核基质结合蛋白SATB2调控~Gγ和~Aγ珠蛋白基因表达和空间靠近
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真核基因表达调控是发生在细胞核内的一个复杂而精细的过程,对维持细胞乃至机体的正常生理功能起到至关重要的作用。其中,染色质水平的调控作为真核基因表达调控的一种重要方式日益受到人们的重视。核基质结合蛋白是一类重要的真核基因转录调控因子,它们定位到细胞核内的核基质结构上,与大量调控相关的转录因子和酶类形成复合物,并参与基因的活化或抑制。目前已经发现的核基质结合蛋白有很多,包括SAF-A, Cux/CDP, SATB1, SATB2等。其中,SATB1和SATB2是属于SATB家族的一类经典的核基质结合蛋白,它们可以结合到基因调控序列的AT富含区从而调控染色质的结构。
     珠蛋白基因簇的表达调控是研究真核基因转录调控的经典模型。人珠蛋白基因簇由上游的一系列超敏位点组成的基因座控制区(locus control region, LCR)和下游的胚胎期(ε)、胎儿期(γ)和成年期(β)珠蛋白基因组成。在珠蛋白基因簇活化时上游基因座控制区会与下游活性基因空间靠近形成活性染色质中心。已有研究表明SATB1在人β珠蛋白基因簇上有多个结合位点,并转录调节胚胎期珠蛋白基因的表达以及通过促进结合位点间的靠近来调控β珠蛋白基因簇的整体空间结构。
     在本研究中,我们利用人γ珠蛋白基因启动子的AT富含区作为探针,捕获到核基质结合蛋白SATB2的结合。这段序列曾被发现具有结合SATB1的能力,但这种结合未在体内证实。进一步对SATB2的表达进行研究发现其在K562细胞和人脐血造血干细胞红系分化期间持续表达,并主要在小鼠发育早期阶段表达。
     通过体内和体外的结合实验,我们证实SATB2可以特异地结合在Gγ和Aγ珠蛋白基因的启动子上游区域且前者结合力较强。通过将Gγ和Aγ珠蛋白基因启动子区构建到报告基因的载体中进行实验,我们发现SATB2可以反式增强Gγ和Aγ启动子的活性。我们在K562细胞中分别过表达和干扰了SATB2蛋白,发现SATB2对γ珠蛋白基因起激活的作用。我们还检测了组蛋白修饰和RNA聚合酶Ⅱ的募集,发现染色质结构的变化与基因表达变化是一致的。我们进一步在人脐血来源的造血祖细胞中过表达和干扰了SATB2蛋白并诱导其向红系分化,证实了SATB2对γ珠蛋白基因的激活作用。
     我们进一步研究SATB2激活γ珠蛋白基因的分子机制。我们发现组蛋白乙酰化酶PCAF可以与SATB2相互作用并促进其反式激活能力,并被SATB2募集到γ珠蛋白基因启动子上。通过SATB2的串联亲和纯化实验我们发现SATB2与SATB1通过各自的PDZ蛋白区域相互作用,提示二者可能协同促进β珠蛋白基因簇的活性空间构象的组织。染色质构象捕获技术(chromosome conformation capture,3C)发现,SATB2可以促进Gγ和Aγ基因启动子区域的空间靠近,但并不影响其它元件所在染色质区域的空间靠近,说明SATB1和SATB2两个蛋白在β珠蛋白基因簇的调控中具有分工。ChIP-3C的实验证明这种空间靠近是SATB2蛋白介导的。进一步的蛋白质免疫共沉淀实验证明SATB2蛋白具有分子间自身相互作用,这种自我相互作用可能就是SATB2介导染色质靠近的原因。
     综上所述,我们的研究说明在红系细胞中,SATB2通过结合在Gγ和Aγ珠蛋白基因启动子区的AT富含区上,募集组蛋白乙酰化酶,促进丫珠蛋白基因的表达和染色质的活化,并促进Gγ和Aγ珠蛋白基因启动子区的空间靠近。本研究进一步丰富了SATB1介导的MAR元件空间靠近的结构,同时也为深入了解β珠蛋白基因簇活性染色质中心的结构提供了实验依据。
Eukaryotic gene transcriptional regulation is a complex and intricate nuclear process that is essential for normal physiological functions. Regulation to the chromatin structure presents an important level of eukaryotic gene regulation, and has attracted an ever-increasing attention. MAR binding proteins are important eukaryotic transcriptional regulators that specifically associate nuclear matrix and related transcriptional factors and enzymes, and many of them have been confirmed to globally affect gene activation and repression. Multiple MAR binding proteins have been found, including SAF-A, Cux/CDP, SATB1and SATB2. Notably, both SATB1and SATB2belong to the SATB protein family, and bind to AT-rich sequences for the regulation of chromatin structure.
