakita H, Nagashima K. Synthesis of tengerite type rare earth carbonates[J]. Bull Chem Soc Jpn,1972,45:2476-2479.
    [65]Nagashima K, Wakita H, Mochizuki A. The synthesis of crystalline rare earth carbonates[J]. Bull Chem Soc Jpn,1973,46(1):152-156.
    [66]Tareen J A K, Kutty T R N. Hydrothermal phase equilibria in Ln2O3-H2O-CO2 systems:1. The lighter lanthanides[J]. Journal of Crystal Growth,1980,50(2):527-532.
    [67]Tareen J A K, Narayanan Kutty T R, Krishnamurty K V. Hydrothermal growth of Y2(CO3)3·n H2O (tengerite) single crystals[J]. Journal of Crystal Growth,1980,49(4):761-765.
    [68]Tareen J A K, Basavalingu B, Kutty T R N. Hydrothermal synthesis of polycrystalline carbonates[J]. Journal of Crystal Growth,1981,55(2):384-387.
    [69]Tareen J A K, Viswanathiah M N, Krishnamurthy K V. Hydrothermal synthesis and growth of Y (OH)CO3-ancylite like phase[J]. Revue de Chimie Minerale,1980,17:50-57.
    [70]E L Head.;US Pat3374069;1967;Chem.Abstr.
    [71]E L Head;US Pat3446574;1967:Chem.Abstr
    [72]Wakita H. The synthesis of hydrated rare earth carbonate single crystals in gels[J]. Bulletin of the Chemical Society of Japan,1978,51(10):2879-2881.
    [73]Sastry R L N, Yoganarasimhan S R, Mehrotra P N,. Preparation, characterization and thermal decomposition of praseodymium, terbium and neodymium carbonates[J]. Journal of Inorganic and Nuclear Chemistry,1966,28(5):1165-1177.
    [74]Mochizuki A, Nagashima K, Wakita H. The synthesis of crystalline hydrated double carbonates of rare earth elements and sodium[J]. Bulletin of the Chemical Society of Japan, 1974,47(3):755-756.
    [75]李永绣,胡平贵,何小彬等.碳酸忆钱复盐结晶的形成及性质研究[J].中国稀土学报;2000,18(1):79
    [76]Y X Li, M Li, P G Hu et al. Sutdy on the cyrstallization Proeess of yttrium carbonate Proceedings of lntenrational Symposium on Industrial Crystallization[J]. Chemical Industry Press:Bejiing,1998,9:49.
    [77]Y X Li, M Li, P G Hu. Sutdy on the Precipitation and cyrstallization Process of rare earth carbonate:Proceedings of interminational Symposium on industrial Crystallization[J]. Chemical Industry press:Bejiing,1998,9:49.
    [78]Schaefer K. Alternative phosphate binders:an update[J]. Nephrology Dialysis Transplantation,1993,8(suppl):35-39.
    [79]Harrison T S, Scott L J. Lanthanum carbonate[J]. Drugs,2004,64(9):985-996.
    [80]吴燕利,周新木,周雪珍,等.基于碳酸稀土的高效分离与功能材料研究进展[J].2010中西部地区无机化学化工学术研讨会论文集,2010.
    [81]Li I, Su C H, Sheu H S, et al. Gd2O(CO3)2-H2O Particles and the Corresponding Gd2O3: Synthesis and Applications of Magnetic Resonance Contrast Agents and Template Particles for Hollow Spheres and Hybrid Composites[J]. Advanced Functional Materials,2008,18(5): 766-776.
    [82]Bridot J L, Faure A C, Laurent S, et al. Hybrid gadolinium oxide nanoparticles:multimodal contrast agents for in vivo imaging[J]. Journal of the American Chemical Society,2007, 129(16):5076-5084.
    [83]Kompe K, Borchert H, Storz J, et al. Green-Emitting CePO4:Tb/LaPO4 Core-Shell Nanoparticles with 70% Photoluminescence Quantum Yield[J]. Angewandte Chemie International Edition,2003,42(44):5513-5516.
    [84]Meyssamy H, Riwotzki K, Kornowski A, et al. Wet-Chemical Synthesis of Doped Colloidal Nanomaterials:Particles and Fibers of LaPO4:Eu, LaPO4:Ce, and LaPO4:Ce, Tb[J]. Advanced Materials,1999,11(10):840-844.
