纳米复合材料的制备、性质及其在生物分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于纳米尺寸的物质具有与宏观物质迥异的小尺寸效应、表面与界面效应、量子尺寸效应、宏观量子隧道效应等,因而纳米材料具有特殊的光、电、热、磁、力学等性能。如何构建具有磁性、光学、电学、催化等性能的多功能化纳米复合材料,并将其有效应用于生物医学、环境科学、食品安全等领域,已经成为研究者们关注的焦点。本论文从功能化纳米复合材料的制备、表面修饰、形貌及磁/光/抗菌/毒学等性能的研究出发,构建了五种纳米复合材料并探讨了它们在生物分析领域的应用。本论文主要分为以下几个部分:
     第一章综述简要概述了纳米材料的特性及应用,详细介绍了本论文所涉及的三种纳米材料(碳纳米管、CdTe量子点和Fe304磁性纳米粒子)的常规制备方法以及表面功能化修饰方法。另外,着重评述了基于这几种纳米材料所构建的纳米复合材料在生物医学、环境科学、刑事侦探等领域的应用。
     第二章碳纳米管/壳聚糖/聚合物纳米复合材料修饰的微阵列生物传感器。本文制备了由碳纳米管/壳聚糖/PVI-Os氧化还原聚合物所形成的纳米复合物,并将其用于一种新型可印刷的微阵列电化学传感器,实现了血清中葡萄糖和乳酸的同步检测。复合物作为传感器的敏化层由带负电的碳纳米管作为骨架将壳聚糖/PVI-Os交联起来,而带正电的壳聚糖/PVI-Os作为氧化还原媒介体并使葡萄糖氧化酶和乳酸氧化脱氢酶有效地固定在微电极表面。CNTs/Chitosan/PVI-Os纳米复合材料具有多孔、比表面积大等特点,可有效的增加乳酸氧化酶/葡萄糖氧化酶的固载量。同时其网状结构和壳聚糖的生物相容性协同作用,可以避免酶的脱落。该传感器具有以下优点:(1)碳纳米管的网状结构和壳聚糖的生物相容性协同作用,使更多的酶固定在微电极上且不易脱落、变性,提高传感的灵敏性;(2)通过在同一个芯片上设置无酶电极,可消除其他电活性物质的干扰,提高检测的特异性;(3)能同步检测多种待检组分,实现高通量的分析检测等;(4)制作成本低,可批量生产。该新型传感器具有灵敏度高、选择性好、抗干扰能力强和稳定性好等特点,在临床诊断方面有着很大的潜在应用价值。
     第三章量子点/多聚赖氨酸纳米复合多层膜的构建及其抗菌生物活性检测。CdTe量子点具有荧光发射波长随尺寸改变连续可调、发射光谱窄且对称分布、光化学稳定性佳等特性,己广泛应用于生物影像和生物传感等领域,但其抗菌生物活性尚不明确。本文在合成CdTe量子点时采用巯基丁二酸作稳定剂,大量的羧基(-COOH)使CdTe量子点表面带负电荷,不仅使CdTe量子点在水相中具有良好的分散性和稳定性,而且能进一步与聚阳离子电解质多聚赖氨酸(PLL)发生静电吸附作用,从而制备(CdTe QDs/PLL)多层膜纳米复合物。该纳米复合多层膜的厚度、荧光强度、抗菌性能均可通过组装层数的不同加以调控,且可通过修饰不同大小量子点材料达到改变吸收和发射特性的目的。采用本方法制备的(CdTe QDs/PLL)多层膜具有光致发光性能和良好的抗菌生物活性等优点,可将其应用于构建抗菌涂层装饰材料等。
     第四章超顺磁性氧化铁纳米颗粒的制备及其生物毒性的研究。具有独特磁响应性的超顺磁性氧化铁纳米颗粒(SPIONs)在生物传感、药物定向传输、医学诊断与治疗等领域已展示出巨大应用潜力,但是其生物毒性尚不清楚。本研究采用化学共沉淀技术,以聚乙二醇(PEG)为表面活性剂,制备了分散性好的超顺磁性四氧化三铁纳米粒子。采用场发射扫描电子显微镜、透射电子显微镜、动态光散射粒径分析仪、X-射线晶体衍射、振动磁强计对SPIONs纳米颗粒的大小、形貌、晶体类型及磁性进行了表征测试。结果显示,所获得材料为直径约10-16纳米的近似球形的四氧化三铁纳米粒子,其矫顽磁性和剩磁几乎为0emu/g,饱和磁化强度为68.6emu/g,表明该材料为超顺磁性纳米粒子。通过蛋白质芯片结合传统方法分析了SPIONs的毒性效应及其分子机制。结果表明,当浓度低于50μgmL-1。时,SPIONs不能诱导明显的生物毒性,为其在生物医学领域的应用提供了参考。
     第五章Fe3O4@SiO2-Au纳米复合材料的制备及其潜指纹显现的研究。磁性纳米粒子具有良好的磁响应性、易于与磁性物质牢固结合,在指纹显现与检测方面有较大应用潜力。本研究采用共沉淀法制备Fe304磁性纳米颗粒,将其表面氨基化后连接金纳米粒子,再用甲醛还原纳米金颗粒,制备得到粒径约500nm、单分散性能良好的Fe3O4@SiO2-Au纳米复合材料。将该复合材料应用于潜指纹的检测,具有以下优点:(1)其粒径半径小于传统的粉显法颗粒半径,因此,显现效果好;(2)利用氨基硅烷(APTES)网状结构,既能防止Fe304的沉聚,使其具有良好的分散性和稳定性,又能在其表面修饰纳米金等易于与氨基酸、蛋白质结合的纳米粒子:(3)能有效与指纹中的氨基酸、蛋白质牢固结合,又具有金纳米粒子的特性,能够提高潜指纹显现灵敏度;(4)具有良好的磁性,因此,潜指纹显现后,多余的磁珠可以用磁性刷子吸取,避免纳米颗粒粉尘对检测人员身体的伤害;(5)能够显现遗留在不同客体表面(如玻璃、纸张、塑料等)的潜在指纹,具有更广泛的应用价值。
     第六章Fe3O4@SiO2/FITC/Au磁-光双功能纳米复合粒子的制备及其潜指纹显现的研究。磁性发光材料兼具磁性和发光性能,在生物医学领域具有潜在的应用前景,引起了科研者的广泛关注。本文用荧光性物质对磁性材料进行修饰后,再与金纳米粒子结合,发展了一种新颖的制备Fe3O4@SiO2/FITC/Au磁-光双功能复合粒子的方法,该方法制备出的磁-光双功能复合粒子具有磁性、荧光性及易与生物样品牢固结合的特性。该复合粒子具有荧光,可用于深色背景载体上潜指纹的显现;表面丰富的金纳米粒子,易与指纹中的蛋白质和氨基酸等结合;而且该复合粒子毒性低,其超顺磁性可有效降低刑侦人员吸入粉尘的危害。因此,与其他显现潜指纹的荧光材料、传统磁粉相比,该复合粒子具有更多优势,不仅可以用于法庭科学浅指纹显现,在生物医学、环境科学领域也会产生潜在的应用价值。
Unique characteristics of nanomaterials including small size effect, surface and interface effect, quantum size effect, as well as macroscopic quantum tunnel effect result in specific optical, thermal, electrical, magnetic, and mechanical properties. Many researchers concentrate their efforts on design and fabrication of multifunctional nanocomposites with magnetic, optical, electrical, catalytic properties for various applications in biomedicine, environmental science, food safety and other fields. This thesis focuses on the fabrication and functionalization of nanocomposites and investigates their potential applications in bioanalysis. The thesis is divided into the following six parts:
     1. Literature review. First, properties and applications of nanomaterials are briefly introduced. Second, fabrication and surface modification of three nanomaterials (carbon nanotubes, CdTe quantum dots and Fe3O4magnetic nanoparticles) involved in this thesis are summarized one by one. In addition, the applications of these nanomaterials-based nanocomposites in biomedical diagnosis, environment science, and criminal detection are reviewed in detail.