     Globin gene locus is a typical model for studying eukaryotic gene regulation. Human β-globin locus is composed of upstreaming locus control region (LCR) with multiple hypersensitive sites, and downstreaming globin genes including the embryonic (ε), fetal (γ) and adult (β) globin genes. When β-globin gene cluster is activated, LCR and the active globin genes get in proximity and form active chromatin hub (ACH). We previously reported that SATB1binds to P-globin gene cluster at multiple sites, regulates chromatin conformation of the cluster through facilitating proximities of its binding sites, and specifically affects the expression of e-globin gene.
     In this study, we used AT-rich sequence in y-globin gene promoter as the probe, and captured MAR binding protein SATB2. This AT-rich sequence was reported to bind to SATB1in vitro, but not in vivo. We further identified that SATB2expressed consistently during the erythroid differentiation of K562cells and human umbilical cord CD34+cells, and that mSATB2expressed primarily in early murine developmental stage.
     Using ChIP and EMSA experiments, we proved that SATB2specifically bound to Gγ and Aγ-globin promoters with a preference to the former. SATB2trans-activated Gγ and Ay-globin promoters in luciferase reporter assay. Overexpression and knockdown experiments in K562cells also showed that SATB2promoted y-globin expression. Histone modifications and RNA polymerase II recruitment statues at γ-globin promoter are found consistent with alterations of y-globin expression. Further, we overexpressed and knockdown SATB2in human umbilical cord derived primary erythroid cells respectively, activation of y-globin by SATB2was also detected.
     Further studies on molecular mechanisms of SATB2facilitated y-globin activation identified histone acetylase PCAF as a SATB2associated protein that promotes the activity of SATB2. PCAF can also be recruited by SATB2to y-globin gene promoter. Tandom affinity purification assay was then performed, and we found that SATB2interacted with SATB1through their PDZ domains. This indicates that they cooperate in the regulation of chromatin conformation of β-globin gene cluster. Using chromosome conformation capture assay, we continued to identify that SATB2promoted physical proximity of Gy and Ay-globin promoter regions without influencing proximities of other regulatory elements. The observation argued that SATB1and SATB2differentiate in their particular roles in higher-order chromatin organization and regulation of P-globin gene cluster. ChIP-3C assay shows that this proximity is mediated by SATB2. Further co-IP assay shows that SATB2interacts with itself, provides a possibility that self-association of SATB2mediates y-globin gene specific chromatin association.
     In summary, our study shows that in erythroid cells, SATB2binds to the AT-rich regions of the Gy and Ay-globin gene promoters, facilitates their proximity and activates their chromatin structure by recruiting histone acetylase, and eventually promotes y-globin gene expression. This study further enriches SATB1mediated "inter-MAR association" structure, and provides experimental evidence for further understanding active chromatin hub of P-globin gene cluster.
引文
Agrelo, R., Souabni, A., Novatchkova, M., Haslinger, C., Leeb, M., Komnenovic, V., Kishimoto, H., Gresh, L., Kohwi-Shigematsu, T., Kenner, L., et al. (2009). SATB1 defines the developmental context for gene silencing by Xist in lymphoma and embryonic cells. Dev Cell 16,507-516.