    [85]Brown S S, Im H J, Rondinone A J, et al. Facile, alternative synthesis of lanthanum phosphate nanocrystals by ultrasonication[J]. Journal of Colloid and Interface Science,2005, 292(1):127-132.
    [86]Lehmann O, Kompe K, Haase M. Synthesis of Eu3+-doped core and core/shell nanoparticles and direct spectroscopic identification of dopant sites at the surface and in the interior of the particles[J]. Journal of the American Chemical Society,2004,126(45):14935-14942.
    [87]Heer S, Lehmann O, Haase M, et al. Blue, Green, and Red Upconversion Emission from Lanthanide-Doped LuPO4 and YbPO4 Nanocrystals in a Transparent Colloidal Solution[J]. Angewandte Chemie International Edition,2003,42(27):3179-3182.
    [88]Buissette V, Moreau M, Gacoin T, et al. Colloidal Synthesis of Luminescent Rhabdophane LaPO4:Ln3+. xH2O (Ln= Ce, Tb, Eu; x≈0.7) Nanocrystals[J]. Chemistry of materials,2004, 16(19):3767-3773.
    [89]Yu L, Song H, Liu Z, et al. Electronic transition and energy transfer processes in LaPO4-Ce3+/Tb3+ nanowires[J]. The Journal of Physical Chemistry B,2005,109(23): 11450-11455.
    [90]Riwotzki K, Meyssamy H, Schnablegger H, et al. Liquid-Phase Synthesis of Colloids and Redispersible Powders of Strongly Luminescing LaPO4:Ce, Tb Nanocrystals[J]. Angewandte Chemie International Edition,2001,40(3):573-576.
    [91]Hongwei S, Lixin Y, Shaozhe L. Remarkable differences of photoluminescent properties between LaPO4:Eu3+ one-dimensional nanowires and zero-dimensional nanoparticles[J]. Appl. Phys. Lett,2004,85(3):470-472.
    [92]Y L Wu.W L Sun, X Z Zhou, et al., Hydrothermal synthesis of Y(OH)3, Y(OH)3:Eu3+ nanotubes and the photoluminescence of Y(OH)3:Eu3+, Y2O3:Eu3+[J]. Journal of Rare Earths,2009,5(27),767-772
    [93]Fang Y P, Xu A W, Song R Q, et al. Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires[J]. Journal of the American Chemical Society,2003,125(51):16025-16034.
    [94]Nedelec J M, Avignant D, Mahiou R. Soft chemistry routes to YPO4-based phosphors: dependence of textural and optical properties on synthesis pathways[J]. Chemistry of materials,2002,14(2):651-655.
    [95]Penard A L, Gacoin T, Boilot J P. Functionalized sol-gel coatings for optical applications[J]. Accounts of chemical research,2007,40(9):895-902.
    [96]刘南生,孙日圣,彭宏博,等.共沉淀法制备不球磨稀土磷酸盐绿色荧光粉研究[J].发光学报,2001,22(4):412-416.
    [97]吴雪艳,尤洪鹏,曾小青,等.共沉淀法合成稀土正磷酸盐(La,Gd)PO4:RE3+(RE=Eu,Tb)及其真空紫外光谱特性[J].高等学校化学学报,2003,24(1):1-4.
    [98]Boca Raton, The Phosphor Handbook.Phosphor Research Society(Japan.), CRC Press,1999.
    [99]袁剑辉,王修琼,张振华.(La,Ce,Tb)PO4的合成及应用特性研究[J].稀有金属,2005,29(6):875-879.
    [100]刘行仁,王晓君.灯用稀土正磷酸盐绿色荧光粉[J].中国照明电器,1994,(5):1.
    [101]王健,瞿存德,高正中.稀土磷酸盐绿色荧光粉合成工艺探索[J].稀土,1999,20(2)73.
    [102]于广聪.新型稀土磷酸盐体系绿色荧光粉的研究[J].稀有金属材料与工程,1997,26(1):44.
    [103]Wang F, Song H, Pan G, et al. Luminescence properties of Ce3+ and Tb3+ ions codoped strontium borate phosphate phosphors[J]. Journal of Luminescence,2008,128(12): 2013-2018.