     2. Title:microarray biosensor based on carbon nanotubes/chitosan/polymer nanocomposites. It is very challenging to fabricate bioarrays to electronically high-throughput detect multiple analytes. This work innovatively fabricates an integrated printed circuit board (PCB)-based array sensing chip to simultaneously detect lactate and glucose in a biological sample, providing high sensitivity, high specificity and reproducibility. The novelty of the chip relies on a concept demonstration of inexpensive high-throughput electronic biochip, a chip design for high signal to noise ratio and high sensitivity by construction of positively charged chitosan/redox polymer Polyvinylimidazole-Os (PVI-Os)/carbon nanotube (CNT) composite sensing platform, in which the positively charged chitosan/PVI-Os is mediator and electrostatically immobilizes the negatively charged enzyme, while CNTs function as an essential cross-linker to network PVI-Os and chitosan due to its negative charged nature. The nanocomposite has a porous network structure with large specific surface area, which may contribute to the high loading capacity of enzymes. The developed sensing biochip possesses the following advantages:(1) low cost and easy for mass production;(2) the network structured carbonanotubes and biocompatible chitosan synergistically improve the performance of sensors, resulting from high enzyme loading capacity, good stability and high activity of immobilized enzyme.(3) Additional electrodes on the chip with the same sensing layer but without enzymes were prepared to correct the interferences to achieve high specificity and selectivity;(4) multiple analytes can be simutaneously detected with a single chip in high-throughput format. The developed sensing chip shows high sensitivity, good selectivity and reproducibility, providing great potential applications in biomedical diagnosis.
     3. Title:(CdTe QDs/PLL) layer-by-layer multilayer film and its antibacterial properties. CdTe quantum dots have many unique properties such as adjustable size-dependent fluorescence emission, broad excitation and narrow emission spectra, as well as good photochemical stability. In this thesis CdTe quantum dots are synthesized via hydrothermal approach with mercaptosuccinic acid, which contains negatively charged carboxyl groups, as protection ligands to improve the dispersability and stability.(CdTe QDs/PLL) multilayer films are then prepared via electrostatic layer-by-layer assembly of the nagtively charged QDs and positively charged polycation electrolyte (PLL). The thickness, fluorescence intensity and antibacterial activity of the film can be simply adjusted by controlling assembly layer numbers. The absorbance and emission of the film can be also tailored by changing QDs with various sizes. Using this method, the prepared (CdTe QDs/PLL) multilayer films have good photoluminescence and exciting antibacterial properties. It may have potential application as an antibacterial decoration coating.
     4. Title:Coprecipitation preparation of superparamagnetic iron oxide nanoparticles and their nanotoxicity Due to the easy manipulation with an external magnetic field and unique physiochemical properties, SPINOs have offered broad biomedical applications including high-resolution magnetic resonance imaging (MRI), in vitro bioseparation, magnetic targeted drug delivery, and hyperthermia therapy, In this work SPIONs were synthesized via chemical coprecipitation method with polyethylene glycol (PEG) as surfactant. The resultant nanoparticles were characterized with field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). Results show that as-prepared nanocrystals are roughly spherical with reasonably uniform size from10nm to16nm in diameter; high saturation magnetization intensity (68.6emu/g) and zero coercivity and remanence. SPIONs-induced nanotoxicity and its molecular pathways were further investigated by protein microarrays with assistance of conventional methods. The experimental results reveal that<50μg/mL SPIONs don't induce significant nanotoxicity, providing valuable information for biomedical applications.
     5. Title:Fabrication of functional Fe3O4@SiO2-Au nanocomposites for latent fingerprints enhancement. Magnetic nanoparticles can be easily manipulated with an external magnetic field, providing a great potential for applications in latent fingerprint detection. In this work, magnetic Fe3O4nanoparticles were synthesized via coprecipitation method. A thin layer of SiO2was coated on surface of Fe3O4nanoparticlesto obtain Fe3O4@SiO2nanospheres. Gold nanoparticles were then attached onto the surface of aminated Fe3O4@SiO2nanoparticles, followed by reduction with formaldehyde to prepare Fe3O4@SiO2-Au nanocomposites. The as-prepared nanocomposites were employed for latent fingerprint detection, showing many advantages:(1) the small size of the prepared multifunctional nanoparticles gives better performance in comparison with conventional reagents;(2) SiO2coating significantly improve the dispensability and stability;(3) gold nanoparticles not only have good optical properties, but also provide favorable surfaces for amino acid and protein attachments;(4) Redundant magneticic nanoparticles can be easily removed by magnet brush, reducing their toxicity to operator;(5) The as-prepared nanocomposite can be universally used for latent fingerprinting detection on different substrates including glass, paper, plastic, etc.
     6. Title:Fabrication of magnetic and luminescent bi-functional Fe3O4@SiO2/FITC/Au nanocomposite for latent fingerprints enhancement. Luminescent magnetic nanoparticles with unique optical and magnetic properties have been widely used in biomedical fields, In this project, a novel Fe3O4@SiO2/FITC/Au luminescent magnetic bi-functional nanocomposite was prepared for latent fingerprinting detection. The bi-functional nanoparticles have the following advantages:(1) the luminescent feature can improve the detection performance especially on substrates with dark background;(2)(2) Amino acid and protein can be effectively adsorbed onto the surface of nanoparticles via gold nanoparticles as linker;(3) The nanocomposite has low toxicity and can be removed by magnet brush. The developed Fe3O4@SiO2/FITC/Au as a new fluorescent material shows superior performance for latent fingerprinting detection as compared with conventional magnetic powder and fluorescent materials, providing a great potential not only in penal investigation, but also in biomedicine and environmental science.
引文
[1]Birringer R., Gleiter H., Klein H. P. Nanocrystalline materials an approach to a novel solid structure with gas-like disorder. Physics Letters A,1984,102(8):365-369.
    [2]Rurack K. Nanoparticle-based sensors striped cation-trappers. Nat Mater,2012,11(11): 913-914.
    [3]Cheng Z. L., Zaki A. Al., Hui J. Z., et al. Multifunctional nanoparticles:cost versus benefit of adding targeting and imaging capabilities. Science,2012,16(338):903-910.
    [4]Huang W., Zhai H.J., Wang L.S. Probing the interactions of O-2 with small gold cluster anions (Au-n(-), n=1-7):chemisorption vs physisorption. J.Am.Chem.Soc.,2010,132(12):4344-4351.
    [5]Bruchez M., Moronne M., Gin P., et al. Semiconductor nanocrystals as fluorescent biological labels. Science,1998,281(5385):2013-2016.
    [6]Law M., Greene L. E., Johnson J.C., et al. Nanowire dye-sensitized solar cells. Nat Mater., 2005,4(6):455-459.
    [7]Xia Y., Yang P., Sun Y., et al. One-dimensional nanostructures:synthesis, characterization, and applications. Adv. Mater.,2003,5(15):353-389.
    [8]Venkatasubramanian R., Siivola E., Colpitts T., et al., Thin-film thermoelectric devices with high room-temperature figures of merit. Nature,2001,413(6856):597-602.
    [9]Wang J., Neaton J. B., Zheng H., et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science,2003,299(5613):1719-1722.
    [10]Steichena S. D., Caldorera-Moore M., Peppas N. A. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm SCI.,2013,3(48): 416-427.
    [11]Leon R., Petroff P. M., Leonard D., et al. Spatially-resolved visible luminescence of self-assembled semiconductor quantum dots. Science,1995,267(5206):1966-1968.
    [12]Chan W. C. W., Nie S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science,1998,281(5385):2016-2018.
    [13]Nie Z. H., Petukhova A., Kumacheva E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nature Nanotech.,2010,5(1): 15-25.
    [14]Wang Z. H., Liu J. W., Chen X. Y., et al. A simple hydrothermal route to large-scale synthesis of uniform silver nanowires. Chem.-Eur. J.,2004,11(1):160-163.