    Bellamy, R. (1999). The natural resistance-associated macrophage protein and susceptibility to intracellular pathogens. Microbes Infect 1,23-27.
    Bulger, M., and Groudine, M. (1999). Looping versus linking:toward a model for long-distance gene activation. Genes Dev 13,2465-2477.
    Bulger, M., Sawado, T., Schubeler, D., and Groudine, M. (2002). Ch1Ps of the beta-globin locus:unraveling gene regulation within an active domain. Curr Opin Genet Dev 12,170-177.
    Bulger, M., van Doorninck, J.H, Saitoh, N., Telling, A., Farrell, C., Bender, M.A., Felsenfeld, G., Axel, R., and Groudine, M. (1999). Conservation of sequence and structure flanking the mouse and human beta-globin loci:the beta-globin genes are embedded within an array of odorant receptor genes. Proc Natl Acad Sci U S A 96,5129-5134.
    Cai, S., Han, H.J., and Kohwi-Shigematsu, T. (2003). Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat Genet 34,42-51.
    Cai, S., Lee, C.C., and Kohwi-Shigematsu, T. (2006). SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat Genet 38,1278-1288.
    Cao, A., and Moi, P. (2002). Regulation of the globin genes. Pediatr Res 51,415-421. Carmo-Fonseca, M. (2002). The contribution of nuclear compartmentalization to gene regulation. Cell 108, 513-521.
    Carter, D., Chakalova, L., Osborne, C.S., Dai, Y.F., and Fraser, P. (2002). Long-range chromatin regulatory interactions in vivo. Nat Genet 32,623-626.
    Case, S.S., Huber, P., and Lloyd, J.A. (1999). The gammaPE complex contains both SATB1 and HOXB2 and has positive and negative roles in human gamma-globin gene regulation. DNA Cell Biol 18,805-817.
    Chambeyron, S., and Bickmore, W.A. (2004). Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 18,1119-1130.
    Choong, M.L., Yang, H.H., and McNiece, I. (2007). MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis. Exp Hematol 35,551-564.
    Chung, J.H., Bell, A.C., and Felsenfeld, G. (1997). Characterization of the chicken beta-globin insulator. Proc Natl Acad Sci U S A 94,575-580.
    Crossley, M., and Orkin, S.H. (1993). Regulation of the beta-globin locus. Curr Opin Genet Dev 3,232-237.
    Cunningham, J.M., Purucker, M.E., Jane, S.M., Safer, B., Vanin, E.F., Ney, P.A., Lowrey, C.H., and Nienhuis, A.W. (1994). The regulatory element 3' to the A gamma-globin gene binds to the nuclear matrix and interacts with special A-T-rich binding protein 1 (SATB1), an SAR/MAR-associating region DNA binding protein. Blood 84,1298-1308.
    de Laat, W., and Grosveld, F. (2003). Spatial organization of gene expression:the active chromatin hub. Chromosome Res 11,447-459.
    Dickinson, L.A., Joh, T., Kohwi, Y, and Kohwi-Shigematsu, T. (1992). A tissue-specific MAR/SAR
    DNA-binding protein with unusual binding site recognition. Cell 70,631-645.
    Dobreva, G., Chahrour, M., Dautzenberg, M., Chirivella, L., Kanzler, B., Farinas, I., Karsenty, G., and Grosschedl, R. (2006). SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell 125,971-986.
    Dobreva, G., Dambacher, J., and Grosschedl, R. (2003). SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression. Genes Dev 17,3048-3061.
    Dorsett, D. (1999). Distant liaisons:long-range enhancer-promoter interactions in Drosophila. Curr Opin Genet Dev 9,505-514.
    Driscoll, M.C., Dobkin, C.S., and Alter, B.P. (1989). Gamma delta beta-thalassemia due to a de novo mutation deleting the 5'beta-globin gene activation-region hypersensitive sites. Proc Natl Acad Sci U S A 86, 7470-7474.