    [104]Fu Z, Bu W. High efficiency green-luminescent LaPO4:Ce, Tb hierarchical nanostructures: Synthesis, characterization, and luminescence properties[J]. Solid State Sciences,2008, 10(8):1062-1067.
    [105]Wang X, Li Y.D., Synthesis and Characterization of Lanthanide Hydroxide Single-Crystal Nanowires[J]., Angew. Chem. Int. Ed,2002,41(24):4790-4793.
    [106]Wang X, Sun X.M, Yun D.P, et al., Rare earth compound nanotubes, Adv Mater, 2003,15(17):1442-1445.
    [107]Wang X, Li Y.D., Rare Earth-compounds nanowires, nanotubles, and fullerence-like nanoparticles; synthesis, characterization, and properties[J]. Chemistry-A Eur. J., 9(22)(2003)5627-5636
    [108]Li W.J, Wang X, Li Y.D, Single-step in situ synthesis of double bond-grafted yttrium-hydroxide nanotube core-shell structures[J]. Chem Comm,2004, (2):164-165.
    [109]Xu A W, Fang Y P, You L P, Liu H Q. A Simple Method to Synthesize Dy(OH)3 and Dy2O3 Nanotubes[J].,J. Am Chem Soc,2003,125:1494-1495.
    [110]Tang Q, Liu Z P, Liu S, et al., Synthesis of yttrium hydroxide and oxide nanotubes[J]. J. Crystal Growth,2003,259:208-214.
    [1]Kim J, Kim H S, Lee N, et al. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug deliver y [J]. Angew. Chem.Int.Ed,2008,47(44):8438-8441
    [2]Buissette V, Giaume D, Gacoin T, et al., Aqueous routes to lanthanide doped oxide nano phosphors[J]. J.Mater Chem,2006,16:529-539
    [3]Yang C, Yang P P, et al. Synthesis and characterization of Eu-doped hydroxy apatite through a microwave assisted microemulsion process[J]. Solid State Sci,2009,11:1923-1926.
    [4]Huang W, Wu D Y, Zhou P, et al. Luminescent and magnetic properties of lanthanide-thiophene-2,5-dicarboxylate hybrid materials[J]. Cryst Growth Des,2009,9(3):1361-1369
    [5]Qiu G M, Xu Y Y, Zhu B K, et al. Novel, fluorescent, magnetic, polysaccharide based microsphere for orientation, tracing, and anticoagulation:preparation and characterization[J]. Biomacromolecules,2005,6(2):1041-1047.
    [6]Reynolds C H, Annan N, Beshah K, et al., Gadolinium-Loaded Nanoparticles:□ New Contrast Agents for Magnetic Resonance Imaging[J]. J. Am. Chem. Soc,2000.122(37):8940-8945
    [7]Turner J L, Pan D, Plummer R, et al., Synthesis of Gadolinium-Labeled Shell-Crosslinked Nanoparticles for Magnetic Resonance Imaging Applications[J]. Adv. Funct. Mater,2005. 15(8):1248-1254
    [8]Evanics F, Diamente P R, Van Veggel F, et al., Water-Soluble GdF3 and GdF3/LaF3 Nanoparticle-Physical Characterization and NMR Relaxation Properties[J]. Chem. Mater, 2006.18(10):2499-2505
    [9]Cacheris W P, Quay S C, Rocklage S M. The relationship between thermodynamics and the toxicity of gadolinium complexes[J]. Magn. Reson. Imag,1990,8(4):467-481.
    [10]Mann J S. Stability of Gadolinium Complexes In Vitro and In Vivo [J]. J. Comput. Assist. Tomogr,1993,17:S19-S23.
    [11]Flacke S, Fischer S, Scott MJ, et al. Novel MRI contrast agent for molecular imaging of fibrin:implications for detecting vulnerable plaques [J]. Circulation.2001; 104:1280-1285
    [12]JeanLuc B, Anne Charlotte F, Sophie L, et al., Hybrid Gadolinium Oxide Nanoparticles: Multimodal Contrast Agents for in Vivo Imaging [J]. J. Am. Chem. Soc.2007,129: 5076-5084.