    [15]Iijima S. Helical microtubules of graphitic carbon. Nature,1991,354(6348):56-58.
    [16]Iijima S., Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature,1993, 363(6430):603-605.
    [17]Bethune D. S., Kiang C. H., Vrieset M. S., et al. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls. Nature,1993,363(6430):605-607.
    [18]Lagunas-Castedo M. C., Berry F. J., Hope E. G. Annual reports on the progress of chemistry 2008, Section A, Inorganic Chemistry. http://qcite.qub.ac.uk/handle/123456789/13306,2010.
    [19]Prasek J., Drbohlavova J., Chomoucka J., et al. Methods for carbon nanotubes synthesis-review. J. Mater. Chem.,2011,21:15872-15884.
    [20]Hsu W. K., Terrones M., Hare J.P., et al. Electrolytic formation of carbon nanostructures. Chem. Phys. Lett.,1996,262(1-2):161-166.
    [21]Alekseev N. I., Arapov O. V., Belozerov I. M., et al. Formation of carbon nanostructures during the electrolytic production of alkali metals. Russ. J. Phys. Chem.,2005,79:178-180.
    [22]Chernozatonskii L. A., Kosakovskaja Z. J., Fedorov E. A., et al. New carbon tubelite-ordered film structure of multilayer nanotubes. Phys. Lett. A.,1995,197(1):40-46.
    [23]Richter H., Hernadi K., Caudano R., et al. Formation of nanotubes in low pressure hydrocarbon flames. Carbon,1996,34(3):427-429.
    [24]Jiang Y., Wu Y., Zhang S., et al. A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature. J.Am.Chem.Soc.,2000,122(49):12383-12384.
    [25]Chen X. H., Chen C. S., Chen Q., et al. Non-destructive purification of multi-walled carbon nanotubes produced by catalyzed CVD. Mater. Lett,2002,57(3):734-738.
    [26]Hong S. W., Banks T., Rogers J. A. Improved density in aligned arrays of single-walled carbon nanotubes by sequential chemical vapor deposition on quartz. Adv. Mater.,2010,22(16): 1826-1830.
    [27]Dong X. C., Li B., Wei A., et al. One-step growth of grapheme-carbon nanotube hybrid materials by chemical vapor deposition. Carbon,2011,9(49):2944-2949.
    [28]Sakellariou G., Priftis D., Baskaran D. Surface-initiated polymerization from carbon nanotubes: strategies and perspectives. Chem. Soc. Rev.,2013,42:677-704.
    [29]Yu W. J., Hou. P. X., Zhang L. L., et al. Preparation and electrochemical property of Fe2O3 nanoparticles-filled carbon nanotubes. Chem. Commun.,2010,46:8576-8578.
    [30]Chen M. L., He. Y. J., Chen X. W., et al. Quantum dots conjugated with Fe3O4-filled carbon nanotubes for cancer-targeted imaging and magnetically guided drug delivery. Langmuir,2012, 47(28):16469-16476.
    [31]Hong S. Y., Tobias G., Al-Jamal K. T., et al. Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat Mater.,2010,9(6):485-490.
    [32]Pan H., Feng Y. P., Lin J. Y. Ab initio study of F-and Cl-functionalized single wall carbon nanotubes. J. Phys-Condens Mat.,2006,18(22):5175-5184.
    [33]Metters J. P., Banks C. E. Electrochemical utilisation of chemical vapour deposition grown carbon nanotubes as sensors. Vacuum,2012,86(5):507-519.
    [34]Rivadulla F., Mateo-Mateo C., Correa-Duarte M. A. Layer-by-layer polymer coating of carbon nanotubes:tuning of electrical conductivity in random networks. J.Am.Chem.Soc.,2010, 132(11):3751-3755.
    [35]Chen C. S., Chen X. H., Yi B., et al. Zinc oxide nanoparticle decorated multi-walled carbon nanotubes and their optical properties. Acta Mater.,2006,54(20):5401-5407.
    [36]Jiang Y., Lu Y., Zhang L., et al. Preparation and characterization of silver nanoparticles immobilized on multi-walled carbon nanotubes by poly(dopamine) functionalization. J. Nanopart. Res.,2012,14(6):938-947.
    [37]Qiao Y., Li C. M., Bao S. J., et al. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J. Power Sources.,2007,170(1):79-84.
    [38]Ning J. W., Zhang J. J., Pan Y. B., et al. Surfactants assisted processing of carbon nanotube-reinforced SiO2 matrix composites. Ceram. Int.,2004,30(1):63-67.
    [39]Williams K. A., Veenhuizen P. T. M., Beatriz G., et al. Nanotechnology-carbon nanotubes with DNA recognition. Nature,2002,420(6917):761-761.
    [40]Hu H., Ni Y., Montana V., et al. Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Letters.,2004.4(3):507-511.
    [41]Cui X. Q., Li C. M., Zang J. F., et al. Highly sensitive lactate biosensor by engineering chitosan/PVI-Os/CNT/LOD network nanocomposite. Biosens. Bioelectron.,2007,22(12): 3288-3292.
    [42]Wang J., Musameh M., Lin Y. H. Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J. Am. Chem. Soc.,2003,125(9):2408-2409.
    [43]Lu J. J., Liu S. Q., Ge S. G., et al. Ultrasensitive electrochemical immunosensor based on Au nanoparticles dotted carbon nanotube-graphene composite and functionalized mesoporous materials. Biosens. Bioelectron.,2012,33:29-35.
    [44]De Volder M. F. L., Tawfick S. H., Baughman R. H., et al. Carbon nanotubes:present and future commercial applications. Science,2013,339(6119):535-539.
    [45]Costa P., Silva J., Sencadas V., et al. Mechanical, electrical and electro-mechanical properties of thermoplastic elastomer styrene-butadiene-styrene/multiwall carbon nanotubes composites. J. Mater. Sci.,2013,48(3):1172-1179.
    [46]Dai H. J., Hafner J. H., Rinzler A. G., et al. Nanotubes as nanoprobes in scanning probe microscopy. Nature,1996,384(6605):147-150.
    [47]Cha, S. I., Kim K. T., Arshad S. N., et al. Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv. Mater., 2005,17(11):1377-1381.
    [48]Yu, M. F., Files B. S., Arepalli S., et al. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett.,2000,84(24):5552-5555.
    [49]Di J. T., Hu D. M., Chen H. Y., et al. Ultrastrong, foldable, and highly conductive carbon nanotube film. ACS Nano.,2012,6(6):5457-5464.
    [50]Marulanda J. M., Electronic Properties of Carbon Nanotubes.2011:InTech.680.
    [51]Javey A., Guo J., Paulsson M., et al., High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett.,2004,92(10):106804-106807.
    [52]Heinze S., Tersoff J., Avouris P., Electrostatic engineering of nanotube transistors for improved performance. Appl. Phys. Lett.,2003,83(24):5038-5040.
    [53]Xie J. Y., Guo W. F., Wang J. Z. Sol-gel-derived hybrid conductive films for electromagnetic interference (EMI) shielding. J. Wuhan Univer. Tech.-Mate. Sci. Edi,2011,26(2):217-222.
    [54]Guo J. L., Wang X. L., Miao P. L., et al., One-step seeding growth of controllable Ag@Ni core-shell nanoparticles on skin collagen fiber with introduction of plant tannin and their application in high-performance microwave absorption. J. Mater. Chem.,2012,22(24): 11933-11942.
    [55]Chaturvedi A., Stojak K., Laurita N., et al. Enhanced magnetoimpedance effect in Co-based amorphous ribbons coated with carbon nanotubes. J. Appl. Phys.,2012,111(07E507):1-3.
    [56]Bachilo S. M., Strano M. S., Kittrell C., et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science,2002,298(5602):2361-2366.
    [57]O'Connell M. J., Bachilo S. M., Huffman C. B., et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science,2002,297(5581):593-596.
    [58]Wei J. Q., Zhu H. W., Wu D. H. Carbon nanotube filaments in household light bulbs. Appl. Phys. Lett.,2004,84(24):4869-4871.