    Drissen, R., Palstra, R.J., Gillemans, N., Splinter, E., Grosveld, F., Philipsen, S., and de Laat, W. (2004). The active spatial organization of the beta-globin locus requires the transcription factor EKLF. Genes Dev 18, 2485-2490.
    Dundr, M., and Misteli, T. (2001). Functional architecture in the cell nucleus. Biochem J 356,297-310.
    Gaensler, K.M., Kitamura, M., and Kan, Y.W. (1993). Germ-line transmission and developmental regulation of a 150-kb yeast artificial chromosome containing the human beta-globin locus in transgenic mice. Proc Natl Acad Sci U S A 90,11381-11385.
    Galiova, G., Bartova, E., and Kozubek, S. (2004). Nuclear topography of beta-like globin gene cluster in IL-3-stimulated human leukemic K-562 cells. Blood Cells Mol Dis 33,4-14.
    Gong, H., Wang, Z., Zhao, G.W., Lv, X., Wei, GH., Wang, L., Liu, D.P., and Liang, C.C. (2009). SATB1 regulates beta-like globin genes through matrix related nuclear relocation of the cluster. Biochem Biophys Res Commun 383,11-15.
    Grosveld, F., van Assendelft, GB., Greaves, D.R., and Kollias, G (1987). Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell 51,975-985.
    Gui, C.Y., and Dean, A. (2001). Acetylation of a specific promoter nucleosome accompanies activation of the epsilon-globin gene by beta-globin locus control region HS2. Mol Cell Biol 21,1155-1163.
    Hanscombe, O., Whyatt, D., Fraser, P., Yannoutsos, N., Greaves, D., Dillon, N., and Grosveld, F. (1991). Importance of globin gene order for correct developmental expression. Genes Dev 5,1387-1394.
    Harju, S., McQueen, K.J., and Peterson, K.R. (2002). Chromatin structure and control of beta-like globin gene switching. Exp Biol Med (Maywood) 227,683-700.
    Herrscher, R.F., Kaplan, M.H., Lelsz, D.L., Das, C., Scheuermann, R., and Tucker, P.W. (1995). The immunoglobulin heavy-chain matrix-associating regions are bound by Bright:a B cell-specific trans-activator that describes a new DNA-binding protein family. Genes Dev 9,3067-3082.
    Jackson, D.A., Bartlett, J., and Cook, P.R. (1996). Sequences attaching loops of nuclear and mitochondrial DNA to underlying structures in human cells:the role of transcription units. Nucleic Acids Res 24, 1212-1219.
    Jarman, A.P., and Higgs, D.R. (1989). Sites of attachment to the nuclear scaffold in the human alpha and beta globin gene complexes. Prog Clin Biol Res 316B,33-45.
    Kiefer, C.M., Hou, C., Little, J.A., and Dean, A. (2008). Epigenetics of beta-globin gene regulation. Mutat Res 647,68-76.
    Kim, S.I., Bultman, S.J., Kiefer, C.M., Dean, A., and Bresnick, E.H. (2009). BRG1 requirement for long-range interaction of a locus control region with a downstream promoter. Proc Natl Acad Sci U S A 106, 2259-2264.
    Kingsley, P.D., Malik, J., Emerson, R.L., Bushnell, T.P., McGrath, K.E., Bloedorn, L.A., Bulger, M., and Palis, J. (2006). "Maturational" globin switching in primary primitive erythroid cells. Blood 107,1665-1672.
    Kioussis, D., Vanin, E., deLange, T., Flavell, R.A., and Grosveld, F.G. (1983). Beta-globin gene inactivation by DNA translocation in gamma beta-thalassaemia. Nature 306,662-666.
    Kohwi-Shigematsu, T., Maass, K., and Bode, J. (1997). A thymocyte factor SATB1 suppresses transcription of stably integrated matrix-attachment region-linked reporter genes. Biochemistry 36,12005-12010.
    Kramer, J.A., and Krawetz, S.A. (1996). Nuclear matrix interactions within the sperm genome. J Biol Chem 271,11619-11622.
