泛素连接酶SIE3在百脉根结瘤信号转导中功能及作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
豆科植物与根瘤菌之间的根瘤共生(RNS, root nodule symbiosis)固氮系统是自然界中氮素最有效和经济的来源,在农业与生态学方面具有十分重要的意义。共生体根瘤的形成是紧密协调调控根瘤菌侵染和根瘤器官发生的一个过程,同时伴随一系列的信号转导,其中最重要的就是结瘤因子信号转导。近十年来,以模式豆科植物苜蓿(Medicago truncatula)和百脉根(Lotus japonicus)为材料,在宿主植物中鉴定出一系列与结瘤因子信号转导相关的基因,初步建立了共生信号转导模式图。其中百脉根共生受体样激酶(symbiosis receptor-like kinase, SymRK)是结瘤因子信号转导途径中很重要的一个组分,决定了根瘤菌能否进入植物体内。但是关于它是怎样接收细菌信号以及如何把信号传递下去,目前知之甚少。本研究通过酵母双杂交技术,以SymRK为诱饵筛选百脉根AD-cDNA文库,分离到与SymRK相互作用的蛋白SIE3。SIE3属于最近发现的含CTLH/CRA/RING结构域的新的蛋白家族,在植物中普遍存在,但是这类蛋白的功能目前还不是很清楚。我们主要从以下几个方面对SIE3进行了探索性的研究:
     1.通过拼接2个EST表达序列标签Lj-G0027263与Lj-G0032470及同源蛋白比对分析确定SIE3的全长编码序列,然后通过RT-PCR的方法扩增得到其全长cDNA。SIE3开放读码框包含1161个核苷酸,编码的蛋白质由387个氨基酸残基组成。蛋白质序列分析显示SIE3含有三个典型的结构域:CTLH结构域、RanBPM-CRA结构域和RING-finger结构域,其中RING finger结构域是一个特化的C3HC4型RING-finger,即属于一种RING-S/T型RING-finger。三维结构分析表明,SIE3主要以反向平行的二聚体形式存在,并且在酵母中可以自身相互作用。酵母双杂交研究结果表明,全长SIE3与SymRK-PK以及SymRK-EC之间都存在相互作用,并且SIE3蛋白中的RING finger结构域是SIE3与SymRK相互作用所必须的。通过双分子荧光互补(BIFC)以及免疫共沉淀技术证实了SIE3与SymRK的相互作用且主要存在于细胞膜上。
     2.泛素连接酶活性研究表明,当泛素活化酶E1和泛素结合酶E2及泛素存在条件下,体外检测到SIE3结合多聚泛素化链后的一系列高分子量蛋白带,说明SIE3具有很强的泛素连接酶活性。通过农杆菌侵染在烟草叶片中共表达SIE3与SymRK,在烟草细胞内检测SIE3连接酶活性。当SIE3存在时,发现SymRK被泛素化修饰的高分子量蛋白带明显增多,由此证实SIE3在体内具有介导SymRK泛素化修饰的功能。同时,体内及半体外泛素化降解分析表明,SIE3不能介导SymRK蛋白泛素化降解,说明SIE3介导SymRK泛素化修饰后行使的是非蛋白泛素化降解功能,具体的机制需要进一步深入研究。
     3. SIP1(SymRK interacting protein1)是一个ARID类转录因子,能特异的结合NIN的启动子。其蛋白极不稳定,在烟草叶片中表达的蛋白主要是通过泛素化途径降解。酵母双杂交研究结果表明SIE3能与SIP1相互作用,而且SIE3-N端及SIE3-C端都参与了两者之间的相互作用。进一步通过BIFC的方法证实了两者在植物中的相互作用并发生在细胞膜与细胞核上。烟草体内以及半体外泛素化降解实验表明SIE3能促进SIP1的泛素化降解,并且SIE3同源二聚体在促进SIP1的泛素化降解中不断增加。由此表明SIE3同源二聚体可能是促进SIP1泛素化降解所必须的,且SIP1可能是SIE3除SymRK外的另一个泛素化底物。
     4. Real-time RT-PCR研究结果表明SIE3基因在百脉根中呈组成型表达,接种的根中表达量最高,成熟的瘤中表达量最低。在结瘤过程中,接种根瘤菌6天后,根中表达量明显上升,并且10天稳定在较高水平的表达,该结果表明在结瘤早期SIE3基因受结瘤因子诱导表达。通过农杆菌侵染洋葱表皮细胞进行亚细胞定位,发现SIE3定位在细胞膜和细胞核上,少量存在于细胞质中。进一步通过毛根转化以及烟草叶片瞬时表达,在百脉根以及烟草叶片中观察到SIE3同样的定位现象。
     5.利用超表达和RNAi干扰技术,研究了SIE3泛素连接酶在百脉根中的共生功能。其研究结果表明,当SIE3超表达后,结瘤数明显增多。而沉默SIE3后,根瘤数显著减少,侵染率也大大降低。进一步通过检测SIE3RNAi后转基因植株中结瘤素基因NIN, ENOD40-2与Lb的表达情况,发现NIN与ENOD40-2基因的表达被抑制了,而对Lb表达没有受影响,表明SIE3主要是在结瘤的早期阶段发挥功能。
The root nodule symbiosis (RNS) between legume plants and rhizobia is the most efficient and productive source of nitrogen fixation, and has critical importance in agriculture and mesology. Nodule symbiosis formation is a tightly regulated process that coordinates the activation of developmental mechanisms to synchronize bacterial infection and organ development and is accompanied by a series of signal transduction. Nod factor signaling is an essential element in the establishment of the symbiosis. During the past decade, a lot of genes have been identified from various symbiotic mutants of the two model legumes:Lotus japonicus and Medicago truncatula. A signaling pathway necessary for Nod factor signal transduction was revealed by genetic dissection of nodulation. The symbiosis receptor kinase, SymRK, is indispensable for rhizobial signaling cascade in legumes and may function at the decision rhizobial enter the plants whether or not. However, little is known about how SymRK receive and transduce the NF signal to downstream components. In this study, using SymRK-EC as a bait to screen a Lotus japonicus AD-cDNA library, we identified a SymRK-interacting E3ligase (SIE3). SIE3represents a novel protein family of containing the CTLH, RanBPM-CRA and RING domains, which are conserved in higher plants with no known biological function till now. The exploratory study of SIE3was mainly focus on the following several aspects in this study.