    [59]Jeng E. S., Moll A. E., Roy A. C., et al. Detection of DNA hybridization using the near-infrared band-gap fluorescence of single-walled carbon nanotubes. Nano Lett.,2006,6(3): 371-375.
    [60]Chen P., Wu X., Sun X., et al. Electronic structure and optical limiting behavior of carbon nanotubes. Phys. Rev. Lett.,1999,82(12):2548-2551.
    [61]Zhang Y., Zhang H. B., Lin G. D., et al. Preparation, characterization and catalytic hydroformylation properties of carbon nanotubes-supported Rh-phosphine catalyst. Appl. Catal. A-Gen.,1999,187(2):213-224.
    [62]Silambarasan D., Surya V. J., Vasu V., et al. Experimental investigation of hydrogen storage in single walled carbon nanotubes functionalized with borane. Int. J. Hydrogen Energy.,2011, 36(5):3574-3579.
    [63]Lin T. W., Choi S. Y., Kim Y. H., et al. Large-scale synthesis of n-type gallium nitride nanowires using NiI2-decorated carbon nanotubes as a reactant. Carbon,2010,48(9): 2401-2408.
    [64]Ajayan P. M., Stephan O., Redlich P., et al. Carbon nanotubes as removable templates for metal-oxide nanocomposites and nanostructures. Nature,1995,375(6532):564-567.
    [65]Cambre S., Schoeters B., Luyckx S., et al. Experimental observation of single-file water filling of thin single-wall carbon nanotubes down to chiral index (5,3). Phys. Rev. Lett.,2010,104(20): 207401-207404.
    [66]Alivisatos A. P., Burgi S. L., Burgl H. B. Semiconductor clusters, nanocrystals, and quantum dots. Science,1996,271(5251):933-937.
    [67]Weller, H. Quantized semiconductor particles-a novel state of matter for materials science. Adv. Mater.,1993,5(2):88-95.
    [68]Murray C. B., Norris D. J., Bawendi M. G. Synthesis and characterization of nearly monodisperse Cde (E=S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc,1993, 115(19):8706-8715.
    [69]Talapin D. V., Rogach A. L., Mekis I., et al. Synthesis and surface modification of amino-stabilized CdSe, CdTe and InP nanocrystals. Colloids and Surfaces A:Physi.,2002, 202(2-3):145-154.
    [70]Peng X. G., Green chemical approaches toward high-quality semiconductor nanocrystals. Chem.-Eur. J.,2002,8(2):335-339.
    [71]Qu L. H., Peng Z. A., Peng X. G. Alternative routes toward high quality CdSe nanocrystals. Nano Lett.,2001,1(6):333-337.
    [72]Herron N., Calabrese J. C., Farneth W. E., et al. Crystal-structure and optical-properties of Cd32sl4(Sc6h5)36.Dmf4, a cluster with a 15-Angstrom Cds core. Science,1993,259(5100): 1426-1428.
    [73]Gaponik N., Talapin D. V., Rogach A. L., et al. Thiol-capping of CdTe nanocrystals:An alternative to organometallic synthetic routes. J. Phys. Chem. B.,2002,106(29):7177-7185.
    [74]Guo J., Yang W. L., Wang C. C. Systematic study of the photoluminescence dependence of thiol-capped CdTe nanocrystals on the reaction conditions. J. Phys. Chem. B.,2005,109(37): 17467-17473.
    [75]Shavel A., Gaponik N., Eychmuller A. Factors governing the quality of aqueous CdTe nanocrystals:Calculations and experiment. J. Phys. Chem. B.,2006,110(39):19280-19284.
    [76]Yang P., Li C. L., Murase N., Highly photoluminescent multilayer QD-glass films prepared by LbL self-assembly. Langmuir,2005,21(19):8913-8917.
    [77]Bao H. B., Gong Y. J., Li Z., et al. Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals:Toward highly fluorescent CdTe/CdS core-shell structure. Chem. Mater.,2004,16(20):3853-3859.
    [78]Chen Q. F., Wang W. X., Ge Y. X., et al. Direct aqueous synthesis of cysteamine-stabilized CdTe quantum dots and it's deoxyribonucleic acid bioconjugates. Chinese J. Anal. Chem.,2007, 35(1):135-138.
    [79]Yang Y. Q., Xu S. C., Miao H., et al. Development of a novel and bi-functional quantum dots as FRET energy donor. Mater. Adv. Mater.,2011,152-153:1418-1421.
    [80]Shao D., Zeng Q., Fan Z., et al. Monitoring HSV-TK/ganciclovir cancer suicide gene therapy using CdTe/CdS core/shell quantum dots. Biomaterials,2012,33(17):4336-4344.
    [81]Wu P., Li Y., Yan X. P. CdTe quantum dots (QDs) based kinetic discrimination of Fe2+and Fe3+, and CdTe QDs-fenton hybrid system for sensitive photoluminescent detection of Fe2 Anal. Chem.,2009,81(15):6252-6257.
    [82]Wu C. S., Oo M. K. K., Fan X. D. Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNA enzymes. Acs Nano.,2010,4(10):5897-5904.
    [83]Bao H. F., Wang E. K., Dong S. J. One-pot synthesis of CdTe nanocrystals and shape control of luminescent CdTe-cystine nanocomposites. Small,2006,4(2):476-480.
    [84]Li L., Qian H. F., Ren J. C. CdTe@Co(OH)2 (core-shell) nanoparticles:aqueous synthesis and characterization. Chem. Commun.,2005,0:4083-4085.
    [85]Deng Z. T., Samanta A., Nangreave J., et al. Robust DNA-functionalized core/shell quantum dots with fluorescent emission spanning from UV-vis to near-IR and compatible with DNA-directed self-assembly. J. Am. Chem. Soc.,2012,42(134):17424-17427.
    [86]Xia Y. S., Zhu C. Q. Aqueous synthesis of type-Ⅱ core/shell CdTe/CdSe quantum dots for near-infrared fluorescent sensing of copper(II). Analyst,2008,133(7):928-932.
    [87]Jing L. H., Yang C. H., Qiao R. R., et al. Highly Fluorescent CdTe@SiO2 particles prepared via reverse microemulsion method. Chem. Mater.,2010,22(2):420-427.
    [88]Zhu Y., Li Z., Chen M., et al. Synthesis of robust sandwich-like SiO2@CdTe@SiO2 fluorescent nanoparticles for cellular imaging. Chem. Mater.,2012,24:421-423.
    [89]Shen Y. Y., Li L. L., Lu Q., et al. Microwave-assisted synthesis of highly luminescent CdSeTe@ZnS-SiO2 quantum dots and their application in the detection of Cu(Ⅱ). Chem. Commun.,2012,48(16):2222-2224.
    [90]Robel I., Subramanian V., Kuno M. Quantum dot solar cells:Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc.,2006, 128(7):2385-2393.
    [91]Wu X. Y., Liu H. J., Liu J. Q., et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol.,2003,21(4):452-452.
    [92]Dubertret B., Skourides P., Norris D. J., et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science,2002,298(5599):1759-1762.
    [93]Zhang W., He X. W., Li W. Y., et al. Thermo-sensitive imprinted polymer coating CdTe quantum dots for target protein specific recognition. Chem. Commun.,2012,48(12): 1757-1759.
    [94]. Smith A. M., Duan H., Mohs A. M., et al. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Delivery Rev.,2008,60:1226-1240.
    [95]Algar W. R., Tavares A. J., Krull U. J. Beyond labels:A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal. Chim. Acta.,2010,673:1-25.
    [96]Han M. Y., Gao X., Su J. Z., et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol.,2001,19(7):631-635.
    [97]Onoda A., Himiyama T., Ohkubo K., et al. Photochemical properties of a myoglobin-CdTe quantum dot conjugate. Chem. Commun.,2012,48(65):8054-8056.
    [98]Gao X. H., Nie S. M. Quantum dot-encoded mesoporous beads with high brightness and uniformity: Rapid readout using flow cytometry. Anal. Chem.,2004,76(8):2406-2410.