    Kumar, P.P., Bischof, O., Purbey, P.K., Notani, D., Urlaub, H., Dejean, A., and Galande, S. (2007). Functional interaction between PML and SATB1 regulates chromatin-loop architecture and transcription of the MHC class I locus. Nat Cell Biol 9,45-56.
    Lettre, G., Sankaran, V.G., Bezerra, M.A., Araujo, A.S., Uda, M., Sanna, S., Cao, A., Schlessinger, D., Costa, F.F., Hirschhorn, J.N., et al. (2008). DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci U S A 105,11869-11874.
    Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M, Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., et al. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326,289-293.
    Lindenbaum, M.H., and Grosveld, F. (1990). An in vitro globin gene switching model based on differentiated embryonic stem cells. Genes Dev 4,2075-2085.
    Litt, M.D., Simpson, M., Gaszner, M, Allis, C.D., and Felsenfeld, G. (2001a). Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus. Science 293,2453-2455.
    Litt, M.D., Simpson, M, Recillas-Targa, F., Prioleau, M.N., and Felsenfeld, G. (2001b). Transitions in histone acetylation reveal boundaries of three separately regulated neighboring loci. Embo J 20,2224-2235.
    Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T.J. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389,251-260.
    Mager, J., and Bartolomei, M.S. (2005). Strategies for dissecting epigenetic mechanisms in the mouse. Nat Genet 37,1194-1200.
    McKnight, R.A., Shamay, A., Sankaran, L., Wall, R.J., and Hennighausen, L. (1992). Matrix-attachment regions can impart position-independent regulation of a tissue-specific gene in transgenic mice. Proc Natl Acad Sci U S A 89,6943-6947.
    Namciu, S.J., Blochlinger, K.B., and Fournier, R.E. (1998). Human matrix attachment regions insulate transgene expression from chromosomal position effects in Drosophila melanogaster. Mol Cell Biol 18, 2382-2391.
    Nickol, J.M., and Felsenfeld, G. (1988). Bidirectional control of the chicken beta-and epsilon-globin genes by a shared enhancer. Proc Natl Acad Sci U S A 85,2548-2552.
    Ostermeier, G.C., Liu, Z., Martins, R.P., Bharadwaj, R.R., Ellis, J., Draghici, S., and Krawetz, S.A. (2003). Nuclear matrix association of the human beta-globin locus utilizing a novel approach to quantitative real-time PCR. Nucleic Acids Res 31,3257-3266.
    Palstra, R.J., Tolhuis, B., Splinter, E., Nijmeijer, R., Grosveld, F., and de Laat, W. (2003). The beta-globin nuclear compartment in development and erythroid differentiation. Nat Genet 55,190-194.
    Patrinos, G.P., de Krom, M., de Boer, E., Langeveld, A., Imam, A.M., Strouboulis, J., de Laat, W., and Grosveld, F.G. (2004). Multiple interactions between regulatory regions are required to stabilize an active chromatin hub. Genes Dev 18,1495-1509.
    Pavan Kumar, P., Purbey, P.K., Sinha, C.K., Notani, D., Limaye, A., Jayani, R.S., and Galande, S. (2006). Phosphorylation of SATB1, a global gene regulator, acts as a molecular switch regulating its transcriptional activity in vivo. Mol Cell 22,231-243.
    Pikaart, M.J., Recillas-Targa, F., and Felsenfeld, G. (1998). Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes Dev 12, 2852-2862.
    Purbey, P.K., Singh, S., Kumar, P.P., Mehta, S., Ganesh, K.N., Mitra, D., and Galande, S. (2008). PDZ domain-mediated dimerization and homeodomain-directed specificity are required for high-affinity DNA binding by SATB1. Nucleic Acids Res 36,2107-2122.
    Ragoczy, T., Telling, A., Sawado, T., Groudine, M., and Kosak, S.T. (2003). A genetic analysis of chromosome territory looping:diverse roles for distal regulatory elements. Chromosome Res 11,513-525.