     1. According to the two EST clones Lj-G0027263and Lj-G0032470, and the peptide sequence homology alignment analysis of SIE3, the reconstituted full-length coding region of SIE3was identified. Then we designed primers according to the reconstituted full-length coding region and amplified its cDNA using RNA isolated from L. japonicus roots inoculated with M. loti. The1,161-bp coding region encodes387amino acids. The peptide sequence analysis showed that SIE3containing a CTLH (C-terminal to LisH) motif, a RanBPM-CRA domain and a RING (Really Interesting New Gene) finger domain. The RING finger in SIE3is a degenerated type of C3HC4RING finger, and it belongs to the RING-S/T variant. SIE3exists as a reverse parallel homodimer and the dimerization of SIE3could be detected when expressed in yeast cells. Deletion analysis demonstrated that both SymRK-EC and SymRK-PK can interact with SIE3in yeast, and the RING domain is nessary for the interaction between SIE3and SymRK. BIFC and Co-IP assays showed that SIE3can interact with SymRK in plant and the interaction happens in the plasma membrane.
     2. The study of the ubquitin ligase activity of SIE3showed that in the presence of wheat (Triticum aestivum) E1activating enzyme, human E2(UBCh5b) conjugating enzyme and Arabidopsis ubiquitin. SIE3was converted to a mixture of high-molecular weight ubiquitinated protein products, suggesting that SIE3has great ubquitin ligase activity. The assay of detecting the SIE3ligase activity in tobacco cells by co-expression in tobacco leaf cells via agroinfiltration showed that the intensity of the SymRK poly-ubiquitinated products were much stronger in the presence of SIE3. These results suggested that SIE3could mediate the ubiquitination of SymRK in vivo. In vivo and in semi-in-vivo assays demonstrated that SIE3can not promote the ubquitin-dependant degradation of SymRK. It means that there exist a nonproteolytic functions of SIE3-mediated ubiquitination of SymRK, while the detail regulation mechanism need to be further studied.
     3. SIP1(SymRK interacting protein1) is a ARID transcription factor, can bind specifically to the nodule inception (NIN) promoter. SIP1protein can be easily degradated, and the degradation of SIP1mainly takes place via the ubiquitination pathway rather than another pathway in N. benthamiana. SIE3can interact with SIP1in yeast, and the deletion analysis showed that both SIE3-N and SIE3-C are nessary for the interaction between SIE3and SIP1. Further more, BIFC assay showed that SIE3can interact with SIP1in plant and the interaction happens in the plasma membrane and nuclei. In vivo and in semi-in-vivo assays demonstrated that SIE3can promote the ubquitin-dependant degradation of SIP1, and the homodimer form of the SIE3-GFP protein was increased with SIP1degradation in SIP1protein semi-in-vivo degradation assay. So SIE3homodimer may be nessary for promoting SIP1degradation and SIP1may be another ubquitination substrate of SIE3except SymRK.
     4. Real-time RT-PCR results showed that the SIE3mRNA was present in all tested tissues of L. japonicus plants, Rhizobium-inoculated roots with developing nodules were found to have the highest expression level of SIE3mRNA. The lowest expression was found in mature nodules. During the nodulation period, the expression of SIE3was elevated6days after rhizobial infection and stay at high levels10days post inoculation. These observations demonstrated that the expression of SIE3is induced by Nod factor in the early state of nodulation. SIE3-GFP was expressed in transgenic onion (Allium cepa) epidermal cells by agroinfiltration, and its subcellular localization was found in both the nuclei and plasma membrane, less in cytoplasm. The same subcellular localization could be found in transgenic hairy roots of L. japonicas and transgenic N. benthamiana leaves by hairy root transformation and transient expression in tobacco leaves.
     5. Overexpression and RNA interference technologies were used to study the symbiotic function of SIE3ubquitin ligase in Lotus japonicas. And the results showed that Overexpression of SIE3promoted nodulationin transgenic hairy roots. Whereas down-regulation of SIE3transcripts by RNA interference (RNAi) inhibited infection thread development and nodule organogenesis. Through further investigate the expression level of NIN, ENOD40-2and Lb mRNAs in SIE3-RNAi transgenic hairy roots, we found that the expression levels of these genes except Lb were reduced drastically as compared with those in the control hairy roots. These results demonstrate a role of SIE3in the early events of nodulation.