    [99]Zhang C. Y., Hu J. Single quantum dot-based nanosensor for multiple DNA detection. Anal. Chem.,2010,82(5):1921-1927.
    [100]Liu F., Wang X., Ye K. Q., et al. Layer-by-layer assembled microgel films containing silver nanoparticles as antimicrobial coatings on plastics. Chem. J. Chinese U.,2011,32:990-994.
    [101]Cui X. Q., Li C. M., Bao H., et al. In situ fabrication of silver nanoarrays in hyaluronan/PDDA layer-by-layer assembled structure. J. Colloid. Interf. Sci.,2008,327:459-465.
    [102]Guyot-Sionnest P. Charging colloidal quantum dots by electrochemistry. Microchim Acta., 2008,160(3):309-314.
    [103]Amelia M., Lincheneau C., Silvi S., et al. Electrochemical properties of CdSe and CdTe quantum dots. Chem. Soc. Rev.,2012,41(17):5728-5743.
    [104]Franzl T., Shavel A., Rogach A. L., et al. High-rate unidirectional energy transfer in directly assembled CdTe nanocrystal bilayers. Small,2005,1(4):392-395.
    [105]Sun Q. J., Subramanyam G., Dai L., et al. Highly efficient quantum-dot light-emitting diodes with DNA-CTMA as a combined hole-transporting and electron-blocking layer. Acs Nano., 2009,3(3):737-743.
    [106]Cui R., Pan H. C., Zhu J. J., et al. Versatile immunosensor using CdTe quantum dots as electrochemical and fluorescent labels. Anal. Chem.,2007,79(22):8494-8501.
    [107]Mora-Sero I., Gimenez S., Moehl T., et al. Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell:the role of the linker molecule and of the counter electrode. Nanotechnology,2008,19(42):1-7.
    [108]Dong H. F., Yan F., Ji H., et al. Quantum-dot-functionalized poly(styrene-co-acrylic acid) microbeads:Step-wise self-assembly, characterization, and applications for sub-femtomolar electrochemical detection of DNA hybridization. Adv. Funct. Mater.,2010,20(7):1173-1179.
    [109]Schubert K., Khalid W., Yue Z., et al. Quantum-dot-modified electrode in combination with NADH-dependent dehydrogenase reactions for substrate analysis. Langmuir,2010,26(2): 1395-1400.
    [110]Liu X., Zhang Y. Y., Lei J. PL., et al. Quantum dots based electrochemiluminescent immunosensor by coupling enzymatic amplification with self-produced coreactant from oxygen reduction. Anal. Chem.,2010,82(17):7351-7356.
    [111]Parkinson G. S., Manz T. A., Novotny Z., et al. Antiphase domain boundaries at the Fe3O4(001) surface. Phys. Rev. B.,2012,85(19):195450-195456.
    [112]Zeng H., Li J., Liu J. P., et al. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature,2002,420(6914):395-398.
    [113]Liu X. D., Zhong Z. G., Tang Y. F., et al. Review on the synthesis and applications of nanomaterials. J. nanomater.,2013,2013:1-7.
    [114]Akbarzadeh A., Mikaeili H., Zarghami N., et al. Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers. Int. J. Nanomedicine,2012,7:511-526.
    [115]Lin C. R., Chu Y. M., Wang S. C. Magnetic properties of magnetite nanoparticles prepared by mechanochemical reaction. Mater. Lett.,2006,60(4):447-450.
    [116]Wan S. R., Huang J. S., Yan H. S., et al. Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers. J. Mater. Chem.,2006,16(3):298-303.
    [117]Goya G. F. Handling the particle size and distribution of Fe3O4 nanoparticles through ball milling. Solid State Commun.,2004,130(12):783-787.
    [118]Veiseh O., Sun C., Gunn J., et al. Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett,2005,5(6):1003-1008.
    [119]Hong X., Li J., Wang M. J., et al. Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approach. Chem. Mater.,2004,16(21):4022-4027.
    [120]Sun J., Zhou S., Hou P., et al. Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J. Biomed. Mater. Res. A.,2007,2(80A):333-341.
    [121]Fan R., Chen X. H., Gui Z., et al. A new simple hydrothermal preparation of nanocrystalline magnetite Fe3O4. Mater. Res. Bull,2001,36(3-4):497-502.
    [122]Si S., Kotal A., Mandal T. K., et al. Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chem. Mater.,2004,16(18):3489-3496.
    [123]Sun X. H., Zheng C. M., Zhang F. X., et al. Size-controlled synthesis of magnetite (Fe3O4) nanoparticles coated with glucose and gluconic Aacid from a single Fe(III) precursor by a sucrose bifunctional hydrothermal method. J. Phys. Chem. C.,2009,36(113):16002-16008.
    [124]Rajendran R., Muralidharan R., Gopalakrishnan R. S., et al. Controllable synthesis of single-crystalline Fe3O4 nanorice by a one-pot, surfactant-assisted hydrothermal method and its properties. Eur. J. Inorg. Chem.,2011,35:5384-5389.
    [125]Gao G. H., Shi R. R., Qin W. Q., et al. Solvothermal synthesis and characterization of size-controlled monodisperse Fe3O4 nanoparticles. J. Mater. Sci. Lett.,2010,45(13): 3483-3489.
    [126]Wang L., Ji H., Wang S., et al. Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor. Nanoscale,2013, DOI:10.1039/c3nr00256j.
    [127]Sun X. J., Xing Y., Liu X. C., et al. Solvothermal synthesis and magnetic properties of 3D flower-like NiHPOy·H2O superstructures. Dalton Trans.,2010,39(8):1985-1988.
    [128]Deng H., Li X. L., Peng Q., et al. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Edit.,2005,44(18):2782-2785.
    [129]Xu J., Yang H. B., Fu W. Y., et al. Preparation and magnetic properties of magnetite nanoparticles by sol-gel method. J. Magn. Magn. Mater.,2007,309(2):307-311.
    [130]Ma M., Wu Y., Zhou J., et al. Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field. J. Magn. Magn. Mater.,2004,268 (1-2):33-39.
    [131]De-Matteis L., Custardoy L., Fernandez-Pacheco R., et al. Ultrathin MgO coating of superparamagnetic magnetite nanoparticles by combined coprecipitation and sol-gel synthesis. Chem. Mater.,2012,24(3):451-456.
    [132]Park J., An K., Hwang Y., et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater.,2004,3(12):891-895.
    [133]Liang X. J., Jia X. C., Cao L., et al. Microemulsion synthesis and characterization of nano-Fe3O4 particles and Fe3O4 nanocrystalline. J. Dispersion Sci. Technol,2010,31(8): 1043-1049.
    [134]Chastellain M., Petri A., Gupta A., et al. Superparamagnetic silica-iron oxide nanocomposites for application in hyperthermia. Adv. Eng. Mater.,2004,6(4):235-241.
    [135]Karaoglu E., Baykal A., Senel M., et al. Synthesis and characterization of Piperidine-4-carboxylic acid functionalized Fe3O4 nanoparticles as a magnetic catalyst for Knoevenagel reaction. Mater. Res. Bull.,2012,47(9):2480-2486.
    [136]Chen D. Y., Jiang M. J., Li N. J., et al. Modification of magnetic silica/iron oxide nanocomposites with fluorescent polymethacrylic acid for cancer targeting and drug delivery. J. Mater. Chem.,2010,20(31):6422-6429.
    [137]Sun J., Zhou S. B., Hou P., et al. Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J.Biomed. Mater. Res. A.,2007,80A(2):333-341.
    [138]Lee J. H., Jun Y., Yeon S. I., et al. Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew. Chem. Int. Ed,2006, 48(45):8160-8162.
    [139]Chen H. M., Deng C. H., Zhang X. M., Synthesis of Fe3O4@SiO2@PMMA core-shell-shell magnetic microspheres for highly efficient enrichment of peptides and proteins for MALDI-ToF MS analysis. Angew. Chem. Int. Ed,2010,49(3):607-611.