    [13]Taylor K-M-L, Jin A, Lin W-B, et al., Surfactant-Assisted Synthesis of Nanoscale Gadolinium Metal-Organic Frameworks for Potential Multimodal Imaging [J]. Angew. Chem. Int. Edn,2008,120(40):7836-7839
    [14]J u Q, Tu D, Liu Y, Li R, Zhu H, Chen J, Chen Z, Huang M and Chen X Amine-Functionalized Lanthanide-Doped KGdF4 Nanocrystals as Potential Optical/Magnetic Multimodal Bioprobes [J]. J. Am. Chem. Soc.2012,134:1323-1330
    [15]Santra S, Bagwe R-P, Dutta D, et al., Synthesis and Characterization of Fluorescent, Radio-Opaque, and Paramagnetic Silica Nanoparticles for Multimodal Bioimaging Applications[J].Adv. Mater,2005,17(18):2165-2169
    [16]Fricker S P. The therapeutic application of lanthanides [J]. Chem. Soc. Rev,2006,35: 524-533.
    [17]Morel A L, Nikitenko S I, Gionnet K, et al., Sonochemical Approach to the Synthesis of Fe3O4@SiO2 Core-Shell Nanoparticles with Tunable Properties[J]. ACS Nano,2008,2 (5):847-856.
    [18]Yang H, Zhuang Y M, Hu H, et al., Silica-Coated Manganese Oxide Nanoparticles as a Platform for Targeted Magnetic Resonance and Fluorescence Imaging of Cancer Cells[J]. Adv. Funct. Mater,2010,20(11):1733-1741
    [19]Qian H S, Guo H C, Ho P C L, et al., Mesoporous-Silica-Coated Up-Conversion Fluorescent Nanoparticles for Photodynamic Therapy[J]. Small,2009,5(20):2285-2290.
    [1]Bruno Mercier, Christophe Dujardin, Gilles Ledoux, et al. Observation of the gap blue shift on Gd2O3:Eu3+ nanoparticles[J]. J.Appl.Phys,2004,96:650-653.
    [2]Yanhong L, Guixia L, Guangyan H. Synthesis and Luminescence Properties of Gd2O3:Eu3+ Phosphors[J]. Journal of Rare Earths,2004,22(1):70-74.
    [3]Kang Y C, Park S B, Lenggoro, et al.Gd2O3:Eu phosphor particles with sphericity, submicron size and non-aggregation characteristics[J]. Journal of Physics and Chemistry of Solids,1999,60:379-384.
    [4]Louis C, Bazzi R, Flores M A, et al.Synthesis and characterization of Gd2O3:Eu3+ phosphor nanoparticles by asol-lyophilization technique[J]. Journal of Solid Chemistry, 2003,173:335-341.
    [5]Park C S, Kwak M QChoi S.Influence of Eu3+ doping content on photoluminescence of Gd2O3:Eu3+ phosphors prepared by liquid-phase reaction method [J]. Journal of luminescence.2006,118:199-204.
    [6]Kang Y C, Roh H S, Kim E J. Synthesis of nanosize Gd2O3:Eu phosphor particles with high luminescence efficiency under ultraviolet light[J].J Electro Soc,2003,150 (4):9398.
    [7]刘桂霞,洪广言,孙多先.球形Gd2O3:Eu纳米发光材料的制备[J].无机化学学报,2004,20(11):1367-1370.
    [8]Nguyen V, TRAN K A, GYYU-CHUIY, et al. Photoluminescence and cathodo luminescence properties of Y203:Eu3+nanophosphors prepared by combustion synthesis [J]. Journal of Luminescence,2007,122(123):776-779.
    [9]Fu Y P. Preparation and characterization of Y2O3:Eu phosphors by combustion process[J]. Journal of materials science,2007,42(13):5165-5169.
    [10]Bazzi R, Flores M A, Louis C, et al. Synthesis and properties of europium-based phosphors on the nanometer scale:Eu2O3, Gd2O3:Eu, and Y2O3:Eu[J]. Journal of colloid and interface science,2004,273(1):191-197.
    [11]Silver J, Withnall R, Lipman A, et al. Low-voltage cathodoluminescent red emitting phosphors for field emission displays[J]. Journal of luminescence,2007,122:562-566.
    [12]Joffin N, Dexpert-Ghys J, Verelst M, et al. The influence of microstructure on luminescent properties of Y2O3:Eu prepared by spray pyrolysis[J]. Journal of luminescence,2005,113(3): 249-257.
    [13]Roh H S, Kang Y C, Park H D, et al. Y2O3:Eu phosphor particles prepared by spray pyrolysis from a solution containing citric acid and polyethylene glycol[J]. Applied Physics A,2003,76(2):241-245.