引文
1. Anderson CM, Wagner TA, Perret M, He ZH, He D, Kohorn BD. WAKs:cell wall-associated kinases linking the cytoplasm to the extracellular matrix. Plant Mol Biol,2001,47(1-2):197-206
    2. Andriankaja A, Boisson-Dernier A, Frances L, Sauviac L, Jauneau A, Barker DG, de Carvalho-Niebel F. AP2-ERF transcription factors mediate Nod factor dependent Mt ENOD11 activation in root hairs via a novel cis-regulatory motif. Plant Cell,2007,19:2866-2885
    3. Ane JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GE, Ayax C, Levy J, Debelle F, Baek JM, Kalo P, Rosenberg C, Roe BA, Long SR, Denarie J, Cook DR. Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science,2004,303:1364-1367
    4. Aravind L, Koonin EV. The U box is a modified RING finger-a common domain in ubiquitination. Curr Biol,2000,10:132-4
    5. Indrasumunar A, Gresshoff PM. Evolutionary duplication of lipo oligochitin-like receptor genes in soybean differentiates their function in cell division and cell invasion. Plant Signal Behav, 2011,6(4):534-537
    6. Arrighi JF, Barre A, Ben Amor B, Bersoult A, Soriano LC, Mirabella R, de Carvalho-Niebel F, Journet EP, Gherardi M, Huguet T, Geurts R, Denarie J, Rouge P, Gough C. The Medicago truncatula lysin [corrected] motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol,2006,142:265-279
    7. Becraft PW, Stinard PS, McCarty DR. CRINKLY4:A TNFR-like receptor kinase involved in maize epidermal differentiation. Science,1996,273(5280):1406-1409
    8. Bellon SF, Rodgers KK, Schatz DG, Coleman JE, Steitz TA. Crystal structure of the RAG1 dimerization domain reveals multiple zinc-binding motifs including a novel zinc binuclear cluster. Nat Struct Biol,1997,4:586-91
    9. Bochtle M, Ditzel L, Grou M, Hartmann C, Huber R. The proteasome. Annu Rev Biophys Biomol Struct,1999,28:295-317
    10. Borisov AY, Madsen LH, Tsyganov VE, Umehara Y, Voroshilova VA, Batagov AO, Sandal N, Mortensen A, Schauser L, Ellis N, Tikhonovich IA, Stougaard J. The Sym35 gene required for root nodule development in pea is an ortholog of Nin from Lotus japonicus. Plant Physiol,2003, 131(3):1009-1017
    11. Broghammer A, Krusell L, Blaise M, Sauer J, Sullivan JT, Maolanon N, Vinther M, Lorentzen A, Madsen EB, Jensen KJ, Roepstorff P, Thirup S, Ronson CW, Thygesen MB, Stougaard J. Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. PNAS,2012,109:13859-13864
    12. Brzovic PS, Rajagopal P, Hoyt DW, King MC, Klevit RE. Structure of a BRCA1-BARD1 heterodimeric RING-RING complex. Nat Struct Biol,2001,10:833-7
    13. Buchwald G, van der Stoop P, Weichenrieder O, Perrakis A, van Lohuizen M, Sixma TK. Structure and E3-ligase activity of the Ring-Ring complex of polycomb proteins Bmil and Ring1b. EMBO J,2006,25:2465-74
    14. Canales C, Bhatt AM, Scott R, Dickinson H. EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol,2002,12(20):1718-1727
    15. Cao XR, Lill NL, Boase N, Shi PP, Croucher DR, Shah HB, Qu J, Sweezer EM, Place T, Kirby PA, Daly RJ, Kumar S, Yang BL. Nedd4 controls animal growth by regulatingl GF-1 signaling. Sci Signal,2008,1(38):ra5
    16. Capoen W, Goormachtig S, De-Rycke R, Schroeyers K, Holsters M. SrSymRK, a plant receptor essential for symbiosome formation. Proc. Natl Acad. Sci. USA,2005,102:10369-10374
    17. Catoira R, Galera C, de-Billy F, Penmetsa RV, Journet EP, Maillet F, Rosenberg C, Cook D, Gough C, Denarie J. Four genes of Medicago truncatula controlling components of a Nod factor transduction pathway. Plant Cell,2000,12:1647-1665
    18. Chang C, Schaller GE, Patterson SE, Kwok SF, Meyerowitz EM, Bleecker AB. The TMK1 gene from Arabidopsis codes for a protein with structural and biochemical characteristics of a receptor protein kinase. Plant Cell,1992,4(10):1263-1271
    19. Chen K, Samovski D, Srikanth P, Wainszelbaum MJ, Charron AJ, Liu JL, Lange JJ, Chen P, Pan ZQ, Su X, Stahl PD. Ubiquitination and Degradation of the HominoidSpecificOncoprotein TBC1D3 is Mediated by CUL7 E3 Ligase. PLoS ONE,2012,7(9):e46485
    20. Chen T, Zhu H, Ke DX, Cai K, Wang C, Gou HL, Hong ZL, Zhang ZM. A MAP kinase kinase interacts with SymRK and regulates nodule organogenesis in Lotus japonicus. Plant Cell,2012,2: 823-838
    21. Chen ZJ, Sun LJ. Nonproteolytic functions of ubiquitin in cell signaling. Molecular Cell,2009, 33(3):275-286
    22. Christos CT, Spyroulias GA. RING Finger E3 Ubiquitin Ligases:Structure and Drug Discovery. Current Pharmaceutical Design,2009,15:3716-31
    23. Clark SE, Williams RW, Meyerowitz EM. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell,1997,89(4):575-585
    24. Clark SE, Running MP, Meyerowitz EM. CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development,1993,119(2):397-418
    25. Claus Schwechheimer. Understanding gibberellic acid signaling-are we there yet? Current Opinion in Plant Biology,2008,11:9-15
    26. Clay NK, Nelson T. VH1, a provascular cell-specific receptor kinase that influences leaf cell patterns in Arabidopsis. Plant Cell,2002,14(11):2707-2722