    Reitman, M., and Felsenfeld, G. (1990). Developmental regulation of topoisomerase Ⅱ sites and DNase I-hypersensitive sites in the chicken beta-globin locus. Mol Cell Biol 10,2774-2786.
    Romig, H., Fackelmayer, F.O., Renz, A., Ramsperger, U., and Richter, A. (1992). Characterization of SAF-A, a novel nuclear DNA binding protein from HeLa cells with high affinity for nuclear matrix/scaffold attachment DNA elements. EMBO J 11,3431-3440.
    Sankaran, V.G., Menne, T.F., Xu, J., Akie, T.E., Lettre, G., Van Handel, B., Mikkola, H.K., Hirschhorn, J.N., Cantor, A.B., and Orkin, S.H. (2008). Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11 A. Science 322,1839-1842.
    Sankaran, V.G., Xu, J., Ragoczy, T., Ippolito, G.C., Walkley, C.R., Maika, S.D., Fujiwara, Y., Ito, M., Groudine, M., Bender, M.A., et al. (2009). Developmental and species-divergent globin switching are driven by BCL11 A. Nature 460,1093-1097.
    Savarese, F., Davila, A., Nechanitzky, R., De La Rosa-Velazquez,1., Pereira, C.F., Engelke, R., Takahashi, K., Jenuwein, T., Kohwi-Shigematsu, T., Fisher, A.G., et al. (2009). Satbl and Satb2 regulate embryonic stem cell differentiation and Nanog expression. Genes Dev 23,2625-2638.
    Scheuermann, R.H., and Chen, U. (1989). A developmental-specific factor binds to suppressor sites flanking the immunoglobulin heavy-chain enhancer. Genes Dev 3,1255-1266.
    Schubeler, D., Francastel, C., Cimbora, D.M., Reik, A., Martin, D.I., and Groudine, M. (2000). Nuclear localization and histone acetylation:a pathway for chromatin opening and transcriptional activation of the human beta-globin locus. Genes Dev 14,940-950.
    Song, S.H., Hou, C., and Dean, A. (2007). A positive role for NLI/Ldb1 in long-range beta-globin locus control region function. Mol Cell 28,810-822.
    Splinter, E., Heath, H., Kooren, J., Palstra, R.J., Klous, P., Grosveld, F., Galjart, N., and de Laat, W. (2006). CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev 20,2349-2354.
    Stamatoyannopoulos, G. (2005). Control of globin gene expression during development and erythroid differentiation. Exp Hematol 33,259-271.
    Stein, G.S., Zaidi, S.K., Braastad, C.D., Montecino, M., van Wijnen, A.J., Choi, J.Y., Stein, J.L., Lian, J.B., and Javed, A. (2003). Functional architecture of the nucleus:organizing the regulatory machinery for gene expression, replication and repair. Trends Cell Biol 13,584-592.
    Szemes, M., Gyorgy, A., Paweletz, C., Dobi, A., and Agoston, D.V. (2006). Isolation and characterization of SATB2, a novel AT-rich DNA binding protein expressed in development-and cell-specific manner in the rat brain. Neurochem Res 31,237-246.
    Tan, J.A., Sun, Y., Song, J., Chen, Y., Krontiris, T.G., and Durrin, L.K. (2008). SUMO conjugation to the matrix attachment region-binding protein, special AT-rich sequence-binding protein-1 (SATB1), targets SATB1 to promyelocytic nuclear bodies where it undergoes caspase cleavage. J Biol Chem 283, 18124-18134.
    Tewari, R., Gillemans, N., Harper, A., Wijgerde, M., Zafarana, G., Drabek, D., Grosveld, F., and Philipsen, S. (1996). The human beta-globin locus control region confers an early embryonic erythroid-specific expression pattern to a basic promoter driving the bacterial lacZ gene. Development 122,3991-3999.
    Tolhuis, B., Palstra, R.J., Splinter, E., Grosveld, F., and de Laat, W. (2002). Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 10,1453-1465.
    Palstra, R.J., Tolhuis, B., Splinter, E., Nijmeijer, R., Grosveld, F., and de Laat, W. (2003). The beta-globin nuclear compartment in development and erythroid differentiation. Nat Genet 35,190-194.