    [14]Graeve O A, Corral J O. Preparation and characterization of rare-earth-doped Y2O31 uminescent ceramics by the use of reverse micelles[J]. Optical Materials,2006,29(1):24-30.
    [15]Zhang T S, Ma J, Kong L B, et al. Preparation and mechanical properties of dense Ce o.8Gdo.202 ceramics[J]. Solid State Ionics,2004,167(1):191-196.
    [16]Rojas T C, M Ocana.Uniform nanoparticles of Pr(IH)/Ceria Solid solutions prepared by homogeneous precipitation [J]. Scripta Materialia,2002,46:655-660.
    [17]Ozawa M, Kato H. Form ation and decomposition of some rare earth hydroxides and oxides by homogeneous precipitation[J] Journal of Alloys and Compouds,2006,408-412:556-559.
    [18]刘志刚,孙旭东,李晓东,等.均匀共沉淀法合成纳米Gd2O3:Eu粉体及其发光特性[J].材料与冶金学报,2009,8(2):110-113.
    [19]Ellen Neven, Geert Dams, Andrei Postnov, et al. Adequate phosphate binding with lanthanum carbonate attenuates arterial calcification in chronic renal failure rats[J]. Nephrology Dialysis Transplantation,24(6):1790-1799.
    [20]Alastair J. Hutchison, Maurice Laville. Switching to lanthanum carbonate monotherapy provides effective phosphate control with a low tablet burden. Nephrology Dialysis Transplantation,23(11):3677-3684.
    [21]Fricker S P. The therapeutic application of lanthanides[J]. Chemical Society Reviews,2006, 35(6):524-533.
    [22]Jing Zhou, Mengxiao Yu, Yun Sun, Xianzhong Zhang, Xingjun Zhu, Zhanhong Wu, Dongmei Wu, Fuyou Li. Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging., Biomaterials,2011,(32) 1148-1156.
    [23]L in C C, L in K M, L iY Y, et al. Sol-gel synthesis and photolum inescent characteris tics of Eu3+-doped Gd2O3 nanophosphors[J]. Journal of Luminescence,2007,126:795-799.
    [24]Louis C, Bazz i R, Flores M A, et al. Synthesis and characterization of Gd2O3:Eu3+phosphor nanoparticles by asol-lyophiliza tion technique [J]. Journal of Solid State Chemistry,2003, 173:335-341.
    [1]温立哲,邓淑华,黄慧民,等.水热法制备氧化锆微粉的进展[J].无机盐工业,2003,35(2):16-18.
    [2]吴会军,刘笑笑,朱冬生,等.水热反应法制备纳米粉体的研究进展[J].现代化工,2003,23(增刊):37-40.
    [3]周菊红,王涛,陈友存,等.水热法合成一维纳米材料的研究进展[J].化学通报,2008(7):510-517.
    [4]N. Dhananjaya, H.Nagabhushana, B.M.Nagabhushana, et al. Hydrothermal synthesis, characterization and Raman studies of Eu3+activated Gd2O3 nanorods [J]. Physica B,2011, 406:1639-1644
    [5]Vantomme A, Yuan Z Y, Du G H, et al.Surfactant-assisted large-scale preparation of crystalline CeO2 nanorods [J]. Langmuir,2005,21(3):1132-1135.
    [6]Sun C W, L i H, Zhang H T, et al. Controlled synthesis of CeO2 nanorods by a solvothermal method [J]. Nanotechnology,2005,16:1454-1463
    [7]Yun-Jeong Bae, Kyung-Hee Lee, Song-Ho Byeon, et al. Synthesis and Eu3+ concentration-dependent photoluminescence of Gd2-xEuxO3 nanowires[J]. Jouranl of Luminescence,2009, 129(1):81-85.
    [8]Zhou K B, Yang Z Q, Yang S. Highly reducible CeO2 nanotubes[J]. Chem Mater,2007,19: 1215-1217.
    [9]Kyung-Hee Lee, Yun-Jeong Bae, Song-Ho Byeon. Nanostructures and Photoluminescence Properties of Gd2O3:Eu Red-Phosphor prepared via Hydrothermal Route [J]. Bull. Korean Chem. Soc.2008,29(11):2161-2168
    [10]A.I.Y. Tok, F.Y.C. Boey, Z. Dong, et al. Hydrothermal synthesis of CeO2 nano-particles [J]. Journal of Materials Processing Technology,2007,190:217-222.