    [140]Rahman M. A., Miah M. A. J., Minami H., et al. Preparation of magnetically doped multilayered functional silica particles via surface modification with organic polymer. Polym. Adv. Technol.,2013,24(2):174-180.
    [141]Li Y. G. Wang.P. C., Ai L. Q., et al. Adsorption characteristics of Hg2+ ions using Fe3O4/chitosan magnetic nanoparticles. Mater. Process. Technol.,2011,291-294:72-75.
    [142]Chang Y. C., Chen D. H. Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(Ⅱ) ions. J. Colloid Interface Sci.,2005,283(2):446-451.
    [143]Walles T., Herden T., Haverich A., et al. Influence of scaffold thickness and scaffold composition on bioartificial graft survival. Biomaterials,2003,24(7):1233-1239.
    [144]Li H. F., Gao S. Y., Zheng Z. L., et al. Bifunctional composite prepared using layer-by-layer assembly of polyelectrolyte-gold nanoparticle films on Fe3O4-silica core-shell microspheres. Catal. Sci. Technol.,2011,1(7):1194-1201.
    [145]Ninjbadgar T., Brougham D. F. Epoxy ring opening phase transfer as a general route to water dispersible superparamagnetic Fe3O4 nanoparticles and their application as positive MRI contrast agents. Adv. Funct. Mater.,2011,21(24):4769-4775.
    [146]Salehizadeh H., Hekmatian E., Sadeghi M., et al. Synthesis and characterization of core-shell Fe3O4-gold-chitosan nanostructure. J. Nanobiotecg.,2012,10 (3):1-7.
    [147]Zhao X. M., Hosmane N. S., Wu A. G. ortho-Phenylenediamine:An effective spacer to build highly magnetic Fe3O4/Au nanocomposites. Chem. Phys. Chem.,2012,13(18):4142-4147.
    [148]Pan Y., Gao J., Zhang B., et al. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles. Langmuir,2010,26(6):4184-4187.
    [149]Li L., Yang Y., Ding J., et al. Synthesis of magnetite nanooctahedra and their magnetic field-induced two-/three-dimensional superstructure. Chem. Mater.,2010,22(10):3183-3191.
    [150]Huang W. C., Tsai P. J., Chen Y. C. Multifunctional Fe3O4@Au nanoeggs as photothermal agents for selective killing of nosocomial and antibiotic-resistant bacteria. Small,2009,5(1): 51-56.
    [151]Boisselier E., Astruc D. Gold nanoparticles in nanomedicine:preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev.,2009,38(6):1759-1782.
    [152]Gao J. H., Gu H. W., Xu B. Multifunctional magnetic nanoparticles:design, synthesis, and biomedical applications. Acc. Chem. Res.,2009,8(42):1097-1107.
    [153]Vollath D., Bifunctional nanocomposites with magnetic and luminescence properties. Adv. Mater.,2010,22:4410-4415.
    [154]Gawande M. B., Branco P. S., Varma R. S., Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev.,2013, 42:3371-3393.
    [155]Nam J. M., Thaxton C. S., Mirkin C. A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science,2003,301 (5641):1884-1886.
    [156]Hu S. H., Liu D. M., Tung W. L., et al. Surfactant-free, self-assembled PVA-iron oxide/Silica core-shell nanocarriers for highly sensitive, magnetically controlled drug release and ultrahigh cancer cell uptake efficiency. Adv. Funct. Mater.,2008,18(19):2946-2955.
    [157]Nasongkla N., Bey E., Ren J. M., et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett.,2006,6(11):2427-2430.
    [158]Zhao Y. T., Zhang W. Y., Lin Y. H., et al. The vital function of Fe3O4@Au nanocomposites for hydrolase biosensor design and its application in detection of methyl parathion. Nanoscale, 2013,5(3):1121-1126.
    [159]Ghosh R., Pradhan L., Devi Y. P., et al. Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia. J. Mater. Chem., 2011,21 (35):13388-13398.
    [160]Gupta A. K., Wells S. Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies. Ieee T. Nanobiosci.,2004,3 (1):66-73.
    [161]Sonvico, F., Mornet S., Vasseur S., et al. Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators:Synthesis, physicochemical characterization, and in vitro experiments. Bioconjugate Chem.,2005,16 (5): 1181-1188.
    [162]Hussain S. M., Hess K. L., Gearhart J. M., et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells:Toxicol. In. Vitro.,2005,19 (7):975-983.
    [163]Berry C. C., Wells S., Charles S., et al. Dextran and albumin derivatised iron oxide nanoparticles:influence on fibroblasts in vitro. Biomaterials,2003,24 (25):4551-4557.
    [164]Wolfheis O. S. Nanoparticle-enhanced fluorescence imaging of latent fingerprints reveals drug abuse. Angew. Chem. Int. Ed.,2009,48 (13):2268-2269.
    [165]Tang H. W., Lu W., Che C. M., et al. Gold nanoparticles and imaging mass spectrometry: double imaging of latent fingerprints. Anal. Chem.,2010,82 (5):1589-1593.
    [166]Cobley C. M., Chen J., Cho E. C., et al. Gold nanostructures:a class of multifunctional materials for biomedical applications. Chem. Soc. Rev.,2011,40:44-56.
    [167]Sametband M., Shweky I., Banin U., et al. Application of nanoparticles for the enhancement of latent fingerprints. Chem. Commun.,2007,11:1142-1144.
    [168]Gao D. M., Li F., Song J., et al. One step to detect the latent fingermarks with gold nanoparticles. Talanta,2009,80:479-483.
    [169]Solanki P. R., Kaushik, A., Agrawal V. V., et al. Nanostructured metal oxide-based biosensors. NPG Asia Mater.,2011,3:17-24.
    [170]Larsson E. M., Langhammer C, Zoric I., et al. Nanoplasmonic probes of catalytic reactions. Science,2009,326:1091-1094.
    [171]Park J. H., Maltzahn G.V., Xu M. J., et al. Cooperative nanomaterial system to sensitize, target, and treat tumors. PNAS,2009,3(107):981-986.
    [172]Rica R. D. L., Stevens M. S. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked. Nature Nanotech.,2012,7:821-824.
    [173]Grzelczak M., Perez-Juste J., Mulvaney P., et al. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev.,2008,37:1783-1791.
    [174]Grabar K. C., Freeman R. G., Hommer M. B., et al. Preparation and characterization of Au colloid monolayers. Anal. Chem.,1995,67(4):735-743.
    [175]Girginova P. I., Daniel-da-Silva A. L., Lopes C. B., et al. Silica coated magnetite particles for magnetic removal of Hg2+ from water. J. Colloid Interface Set.,2010,345 (2):234-240.
    [176]Liu G., Deng Q., Wang H. M., et al. Synthesis and characterization of nanostructured Fe3O4 micron-spheres and their application in removing toxic Cr ions from polluted water. Chem.-Eur. y.,2012,18(42):13418-13426.
    [177]Dong Z. P., Tian X., Chen Y. Z., et al. Dansyl derivative functionalized Fe3O4@SiO2 fluorescent probe for detection and removal of Hg2+ in aqueous solution. RSC Adv.,2013,3(4): 1082-1088.
    [178]Zhou J. S., Zhou S. F., Zhang Q. X., et al. Structure and properties of microwave absorption Ag/Fe3O4nanoparticles. Synth. React. Inorg. M.,2012,42(3):392-397.
    [179]Yao J., Liu Z., Liu Y., et al. Optical negative refraction in bulk metamaterials of nanowires. Science,2008,321 (5891):930-930.
    [180]Updike S. J., Hicks G. P. Reagentless substrate analysis with immobilized enzymes. Science, 1967,3798 (158):270-272.
    [181]Brunoud G., Wells D. M., Oliva M., et al. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature,2012,482 (7383):103-U132.
    [182]Gough D. A., Kumosa L. S., Routh T. L., et al. Function of an implanted tissue glucose sensor for more than 1 year in animals. Sci. Trans. Medic.,2010,2 (42):42-53.