    27. Coscoy L, Ganem D. PHD domains and E3 ubiquitin ligases:Viruses make the connection. Trends Cell Biol,2003,13:7-12
    28. Den Herder G, De Keyser A, De Rycke R, Rombauts S, Van deVelde W, Clemente MR, Verplancke C, Mergaert P, Kondorosi E, Holsters M, Goormachtig S. Seven in absentia proteins affect plant growth and nodulation in Medicago truncatula. Plant Physiol,2008,148:369-82
    29. Den Herder G, Yoshida S, Antolin-Llovera M, Ried M, Parniske M. Lotus japonicus E3 ligase SEVEN IN ABSENTIA 4 destabilizes the symbiosis receptor-like kinase SYMRK and negatively regulates rhizobial infection. Plant Cell,2012,4:1691-707
    30. Denarie J, Cullimore J. Lipo-oligosaccharide nodulation factors:a minireview new class of signaling molecules mediating recognition and morphogenesis. Cell,1993,74:951-954
    31. Desalle, Pagano M. Regulation of the G1 to S transition by the ubiquitin pathway. Febs Letters, 2001,490:179-189
    32. Deshaies RJ, Joazeiro CA. RING domain E3 ubiquitin ligases. Annu Rev Biochem,2009,78: 399-434
    33. Dharmasiri S, Estelle M. The role of regulated protein degradation in auxin response. Plant Mol Biol,2002,49 (3-41:401-409)
    34. Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P, Kiss GB. A receptor kinase gene regulating symbiotic nodule development. Nature,2002,417(6892):962-966
    35. Fang S, Weissman AM. A field guide to ubiquitylation. Cell Mol. Life Sci,2004,61:1546-1561
    36. Felle HH, Kondorosi E, Kondorosi A, Schultze M. Elevation of the cytosolic free [Ca2+] is indispensable for the transduction of the nod factor signal in alfalfa. Plant Physiol,1999,121: 273-279
    37. Feuillet C, Schachermayr G, Keller B. Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J,1997,11(1):45-52
    38. Franssen HJ, Vijn I, Yang WC, Bisseling T. Developmental aspects of the Rhizobium-legume symbiosis. Plant Mol Biol,1992,19(1):89-107
    39. Garrido C, Brunet M, Didelot C, Zermati Yj, Schmitt E, Kroemer G. Heat shock proteins27 and 70 anti-apoptotic proteins with tumorigenic properties. Cell Cycle,2006,5(22):2592-2601
    40. Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Peret B, Laplaze L, Franche C, Parniske M, Bogusz D. SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria. Proc Natl Acad Sci USA,2008,105:4928-4932
    41. Goring DR, Rothstein SJ. The S-locus receptor kinase gene in a self-incompatible Brassica napus line encodes a functional serine/threonine kinase. Plant Cell,1992,4(10):1273-1281
    42. Gomez-Gomez, Boller. FLS2:an leucine-rich repeat receptor-like kinase in volved in the perception of bacterial ellicitor flagellin in Arabidopsis. Mol. Cells,2000,5:1003-1011
    43. Groth M, Takeda N, Perry J, Uchida H, Draxl S, Brachmann A, Sato S, Tabata S, Kawaguchi M, Wang TL, Parniske M. NENA, a Lotus japonicus homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development. Plant Cell,2010,22:2509-2526
    44. Gu T, Mazzurco M, Sulaman W, Matias DD, Goring DR. Binding of an arm repeat protein to the kinase domain of the S-locus receptor kinase. Proc. Natl Acad. Sci. USA,1998,95:382-387
    45. Haglund K, Dikic I. Ubiquitylation and cell signaling. The EMBO Journal,2005,2 (19) 3353-3359
    46. Hardtke CS, Gohda K, Osterlund MT, Oyama T, Okada K, Deng XW. HY5 stability and activity in Arabidopsis is regulated by phosphorylation in its COP1 binding domain. Embo Journal,2000, 19:4997-5006
    47. Hatakeyama S, Yada M, Matsumoto M, Ishida N, Nakayama KI. Ubox proteins as a new family of ubiquitin-protein ligases. JBiol Chem,2001,276:33111-20
    48. He J, Benedito VA, Wang M, Murray JD, Zhao PX, Tang Y, Udvardi MK. The Medicago truncatula gene expression atlas web server. BMC Bioinformatics,2009,10:441
    49. Herrera FJ, Triezenberg SJ. Molecular Biology:What Ubiquitin Can Dispatch Do for Transcription. Current Biology,2004,14(15):622-624
    50. Hicke L. Gettin' down with ubiquitin:turning off cell-surface receptors, transporters and channels. Trends Cell Biol,1999,9:107-112
    51. Horvath B, Yeun LH, Domonkos A, Halasz G, Gobbato E, Ayaydin F, Miro K, Hirsch S, Sun J, Tadege M, Ratet P, Mysore KS, Ane JM, Oldroyd GE, Kalo P. Medicago truncatula IPD3 is a member of the common symbiotic signaling pathway required for rhizobial and mycorrhizal symbioses. Mol Plant Microbe Interact,2011,24:1345-1358
    52. Hudmon A, Schulman H. Neuronal Ca2+/calmodulin-dependent protein kinase Ⅱ:the role of structure and autoregulation in cellular function. Annu Rev Biochem,2002,71:473-510
    53. Hymowitz SG, Wertz IE. A20:from ubiquitin editing to tumour suppression. Cancer,2010,10(5): 332-341
    54. Imaizumi-Anraku H, Takeda N, Kawaguchi M, Parniske M, Hayashi M, Kawasaki S. Host genes involved in activation and perception of calcium spiking. Plant Cell Physiol,2005,46:S5-S5
    55. Jin P, Guo T, Becraft PW. The maize CR4 receptor-like kinase mediates a growth factor-like differentiation response. Genesis,2000,27(3):104-116