    Tsutsui, K.M., Sano, K., and Tsutsui, K. (2005). Dynamic view of the nuclear matrix. Acta Med Okayama 59, 113-120.
    Vakoc, C.R., Letting, D.L., Gheldof, N., Sawado, T., Bender, M.A., Groudine, M., Weiss, M.J., Dekker, J., and Blobel, G.A. (2005). Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol Cell 17,453-462.
    Volpi, E.V., Chevret, E., Jones, T., Vatcheva, R., Williamson, J., Beck, S., Campbell, R.D., Goldsworthy, M., Powis, S.H., Ragoussis, J., et al. (2000). Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113 (Pt 9),1565-1576.
    Walter, W.R., Singh, G.B., and Krawetz, S.A. (1998). MARs mission update. Biochem Biophys Res Commun 242,419-422.
    Wang, J., Shiels, C., Sasieni, P., Wu, P.J., Islam, S.A., Freemont, P.S., and Sheer, D. (2004). Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions. J Cell Biol 164,515-526.
    Wang, L., Di, L.J., Lv, X., Zheng, W., Xue, Z., Guo, Z.C., Liu, D.P., and Liang, C.C. (2009). Inter-MAR association contributes to transcriptionally active looping events in human beta-globin gene cluster. PLoS One 4, e4629.
    Weitzel, J.M., Buhrmester, H., and Stratling, W.H. (1997). Chicken MAR-binding protein ARBP is homologous to rat methyl-CpG-binding protein MeCP2. Mol Cell Biol 17,5656-5666.
    Wen, J., Huang, S., Rogers, H., Dickinson, L.A., Kohwi-Shigematsu, T., and Noguchi, C.T. (2005). SATB1 family protein expressed during early erythroid differentiation modifies globin gene expression. Blood 105, 3330-3339.
    Wijgerde, M., Grosveld, F., and Fraser, P. (1995). Transcription complex stability and chromatin dynamics in vivo. Nature 377,209-213.
    Xu, J., Sankaran, V.G., Ni, M., Menne, T.F., Puram, R.V., Kim, W., and Orkin, S.H. Transcriptional silencing of {gamma}-globin by BCL11A involves long-range interactions and cooperation with SOX6. Genes Dev 24, 783-798.
    Yan, Z.J., and Qian, R.L. (1998). The 5'-flanking cis-acting elements of the human epsilon-globin gene associates with the nuclear matrix and binds to the nuclear matrix proteins. Cell Res 8,209-218.
    Yasui, D., Miyano, M., Cai, S., Varga-Weisz, P., and Kohwi-Shigematsu, T. (2002). SATB1 targets chromatin remodelling to regulate genes over long distances. Nature 419,641-645.
    Zhao, Q., Zhou, W., Rank, G., Sutton, R., Wang, X., Cumming, H., Cerruti, L., Cunningham, J.M., and Jane, S.M. (2006). Repression of human gamma-globin gene expression by a short isoform of the NF-E4 protein is associated with loss of NF-E2 and RNA polymerase II recruitment to the promoter. Blood 107,2138-2145.
    Cai, S., Han, H.J., and Kohwi-Shigematsu, T. (2003). Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat Genet 34,42-51.
    Choong, M.L., Yang, H.H., and McNiece, I. (2007). MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis. Exp Hematol 35,551-564.
    de Laat, W., and Grosveld, F. (2003). Spatial organization of gene expression:the active chromatin hub. Chromosome Res 11,447-459.
    Dobreva, G., Chahrour, M., Dautzenberg, M., Chirivella, L., Kanzler, B., Farinas, I., Karsenty, G., and Grosschedl, R. (2006). SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell 125,971-986.
    Palstra, R.J., Tolhuis, B., Splinter, E., Nijmeijer, R., Grosveld, F., and de Laat, W. (2003). The beta-globin nuclear compartment in development and erythroid differentiation. Nat Genet 35,190-194.