    [183]Kay L. M., Bermak A., Luong H. C. A sub-mu W embedded CMOS temperature sensor for RFID food monitoring application. IEEE J.Solid-state Cir.,2010,6 (45):1246-1255.
    [184]Ibupoto Z. H., Shah S. M. U. A., Khun K., et al. Electrochemical L-lactic acid sensor based on immobilized ZnOnanorods with kactate oxidase. Sensors,2012,12 (3):2456-2466.
    [185]Bao S. J., Li C. M., Zang J. F., et al. New nanostructured TiO2 for direct electrochemistry and glucose sensor applications. Adv. Funct. Mater.,2008,18 (4):591-599.
    [186]Guo C. X., Li C. M. Direct electron transfer of glucose oxidase and biosensing of glucose on hollow sphere-nanostructured conducting polymer/metal oxide composite. PCCP,2010,12(38): 12153-12159.
    [187]Bao S. J., Guo C. X., Li C. M. Hydrophilic porous carbon with tailored nanostructure and its sensitive hydrogen peroxide biosensor. Rsc Advances,2012,2(3):1014-1020.
    [188]Steiner M. S., Duerkop A., Wolfbeis O. S. Optical methods for sensing glucose. Chem. Soc. Rev.,2011,40(9):4805-4839.
    [189]Revzina A. F., Sirkar K., Simonian A., et al. Glucose, lactate, and pyruvate biosensor arrays based on redox polymer/oxidoreductase nanocomposite thin-films deposited on photolithographically patterned gold microelectrodes. Sensor Actuat B:Chem.,2002,81, (2-3): 359-368.
    [190]Sato N., Okuma H. Amperometric simultaneous sensing system for D-glucose and L-lactate based on enzyme-modified bilayer electrodes. Anal. Chim. Acta,2006,565(2):250-254.
    [191]Dvir T., Timko B. P., Kohane D. S., et al. Nanotechnological strategies for engineering complex tissues. Nature Nanotech.,2011,6(1):13-22.
    [192]Vashist S. K., Zheng D., A1-Rubeaan K., et al. Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol. Adv.,2011,29(2):169-188.
    [193]Zhang M. G., Smith A., Gorski W. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal. Chem.,2004,76(17):5045-5050.
    [194]Ohara T. J., Rajagopalan R., Heller A. Wired enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances. Anal. Chem.,1994, 66(15):2451-2457.
    [195]Wang W., Yang C., Li C. M. On-demand microfluidic droplet trapping and fusion for on-chip static droplet assays. Lab. Chip.,2009,9(11):1504-1506.
    [196]Moser I., Jobst G., Urban G. A. Biosensor arrays for simultaneous measurement of glucose, lactate, glutamate, and glutamine. Biosens. Bioelectron.,2002,17(4):297-302.
    [197]Johnson K. A. Factors affecting reaction kinetics of glucose oxidase. J. Chem. Educ.,2002, 79(1):74-76.
    [198]Berry C. C., Wells S., Charles S., et al. Dextran and albumin derivatised iron oxide nanoparticles:influence on fibroblasts in vitro. Biomaterials,2003,25(24):4551-4557.
    [199]Martinello F., Silva E. L. D. Mechanism of ascorbic acid interference in biochemical tests that use peroxide and peroxidase to generate chromophore. Clin. Chim. Adta,2006,373 (1-2): 108-116.
    [200]Zhu J. H., Zhu Z., Lai Z., et al. Planar amperometric glucose sensor based on glucose oxidase immobilized by chitosan film on Prussian blue layer. Sensors,2002,2(4):127-136.
    [201]Gholivand M. B., Amiri M. Simultaneous detection of dopamine and acetaminophen by modified gold electrode with polypyrrole/aszophloxine film. J. Electroanal. Chem.,2012,676: 53-59.
    [202]Claussen J. C., Kumar A., Jaroch D. B., et al. Nanostructuring platinum nanoparticles on multilayered graphene petal nanosheets for electrochemical biosensing. Adv. Funct. Mater., 2012,22(16):3399-3405.
    [203]Wan D., Yuan S., Li G. L., et al. Glucose biosensor from covalent immobilization of chitosan-coupled carbon nanotubes on polyaniline-modified gold electrode. Acs. Appl. Mater. Inter.,2010,2(11):3083-3091.
    [204]Claussen J. C., Franklin A. D., Haque A., et al. Electrochemical biosensor of nanocube-augmented carbon nanotube networks. Acs Nano.,2009,3 (1):37-44.
    [205]Weber J., Kumar A., Kumar A., et al. Novel lactate and pH biosensor for skin and sweat analysis based on single walled carbon nanotubes. Sensor Actuat B-Chem.,2006,117 (1): 308-313.
    [206]Peralta-Videa J. R., Zhao L., Lopez-Moreno M. L., et al. Nanomaterials and the environment: A review for the biennium 2008-2010. J. Hazard. Mater.,2011,186(1):1-15.
    [207]Shang Q. K., Wang H. D., Yu H., et al. Effect of phenylalanine on photoluminescence and stability of CdTe nanocrystals capped with thioglycolic acid. Colloid. Surf. ACE. A.,2007,294 (1-3):86-91.
    [208]Gero-Decher J. H. Buildup of ultrathin multilayer films by a self-assembly process,1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Chem. Macro.Sym.,1991,1(46):321-327.
    [209]Wang Y., Tong S. W., Xu X. F., et al. Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells. Adv. Mater.,2011,13(23): 1514-1518.
    [210]Krogman K. C., Lowery J. L., Zacharia N. S., et al. Spraying asymmetry into functional membranes layer-by-layer. Nat. Mater.,2009,8(6):512-518.
    [211]Ciraci C., Hill R. T., Mock J. J., et al. Probing the ultimate limits of plasmonic enhancement. Science,2012,337(6098):1072-1074.
    [212]Nann T., Ibrahim S. K., Woi P. M., et al. Water splitting by visible light:A nanophotocathode for hydrogen production. Angew. Chem. Int. Ed.,2010,49(9):1574-1577.
    [213]Tsai T. W., Heckert G., Neves L. F., et al. Adsorption of glucose oxidase onto single-walled carbon nanotubes and its application in layer-by-layer biosensors. Anal. Chem.,2009,81(19): 7917-7925.
    [214]Xiang R. X., Lung M. T., Lam C. H. Layer-by-layer nucleation mechanism for quantum dot formation in strained heteroepitaxy. Phys. Rev. E.,2010,82(2):021601-021608.
    [215]Gaponik N. A. L. R. Thiol-capped CdTe nanocrystals:progress and perspectives of the related research fields. Phys. Chem. Chem. Phys.,2010,12:8685-8693.
    [216]Guo C. X., Yang H. B., Sheng Z. M., et al. Layered graphene/quantum dots for photovoltaic devices. Angew. Chem. Int. Ed.,2010,17(49):3014-3017.
    [217]Lu Z. S., Li C. M., Bao H., et al. Photophysical mechanism for quantum dots-induced bacterial growth inhibition. J. Nanosci. Nanotechno.,2009,9 (5):3252-3255.
    [218]Lu Z. S., Li C. M., Bao H., et al. Mechanism of antimicrobial activity of CdTe quantum dots. Langmuir,2008,24(10):5445-5452.
    [219]Wasserman S. R., Tao Y. T., Whitesides G. M. Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates. Langmuir,1989, 5(4):1074-1087.
    [220]Wang C., Ma Q., Dou W., et al. Synthesis of aqueous CdTe quantum dots embedded silica nanoparticles and their applications as fluorescence probes. Talanta,2009,77(4):1358-1364.
    [221]Yu W. W., Qu L., Guo W., et al. Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals. Chem. Mater.,2004,16 (3):560-560.
    [222]Lin Y. W., Tseng W. L., Chang H. T. Using a layer-by-layer assembly technique to fabricate multicolored-light-emitting films of CdSe@CdS and CdTe quantum dots. Adv. Mater.,2006, 18(11):1381-1386.