    56. Joazeiro CA, Weissmna AM. RING finger proteins:mediators of ubiquitn iligase activity. Cell, 2000,102(5):549-552
    57. Kalo P, Gleason C, Edwards A, Marsh J, Mitra RM, Hirsch S, Jakab J, Sims S, Long SR, Rogers J, Kiss GB, Downie JA, Oldroyd GE. Nodulation signaling in legumes requires NSP2, a MEMBER of the GRAS family of transcriptional regulators. Science,2005,308:1786-1789
    58. Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quistgaard EM, Miwa H, Downie JA, James EK, Felle HH, Haaning LL, Jensen TH, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J. A nucleoporin is required forinduction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Natl Acad Sci USA,2006,103:359-364
    59. Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M., Tabata S. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res,2002,9:189-197
    60. Kang DM, Chen J, Wong J, Fang GW. The check point protein Chfrisa ligase that ubiquitinates Plkl and inhibits Cdc2 at the G2 to M transition. J Cell Biol,2002,156(2):249-259
    61. Kang H, Zhu H, Chu X, Yang Z, Yuan S, Yu D, Wang C, Hong Z, Zhang Z. A novel interaction between CCaMK and a protein containing the Scythe_N ubiquitin-like domain in Lotus japonicus. Plant Physiol,2011,155:1312-1324
    62. Kee Y, Huibregtse JM. Regulation of catalytic activities of HECT ubiquitin ligases. Biochem Biophys Res Commnu,2007,354(2):329-333
    63. Kevei Z, Lougnon G, Mergaert P, Horvath GV, Kereszt A, Jayaraman D, Zaman N, Marcel F, Regulski K, Kiss GB, Kondorosi A, Endre G, Kondorosi E-Ane JM.3-Hydroxy-3-methylglutaryl coenzyme a reductase 1 interacts with NORK and is crucial for nodulation in Medicago truncatula. Plant Cell,2007,19:3974-3989
    64. Kim JM, Cho EN, Kwon YE, Bae SJ, Kim M, Seol JH. CHFR functions as a ubiquitin ligase for HLTF to regulate its stability and functions. Biochem Biophys Res Commun,2010,395(4): 515-520
    65. Kim M, Cho HS, Kim DM, Lee JH, Pai HS. CHRK1, achitinase-related receptor-like kinase, interacts with NtPUB4, an armadillo repeat protein, in tobacco. Biochim. Biophys. Acta,2003, 1651:50-59
    66. Kiss E, Olah B, Kalo P, Morales M, Heckmann AB, Borbola A, Lozsa A, Kontar K, Middleton P, Downie JA. LIN, a novel type of U-box/WD40 protein, controls early infection by rhizobiain legumes. Plant Physiol,2009,151:1239-49
    67. Koepp DM, Harper JW, Elledge SJ. How the cyclin became a cyclin:regulated proteolysis in the cell cycle. Cell,1999,97:431-434
    68. Kouchi H, Imaizumi-Anraku H, Hayashi M, Hakoyama T, Nakagawa T, Umehara Y, Suganuma N, Kawaguchi M. How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. Plant Cell Physiol,2010,51:1381-1397
    69. Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G. The tumour suppressor CYLD negatively regulates NF-κB signaling by deubiquitination. Nature,2003, 424(6950):801-805
    70. Kumagai H, Kinoshita E, Ridge RW, Kouchi H. RNAi knock-down of ENOD40s leads to significant suppression of nodule formation in Lotus japonicus. Plant Cell Physiol,2006,47: 1102-1111
    71. Lahav G'Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ, Elowitz MB, Alon U. Dynamics of the p53-Mdm2 feed back loop in individual cells. Nat Genet,2004,36(2):147-150
    72. Lally D, Ingmire P, Tong HY, He ZH. Antisense expression of a cell wall-associated protein kinase, WAK4, inhibits cell elongation and alters morphology. Plant Cell,2001,13(6):1317-1331
    73. Lefebvre B, Timmers T, Mbengue M, Moreau S, Herve C, Toth K, Bittencourt-Silvestre J, Klaus D, Deslandes L, Godiard L, Murray JD, Udvardi MK, Raffaele S, Mongrand S, Cullimore J, Gamas P, Niebel A, Ott T. A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proc. Natl Acad. Sci. USA,2010,107:2343-2348
    74. Levy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ane JM, Lauber E, Bisseling T, Denarie J, Rosenberg C and Debelle F. A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science,2004,303:1361-1364
    75. Liew CW, Sun H, Hunter T, Day CL. RING domain dimerization is essential for RNF4 function. Biochem. J,2010,431:23-29
    76. Li J, Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell,1997,90(5):929-938
    77. Li J, Lease KA, Tax FE, Walker JC. BRS1, a serine carboxypeptidase, regulates BRI1 signaling in Arabidopsis thaliana. Proc Natl Acad Sci USA,2001,98(10):5916-5921
    78. Limpens E, Bisseling T. Signaling in symbiosis. Curr Opin Plant Biol,2003,6(4):343-350
    79. Limpens E, Mirabella R, Fedorova E, Franken C, Franssen H, Bisseling T, Geurts R. Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DMI2. Proc. Natl Acad. Sci. USA,2005,102:10375-10380
    80. Liou GG, Jane WN, Cohen SN, Lin NS, Lin-Chao S. RNA degradosomes exist in vivo in Escherichia coli as multicomponent complexes associated with the cytoplasmic membrane via the N-terminal region of ribonuclease E. Proc Natl Acad Sci USA,2001,98(1):63-68