    Savarese, F., Davila, A., Nechanitzky, R., De La Rosa-Velazquez, I., Pereira, C.F., Engelke, R., Takahashi, K., Jenuwein, T., Kohwi-Shigematsu, T., Fisher, A.G., et al. (2009). Satb1 and Satb2 regulate embryonic stem cell differentiation and Nanog expression. Genes Dev 23,2625-2638.
    Wang, L., Di, L.J., Lv, X., Zheng, W., Xue, Z., Guo, Z.C., Liu, D.P., and Liang, C.C. (2009). Inter-MAR association contributes to transcriptionally active looping events in human beta-globin gene cluster. PLoS One 4, e4629.
    Wen, J., Huang, S., Rogers, H., Dickinson, L.A., Kohwi-Shigematsu, T., and Noguchi, C.T. (2005). SATB1 family protein expressed during early erythroid differentiation modifies globin gene expression. Blood 105, 3330-3339.
    Gyorgy, A.B., Szemes, M., de Juan Romero, C., Tarabykin, V., and Agoston, D.V. (2008). SATB2 interacts with chromatin-remodeling molecules in differentiating cortical neurons. Eur J Neurosci 27,865-873.
    Galande, S., Dickinson, L.A., Mian, I.S., Sikorska, M., and Kohwi-Shigematsu, T. (2001). SATB1 cleavage by caspase 6 disrupts PDZ domain-mediated dimerization, causing detachment from chromatin early in T-cell apoptosis. Mol Cell Biol 21,5591-5604.
    [1]Meluh PB, Koshland D. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C [J]. Mol Biol Cell.1995 Jul;6(7):793-807.
    [2]Yeh ET, Gong L, et al. Ubiquitin-like proteins:new wines in new bottles [J]. Gene. 2000 May 2;248(1-2):1-14.
    [3]Saitoh H, Hinchey J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3 [J]. J Biol Chem.2000 Mar 3;275(9):6252-8.
    [4]Tatham MH, Jaffray E, et al. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9 [J]. J Biol Chem.2001 Sep 21;276(38):35368-74.
    [5]Rodriguez MS, Dargemont C, et al. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting [J]. J Biol Chem.2001 Apr 20;276(16):12654-9.
    [6]Hay RT. Protein modification by SUMO [J]. Trends Biochem Sci.2001 May;26(5):332-3.
    [7]Desterro JM, Rodriguez MS, et al. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation [J]. Mol Cell.1998 Aug;2(2):233-9.
    [8]Sampson DA, Wang M, et al. The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification [J]. J Biol Chem.2001 Jun 15;276(24):21664-9.
    [9]Melchior F. SUMO--nonclassical ubiquitin [J]. Annu Rev Cell Dev Biol. 2000;16:591-626.
    [10]Matunis MJ, Coutavas E, et al. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex [J]. J Cell Biol.1996 Dec;135(6 Pt 1):1457-70.
    [11]Mahajan R, Delphin C, et al. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2 [J]. Cell.1997 Jan 10;88(1):97-107.
    [12]Pichler A, Gast A, et al. The nucleoporin RanBP2 has SUMO1 E3 ligase activity [J]. Cell.2002 Jan 11;108(1):109-20.
    [13]Muller S, Hoege C, et al. SUMO, ubiquitin's mysterious cousin [J]. Nat Rev Mol Cell Biol.2001 Mar;2(3):202-10.
    [14]Fogal V, Gostissa M, et al. Regulation of p53 activity in nuclear bodies by a specific PML isoform [J]. EMBO J.2000 Nov 15;19(22):6185-95.
    [15]Israel A. The IKK complex:an integrator of all signals that activate NF-kappaB? [J]. Trends Cell Biol.2000 Apr; 10(4):129-33.
    [16]Fang S, Jensen JP, et al. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53 [J]. J Biol Chem.2000 Mar 24;275(12):8945-51.
    [17]Honda R, Yasuda H. Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase [J]. Oncogene.2000 Mar 9;19(11):1473-6.