    [11]Kaneko K, Inoke K, Freitag B, et al. Structural and morphological characterization of cerium oxide nanocrystals prepared by hydrothermal synthesis [J]. Nano Lett,2007,7 (2):421-425.
    [12]Zhang Y J, H u Q X, Fang Z Y, et al.Self assemblage of single/multiwall hollow CeO2 microspheres through hydrothermal method [J]. Chem Lett,2006,35(8):944-945.
    [13]Zhang Y J, Ch eng T, H u Q X, et al Study of the preparation and properties of CeO2 single /raultiwall hollow microspheres [J]. J Mater Res,2007,22 (6):1472-1478.
    [14]Liu G, Hong G, Wang J, et al. Hydrothermal synthesis of spherical and hollow Gd2O3:Eu3+ phosphors[J]. Journal of alloys and compounds,2007,432(1):200-204.
    [15]Hau-Yun Chang, Fu-Shan Chen, Chung-Hsin Lu. Preparation and luminescence characterization of new carbonate (Y2(CO3)3·nH2O:Eu3+) phosphors via the hydrothermal route [J]. Journal of Alloys and Compounds,2011,509:10014-10019
    [16]DAI Shen-Hua, LIU Yun-Fei, LU Yi-Nong. Preparation of Eu3+ doped (Y,Gd)2O3 flowers from (Y,Gd)2(CO3)3-nH2O flowerlike precursors:Microwave hydrothermal synthesis, growth mechanism and luminescence property [J]. Journal of colloid and interface science.2010,349(1):34-40
    [I]Kang, Y. C. Kim E. J, Lee D.Y., et al., High brightness LaPO4:Ce,Tb phosphor particles with spherical shape[J]. Journal of Alloys and Compounds,2002,347:266-270.
    [2]F. Duault, M. Junker, P. Grosseau, et al. Effect of different fluxes on the morphology of the LaPO4:Ce,Tb phosphor[J]. Powder Technology,2005,154 (2-3):132-137.
    [3]S. Oshio, K. Kitamura, T. Shigeta, S. et al. Firing technique for preparing a BaMgAl10O17:Eu2+ phosphor with controlled particle shape and size[J]. Journal of The Electrochemical Society,1999,146:392-399.
    [4]W. van Schaik, S. Lizzo, W. Smit, et al., Influence of impurities on the luminescence quantum efficiency of (La,Ce,Tb)PO4[J]. Journal of The Electrochemical Society 140 (1993) 216-222.
    [5]刘行仁,王晓君.灯用稀土正磷酸盐绿色荧光粉[J].中国照明电器,1994,(5):1.
    [6]C.Buehler and C.Feldmann, Microwave-Assisted Synthesis of Luminescent LaPO4:Ce,Tb Nanocrystals in Ionic Liquids[J]. Angew.Chem.,Int.Ed.,2006,45,4864.
    [7]T.Justel, J.C.Krupa,D.U.Wiechert, VUV spectroscopy of luminescent materials for plasma display panels and Xe discharge lamps[J]. J.Lumin.2001,93 (3),179.
    [8]K.Riwotzki, H.Meyssamy, H.Schnablegger. A.Kornowski and M.Haase, Liquid-Phase Synthesis of Colloids and Redispersible Powders of Strongly Luminescing LaPO4:Ce,Tb Nanocrystals[J]. Angew.Chem.,Int.Ed,2001,40,573.
    [9]Phosphor Research Society (Japan.), Phosphor Handbook, CRC Press, Boca Raton,1999.
    [10]N. Arul Dhas, K.C. Patil, Synthesis of AlPO4, LaPO4 and KTiOPO4 by Flash Combustion[J]. J. Alloys Compd.1993,202,137.
    [11]Y. Fujishiro, H. Ito, T. Sato, A. Okuwaki, Synthesis of Monodispersed LaPO4 Particles Using the Hydrothermal Reaction of an La(EDTA)-Chelate Precursorand Phosphate Ions.[J]. J. Alloys Compd.1997,252,.103.