    81. Liu L, Zhang Y, Tang S, Zhao Q, Zhang Z, Zhang H, Dong L, Guo H, Xie Q. An efficient system to detect protein ubiquitination by agroinfiltration in Nicotiana benthamiana. Plant J,2010,61: 893-903
    82. Liu SQ, Chen ZJ. Expanding role of ubiquitination in NF-κB signaling. Cell Research,2011, 21(1):6-21
    83. Li Z, Cao R, Wang M, Myers MP, Zhang Y, Xu RM. Structure of a Bmi-1-Ring1B polycomb group ubiquitin ligase complex. JBiol Chem,2006,281:20643-9
    84. Lord JM, Davey J, Frigerio L, Roberts LM. Endoplasmic reticulum-associated protein degradation. Semin Cell Dev Biol,2000,11:159-164
    85. Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM. RING fingers mediate ubiquitin-conjugating enzyme (E2)-de-pendent ubiquitination. Proc. Natl. Acad. Sci. USA,1999, 96:11364-11369
    86. Mace PD, Linke K, Feltham R, Schumacher FR, Smith CA,Vaux DL, Silke J, Day CL. Structures of the cIAP2 ring domain reveal conformational changes associated with E2 recruitment. J. Biol. Chem,2008,283:31633-40
    87. Maddika S, Sy SMH, Chen JJ. Functional interaction between Chfr and Kif22 controls genomic stability. JBiol Chem,2009,284(19):12998-13003
    88. Madsen EB, Antolin-Llovera M, Grossmann C, Ye J, Vieweg S, Broghammer A, Krusell L, Radutoiu S, Jensen ON, Stougaard J, Parniske M. Autophosphorylation is essential for the in vivo function of the Lotus japonicus Nod factor receptor 1 and receptor-mediated signalling in cooperation with Nod factor receptor 5. Plant J,2011,65:404-417
    89. Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature,2003,425:637-640
    90. Madsen LH, Tirichine L, Jurkiewicz A, Sullivan JT, Heckmann AB, Bek AS, Ronson CW, James EK, Stougaard J. The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat. Commun,2010,1:10
    91. Ma P, Liu J, He H, Yang M, Li M, Zhu X, Wang X. A viral suppressor P1/HC-Pro increases the GFP Gene expression in agrobacterium-mediated transient assay. Appl. Biochem. Biotechnol, 2008,158:243-252
    92. Markmann K, Giczey G, Parniske M. Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria. PLoS Biol,2008,6:e68
    93. Marsh JF, Rakocevic A, Mitra RM, Brocard L, Sun J, Eschstruth A, Long S R, Schultze M, Ratet P, Oldroyd GE. Medicago truncatula NIN is essential for rhizobial-independent nodule organogenesis induced by autoactive calcium/calmodulin-dependent protein kinase. Plant Physiol, 2007,144:324-335
    94. Matsubayashi Y, Ogawa M, Morita A, Sakagami Y. An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine. Science,2002,296(5572):1470-1472
    95. Maunoury N, Kondorosi A, Kondorosi E, Mergaert P. Cell biology of noduleinfection and development in Nitrogen-fixing Leguminous Symbioses. Springer,2008,153-189
    96. Mbengue M, Camut S, de Carvalho-Niebel F, Deslandes L, Froidure S, Klaus-Heisen D, Moreau S, Rivas S, Timmers T, Herve C. The Medicago truncatula E3 ubiquitin ligase PUB1 interacts with the LYK3 symbiotic receptor and negatively regulates infection and nodulation. Plant Cell, 2010,22:3474-88
    97. Middleton PH, Jakab J, Penmetsa RV, Starker CG, Doll J, Kalo P, Prabhu R, Marsh JF, Mitra RM, Kereszt A, Dudas B, VandenBosch K, Long SR, Cook DR, Kiss GB, Oldroyd GE. An ERF transcription factor in Medicago truncatula that is essential for Nod factor signal transduction. Plant Cell,2007,19:1221-1234
    98. Mitra RM, Gleason CA, Edwards A, Hadfield J, Downie JA, Oldroyd GE, Long SR. A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development:Gene identification by transcript-based cloning. Proc. Natl. Acad. Sci. USA,2004,101:4701-4705
    99. Miwa H, Sun J, Oldroyd GE, Downie JA. Analysis of calcium spiking using a cameleon calcium sensor reveals that nodulation gene expression is regulated by calcium spike number and the developmental status of the cell. Plant J,2006,48:883-894
    100. Mu JH, Lee HS, Kao TH. Characterization of a pollen-expressed receptor-like kinase gene of Petunia inflata and the activity of its encoded kinase. Plant Cell,1994,6(5):709-721
    101. Mukhopadhyay D, Riezman H. Proteasome-Independent functions of ubiquitin in endocytosis and signaling. Science,2007,315(26):201-205
    102. Nam KH, Li J. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell, 2002,110(2):203-212
    103. Ogunjimi AA, Briant DJ, Pece-Barbara N, Le Roy C, Di Guglielmo GM, Kavsak P, Rasmussen RK, Seet BT, Sicheri F, Wrana JL. Reuglation of Smurt2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol Cell,2005,19(3):297-308
    104. Oh YM, Kwon YE, Kim JM, Bae SJ, Lee BK, Yoo SJ, Chung CH, Deshaies RJ, Seol JH. Chfris linked to tumour metastasis through the down regulation of HDAC1. Nat Cell Biol,2009,11(3): 295-302
    105. Oldroyd GE, Downie JA. Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol,2004,5:566-576
    106. Oldroyd GE, Downie JA. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol,2008,59:519-546
    107. Oldroyd GE, Murray JD, Poole PS, Downie JA. The rules of engagement in the legume-rhizobial symbiosis. Annu. Rev. Genet,2011,45:119-144
    108. Orlowski RZ. The role of the ubiquitin-proteasome pathway in apoptosis. Cell Death Differ, 1999,6(4):303-313
    109. Ott T, van Dongen JT, Gunther C, Krusell L, Desbrosses G, Vigeolas H, Bock V, Czechowski T, Geigenberger P, Udvardi MK. Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Curr. Biol,2005,15:531-535
    110.Ovchinnikova E, Journet EP, Chabaud M, Cosson V, Ratet P, Duc G, Fedorova E, Liu W, den Camp RO, Zhukov V, Tikhonovich I, Borisov A, Bisseling T, Limpens E. IPD3 controls the formation of nitrogen-fixing symbiosomes in pea and Medicago spp. Mol Plant Microbe Interact, 2011,24:1333-1344
    111. Petroski MD, Deshaies RJ. Function and regulation of culling-RING ubiquitin ligases. Nat Rev Mol Cell Biol,2005,6(1):9-20
    112. Pickart CM. Mechanisms underlying ubquitination. Annu Rev Biochem,2001,70:503
    113. Plechanovova A, Jaffray EG, McMahon SA, Johnson KA, Navratilova I, Naismith JH, Hay RT. Mechanism of ubiquitylation by dimeric RING ligase RNF4. Nat Struct Mol Biol,2012, (9): 1052-1059
    114. Plemper RK, Wolf DH. Retrograde protein translocation:ERA Dication of secretory proteins in health and disease. Trends Biochem Sci,1999,24:266-270
    115.Pueppke SG. The genetic and biochemical basis for nodulation of legumes by rhizobia. Crit Rev Biotechnol,1996,16:1-51
    116. Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Gr(?)nlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature,2003,425:585-592
    117. Rape M, Jentsch S. Takingabite:proteasomal protein processing. Nat Cell Biol,2002,4(5): E113-E116
    118.Riely BK, Lougnon G, Ane JM, Cook DR. The symbiotic ion channel homolog DMI1 is localized in the nuclear membrane of Medicago truncatula roots. Plant J,2007,49:208-216
    119.Roberts NJ, Morieri G, Kalsi G, Rose A, Stiller J, Edwards A, Xie F, Gresshoff PM, Oldroyd GED, Downie A, Etzler ME. Rhizobial and Mycorrhizal Symbioses in Lotus japonicus Require Lectin Nucleotide Phosphohydrolase, Which Acts Upstream of Calcium Signaling. Plant Physiology,2013,161:556-567
    120. Rolfe M, Beer-Romero P, Glass S, Eckstein J, Berdo I, Theodoras A, Pagano M, Draetta G. Reconstitution of p53-ubiquitinylation reactions from puriifed componnest:the role of humna ubiquitin-conjugating enzyme UBC4 and E6-associated protein (E6AP). Proc Natl Acad Sci USA, 1995,92(8):3264-3268
    121. Ryu MY, Cho SK, Kim WT. The Arabidopsis C3H2C3-Type RING E3 Ubiquitin Ligase AtAIRP1 Is a Positive Regulator of an Abscisic Acid-Dependent Response to Drought Stress. Plant Physiology,2010,154:1983-1997
    122. Saito K, Yoshikawa M, Yano K, Miwa H, Uchida H, Asamizu E, Sato S, Tabata S, Imaizumi-Anraku H, Umehara Y, Szczyglowski K, Downie JA, Parniske M, Hayashi M,Kawaguchi M. NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell,2007,19:610-624
    123. Samuel MA, Mudgil Y, Salt JN, Delmas F, Ramachandran S, Chilelli A, Goring DR. Interactions between the S-domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in Arabidopsis. Plant Physiol,2008,147:2084-2095
    124. Santt O, Pfirrmann T, Braun B, Juretschke J, Kimmig P, Scheel H, Hofmann K, Thumm M, Wolf DH. The yeast GID complex, a novel ubiquitin ligase (E3) involved in the regulation of carbohydrate metabolism. Mol. Biol. Cell,2008,19:3323-3333
    125. Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S. Genome structure of the legume Lotus japonicus. DNA Res,2008, 15:227-239
    126. Schauser L, Roussis A, Stiller J, Stougaard J. A plant regulator controlling development of symbiotic root nodules. Nature,1999,402:191-195
    127. Schneiker-Bekel S, Wibberg D, Bekel T, Blom J, Linke B, Neuweger H, Stiens M, Vorholter FJ, Weidner S, Goesmann A, Puhler A, Schluter A. The complete genome sequence of the dominant Sinorhizobium meliloti field isolate SM11 extends the S. meliloti pan-genome. JBiotechnol,2011, 155:20-33
    128. Schwartz LM, Myer A, Kosz L, Engelstein M, Maier C. Activation of polyubiquitin gene expression during developmentally programmed cell death. Neuron,1990,5f4):411-419
    129. Schwechheimer C. Understanding gibberellic acid signaling-are we there yet? Current Opinion in Plant Biology,2008,11:9-15
    130. Searle IR, Men AE, Laniya TS, Buzas DM, Iturbe-Ormaetxe I, Carroll BJ, Gresshoff PM. Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science, 2003,299(5603):109-112
    131. Shearwin-Whyatt L, Dalton HE, Foot N, Kumar S. Regulation of functional diversity wihtin the Nedd4 family by accessory and adaptor proteins. Bioessays,2006,28(6):617-628
    132. Shembade N, Ma A, Harhaj EW. Inhibition of NF-κB signaling by A20 through disruption of ubiquitin enzyme complexes. Science,2010,327(5969):1135-1139
    133. Shimomura K, Nomura M, Tajima S, Kouchi H. LjnsRING, a novel RING finger protein, is required for symbiotic interactions between Mesorhizobium loti andLotus japonicus. Plant Cell Physiol,2006,47:1572-81.