    [12]Aksana Zharkouskaya, Claus Feldmann, Klaus Trampert, Wolfgang Heering, Uli Lemmer. Ionic Liquid Based Approach to Luminescent LaPO4:Ce,Tb Nanocrystals:Synthesis, Characterization and Application[J]. European Journal of Inorganic Chemistry, 2008(6):873-877.
    [13]M. Heike, R. Karsten, K. Andrew, N. Sabine, H. Markus, Wet-Chemical Synthesis of Doped Colloidal Nanomaterials:Particles and Fibers of LaPO4:Eu, LaPO4:Ce, and LaPO4:Ce,Tb[J]. Adv. Mater.1999,11:840.
    [14]X. F Hu, S.R Yan,L. Ma, G.J Wan, J.G HuPreparation of LaPO4:Ce,Tb phosphor with different morphologies and their fluorescence properties[J]. Powder Technology.2009, 192(1),27-32.
    [15]Z.LChai, L Gao, C Wang, H J Zhang, R K Zheng, Paul A. Webley, H.T Wang., Synthesis of mesoporous LaPO4 nanostructures with controllable morphologies[J]. New J. Chem.,2009,33,1657-1662
    [1]Di W, Wang X, Chen B, et al. Preparation, characterization and VUV luminescence property of YPO4:Tb phosphor for a PDP[J]. Optical Materials,2005,27(8):1386-1390.
    [2]Moine B, Bizarri G Rare-earth doped phosphors:oldies or goldies[J]. Materials Science and Engineering:B,2003,105(1):2-7.
    [3]Hoppe H A. Recent developments in the field of inorganic phosphors[J]. Angewandte Chemie International Edition,2009,48(20):3572-3582.
    [4]Di W, Zhao X, Lu S, et al. Thermal and photoluminescence properties of hydrated YPO4:Eu3+ nanowires[J]. Journal of Solid State Chemistry,2007,180(9):2478-2484.
    [5]Kang Y C, Kim E J, Lee D Y, et al. High brightness LaPO4:Ce, Tb phosphor particles with spherical shape[J]. Journal of alloys and compounds,2002,347(1):266-270.
    [6]Moine B, Bizarri G. Why the quest of new rare earth doped phosphors deserves to go on[J]. Optical Materials,2006,28(1):58-63.
    [7]Parchur A K, Ningthoujam R S. Behaviour of electric and magnetic dipole transitions of Eu3+, 5Do→7F0 and Eu-0 charge transfer band in Li+ co-doped YPO4:Eu3+[J]. RSC Advances, 2012,2(29):10859-10868.
    [8]Mann S, Ozin G A. Synthesis of inorganic materials with complex form[J]. Nature,1996, 382(6589):313-318.
    [9]Manna L, Scher E C, Li L S, et al. Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods[J]. Journal of the American Chemical Society, 2002,124(24):7136-7145.
    [10]Kang Y C, Park S B. Morphology Control of BaMgAl10O17:Eu Particles:The Use of Colloidal Solution Obtained from Alkoxide Precursor in Spray Pyrolysis[J]. Journal of The Electrochemical Society,2000,147(2):799-802.
    [11]Li W, Lee J. Microwave-Assisted Sol-Gel Synthesis and Photoluminescence Characterization of LaPO4:Eu3+, Li+Nanophosphors[J]. The Journal of Physical Chemistry C,2008,112(31): 11679-11684.
    [12]Boakye E E, Mogilevsky P, Hay R S. Synthesis of nanosized spherical rhabdophane particles[J]. Journal of the American Ceramic Society,2005,88(10):2740-2746.
    [13]Wuled Lenggoro I, Xia B, Mizushima H, et al. Synthesis of LaPO4:Ce, Tb phosphor particles by spray pyrolysis[J]. Materials Letters,2001,50(2):92-96.
    [14]吴雪艳,尤洪鹏,曾小青,等.共沉淀法合成稀土正磷酸盐(La,Gd)PO4:RE3+(RE=Eu,Tb)及其真空紫外光谱特性[J].高等学校化学学报,2003,24(1):1-4.
    [15]赖华生,陈宝玖,许武,等.Dy3+/Tm3+共掺杂钒磷酸钇的共沉淀法合成及光谱性质[J].发光学报,2005,26(3):354-358.
    [16]孟献丰,李磊,陆叶.LaPO4:Ce, Tb荧光粉的制备及性能研究[J].稀有金属材料与工程,2008,37(A01):425-427.