    134. Schauser L, Roussis A, Stiller J, Stougaard J. A plant regulator controlling development of symbiotic root nodules. Nature,1999,402:191-195
    135. Shiu SH, Bleecker AB. Plant receptor-like kinase gene family:diversity, function, and signaling. Sci STKE,2001a,2001(113):RE22
    136. Shiu SH, Bleecker AB. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA,2001b,98(19):10763-10768
    137. Silva NF, Stone SL, Christie LN, Sulaman W, Nazarian KA, Burnett LA, Arnoldo MA, Rothstein SJ, Goring DR. Expression of the S receptor kinase in self-compatible Brassica napus cv Westar leads to the allele-specific rejection of self-incompatible Brassica napus pollen. Mol Genet Genomics,2001,265(3):552-559
    138. Smit P, Raedts J, Portyanko V, Debelle F, Gough C, Bisseling T, Geurts R. NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science,2005,308: 1789-1791
    139. Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu L H, Fauquet C, Ronald P. A receptor kinase-like protein encoded by the rice disease resistance gene Xa21.Science,1995,270(5243):1804-1806
    140. Stone SL, Hauksdo'ttir H, Troy A, Herschleb J, Kraft E, Calli J. Functional Analysis of the RING-Type Ubiquitin Ligase Family of Arabidopsis. Plant Physiology,2005,137:13-30
    141. Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M. A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature,2002,417(6892):959-962
    142. Strous GJ, Govers R. The ubiquitin-proteasome system and endocytosis. J Cell Sci,1999,112: 1417-1423
    143. Sun SC. Deubiquitylation and regulation of the immune response. Immunology,2008,8(7): 501-511
    144. Takasaki T, Hatakeyama K, Suzuki G, Watanabe M, Isogai A, Hinata K. The S receptor kinase determines self-incompatibility in Brassica stigma. Nature,2000,403(6772):913-916
    145. Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J. A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science,2007,315:104-107
    146. Torii KU, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier RF, Komeda Y. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell,1996,8(4):735-746
    147. Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G. CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature,2003,424(6950):793-796
    148. Ulrich HD, Walden H. Ubiquitin signalling in DNA replication and repair. Molecular Cell Biology,2010,11(7):479-489
    149. Vander-Kooi CW, Ohi MD, Rosenberg JA, Oldham ML, Newcomer ME, Gould KL, Chazin WJ. The Prp19 U-box crystal structure suggests a common dimeric architecture for a class of oligomeric E3 ubiquitin ligases. Biochemistry,2006,45:121-30
    150. Vijn I, das Nevas L, van Kammen A, Franssen H, Bisseling T. Nod factors and nodulation in plants. Science,1993,260:1764-1765
    151. Voinnet O, Rivas S, Mestre P, Baulcombe D. An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J, 2003,33:949-956
    152. Wais RJ, Galera C, Oldroyd G, Catoira R, Penmetsa RV, Cook D, Gough C, Denarie J, Long SR. Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula. Proc. Natl. Acad. Sci. USA,2000,97:13407-13412
    153. Walker SA, Viprey V, Downie JA. Dissection of nodulation signaling using pea mutants defective for calcium spiking induced by Nod factors and chitin oligomers. Proc. Natl. Acad. Sci. USA,2000,97:13413-13418
    154. Wang C, Zhu H, Jin LP, Chen T, Wang LX, Kang H, Hong Z, Zhang Z. Splice variants of the SIP1 transcripts play a role in nodule organogenesis in Lotus japonicas. Plant Mol Biol,2013, DOI:10.1007/s11103-013-0042-3
    155. Wang H, Ma LG, Li JM, Zhao HY, Deng XW. Direct Interaction of Arabidopsis Cryptochromes with COP1 in Light Control Development. Science,2001,294 (5540):154-158
    156. Wang X, Trotmna LC, Koppie T, Alimonti A, Chen Z, Gao Z, Wang J, Erdjument-Bromage H, Tempst P, Cordon-Cardo C, Pandolfi PP, Jiang X. NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell,2007,128(1):129-139
    157. Wang YS, Pi LY, Chen X, Chakrabarty PK, Jiang J, De Leon AL, Liu GZ, Li L, Benny U, Oard J, Ronald PC, Song WY. Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. Plant Cell,2006,18:3635-3646
    158. Welchman RL, Gordon C, Mayer RJ. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Molecular Cell Biology,2005,6(8):599-609
    159. Wertz IE, O'Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, Wu P, Wiesmann C, Baker R, Boone DL, Ma A, Koonin EV, Dixit VM. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signaling. Nature,2004,430(7000):694-699
    160. Yang J, Lin RC, Sullivan J, Hoecker U, Liu B, Xu L, Deng XW, Wang H. Light Regulates COP1-Mediated Degradation of HFR1, a Transcription Factor Essential for Light Signaling in Arabidopsis. Plant cell,2005,17:804-821
    161. Yang XJ. Multisite protein modification and intramolecular signaling. Oneogene,2005,24(10): 1653
    162. Yano K, Shibata S, Chen WL, Sato S, Kaneko T, Jurkiewicz A, Sandal N, Banba M, Imaizumi-Anraku H, Kojima T. CERBERUS, a novel U-box protein containing WD-40 repeats, is required for formation of the infection thread and nodule development in the legume-Rhizobium symbiosis. Plant J,2009,60:168-80
    163. Yano K, Yoshida S, Muller J, Singh S, Banba M, Vickers K, Markmann K, White C, Schuller B, Sato S, Asamizu E, Tabata S, Murooka Y, Perry J, Wang TL, Kawaguchi M, Imaizumi-Anraku H, Hayashi M, Parniske M. CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc Natl Acad Sci USA,2008,105:20540-20545
    164. Yin Q, Lin SC, Lamothe B, Lu M, Lo YC, Hura G, Zheng L, Rich RL, Campos AD, Myszka DG, Lenardo MI, Darnay BG, Wu H. E2 interaction and dimerization in the crystal structure of TRAF6. Nat. Struct. Mol. Biol,2009,16:658-666
    165. Yi Sun. E3 Ubiquitin Ligases as Cancer Targets and Biomarkers. Neoplasia,2006,8:645-654
    166. Yoshida S, Parniske M. Regulation of plant symbiosis receptor kinase through serine and threonine phosphorylation. J. Biol. Chem,2005,280:9203-9209
    167. Zhang M, Windheim M, Roe SM, Peggie M, Cohen P, Prodromou C, Pearl LH. Chaperoned ubiquity lation-crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIPUbc13-Uev1a complex. Mol Cell,2005,20:525-38
    168. Zhao DZ, Wang GF, Speal B, Ma H. The excess microsporocytes1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev,2002,16(15):2021-2031
    169. Zheng N. A closer look of the HECTic ubiquitin ligases. Structure,2003,11(1):5-6
    170. Zhu H, Chen T, Zhu M, Fang Q, Kang H, Hong Z, Zhang Z. A novel ARID DNA-binding protein interacts with SymRK and is expressed during early nodule development in Lotus japonicus. Plant Physiol,2008,148:337-347