    [223]Tu C. C., Lin L. Y. High efficiency photodetectors fabricated by electrostatic layer-by-layer self-assembly of CdTe quantum dots. Appl. Phys. Lett.,2009,94 (21):163107-163109.
    [224]Hardman R. A toxicologic review of quantum dots:Toxicity depends on physicochemical and environmental factors. Environ. Health. Persp.,2006,114 (2):165-172.
    [225]Shiohara A., Hoshino A., Hanaki K., et al. On the cyto-toxicity caused by quantum dots. Microbiol. Immunol.,2004,48 (9):669-675.
    [226]Yong K. T., Swihart M. T. In vivo toxicity of quantum dots:no cause for concern? Nanomedicine,2012,7(11):1641-1643.
    [227]Fang T. T., Li X., Wang Q. S., et al. Toxicity evaluation of CdTe quantum dots with different size on Escherichia coli. Toxicol. In. Vitro.,2012,26(7):1233-1239.
    [228]Zhang L. S. W., Baumer W., Monteiro-Riviere N. A. Cellular uptake mechanisms and toxicity of quantum dots in dendritic cells. Nanomedicine,2011,6(5):777-791.
    [229]Mailander V., Lorenz M. R., Holzapfel V., et al. Carboxylated superparamagnetic iron oxide particles label cells intracellularly without transfection agents. Mol. Imaging. Biol.,2008,10(3): 138-146.
    [230]Bao J., Chen W., Liu T., et al. Bifunctional Au-Fe3O4 nanopartides for protein separation. Acs Nano,2007,1(4):293-298.
    [231]Chertok B., Moffat B. A., David A. E., et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials,2008,29(4): 487-496.
    [232]Jordan A., Scholz R., Maier-Hauff K., et al. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J. Neuro-Oncol.,2006,78(1):7-14.
    [233]Kaushik A., Khan R,, Solanki P. R., et al. Iron oxide nanoparticles-chitosan composite based glucose biosensor. Biosens. Bioelectron.,2008,4 (24):676-683.
    [234]Hu W.H., Liu Y. S., Yang H. B., et al. ZnO nanorods-enhanced fluorescence for sensitive microarray detection of cancers in serum without additional reporter-amplification. Biosens. Bioelectron.,2011,26(8):3683-3687.
    [235]Liu Y.S., Hu W. H., Lu Z. S., et al. Photografted poly(methyl methacrylate)-based high performance protein microarray for hepatitis B virus biomarker detection in human serum. Med. Chem. Comm.,2010,1(2):132-135.
    [236]Hu W. H., Liu Y. S., Lu Z. S., et al. Poly [oligo (ethylene glycol) methacrylate-co-glycidyl methacrylate] Brush Substrate for Sensitive Surface Plasmon Resonance Imaging Protein Arrays. Adv. Funct. Mater.,2010,20(20):3497-3503.
    [237]Tyagi N., Sedoris, K. C., Steed M., et al. Mechanisms of homocysteine-induced oxidative stress. Am. J. Physiol. Heart. Circ. Physiol.,2005,289(6):2649-2656.
    [238]Liu Y.S., Li C. M., Hu W. H., et al. High performance protein microarrays based on glycidyl methacrylate-modified polyethylene terephthalate plastic substrate. Talanta,2009,77(3): 1165-1171.
    [239]Ge Y. Q., Zhang Y., Xia J., et al. Effect of surface charge and agglomerate degree of magnetic iron oxide nanoparticles on KB cellular uptake in vitro. Colloids Surf., B.,2009,73: 294-301.
    [240]Mannini M., Pineider F., Sainctavit P., et al. Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nat. Mater.,2009,8(3):194-197.
    [241]Aslam M., Schultz, E. A. Sun T., et al. Synthesis of amine-stabilized aqueous colloidal iron oxide nanoparticles. Cryst. Growth. Des.,2007,7(3):471-475.
    [242]Pulskamp K., Diabate S., Krug H. F. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol. Lett., 2007,1(168):58-74.
    [243]Berry C. C., Wells S., Charles S., et al. Cell response to dextran-derivarised iron oxide nanoparticles post internalisation. Biomaterials,2004,23(25):5405-5413.
    [244]Bratton S. B., Walker G., Srinivasula S. M., et al. Recruitment, activation and retention of caspases-9 and-3 by Apaf-1 apoptosome and associated XIAP complexes. EMBO J.,2001,20: 998-1009.
    [245]Schelman W. R., Andres R. D., Sipe K. J., et al. Glutamate mediates cell death and increases the Bax to Bcl-2 ratio in a differentiated neuronal cell line. Mol. Brain. Res.,2004,2 (128): 160-169.
    [246]Gotoh T., Terada K., Oyadomari S., et al. Hsp70-DnaJ chaperone pair prevents nitric oxide-and CHOP-induced apoptosis by inhibiting translocation of Bax to mitochondria. Cell Death Differ.,2004,11:390-402.
    [247]Hemdan S., Almazan G. Dopamine-induced toxicity is synergistically potentiated by simultaneous HSP-90 and Akt inhibition in oligodendrocyte progenitors. J. Neurochem.,2008, 4(105):1223-1234.
    [248]Jin Y. D., Jia C., Huang S. W., et al. Multifunctional nanoparticles as coupled contrast agents. Nat. Comm.,2010,1:41-53.
    [249]Yu H., Chen M., Rice P. M., et al. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett.,2005,5(2):379-382.
    [250]Park J. H.,.Maltzahn G., Ruoslahti E., et al. Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angew. Chem. Int. Ed.,2008,38(120): 7284-7288.
    [251]Yu M. K., Jeong Y. Y., Park J., et al. Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew. Chem. Int. Ed.,2008,29(47): 5362-5365.
    [252]Song D. F., Sommerville D., Brown A. G., et al. Thermal development of latent fingermarks on porous surfaces--urther observations and refinements. Forensic Sci. Int.,2011,204(1-3): 97-110.
    [253]Hazarika P., Jickells S. M., Wolff K., Imaging of latent fingerprints through the detection of drugs and metabolites. Angew. Chem. Int. Ed.,2008,52(47):10167-10170.
    [254]Deans J., Recovery of fingerprints from fire scenes and associated evidence. Sci. Justice,2006, 46(3):153-168.
    [255]Yeh Y. C., Creran B., Rotello V. M. Gold nanoparticles:preparation, properties, and applications in bionanotechnology. Nanoscale,2012,4:1871-1880.
    [256]Sun S. H., Zeng H., Robinson D. B., et al. Monodisperse MFe2O4 (M=Fe, Co, Mn) nanoparticles. J.Am. Chem.Soc.,2004,126(1):273-279.
    [257]Li Y. Q., Zhang Q., Nurmikko A. V., et al. Enhanced magnetooptical response in dumbbell-like Ag-CoFe2O4 nanoparticle pairs. Nano Lett.,2005,5(9):1689-1692.
    [258]Link S., El-Sayed M. A., Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B.,1999,103(21):4212-4217.
    [259]Selvakannan P. R., Mandal S., Phadtare S., et al. Capping of gold nanoparticles by the amino acid lysine renders them water-dispersible. Langmuir,2003,19(8):3545-3549.
    [260]Duff D. G., Baiker A., Edwards P. P. A new hydrosol of gold clusters.1. Formation and particle-size variation. Langmuir,1993,9(9):2301-2309.
    [261]Yamaura M., Camilo R. L., Sampaio L. C., et al. Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles. J.Magn. Magn. Mater.,2004, 279(2-3):210-217.
    [262]Baschong W., Stierhof Y. D. Preparation, use, and enlargement of ultrasmall gold particles in immunoelectron microscopy. Microsc. Res. Techniq.,1998,42(1):66-79.
    [263]Croxton R. S., Baron M. G., Butler D., et al. Variation in amino acid and lipid composition of latent fingerprints. Forensic Sci.Int.,2010,199(1-3):93-102.
    [264]Zhao X. L., Ca Y., Wang T., et al. Preparation of alkanethiolate-functionalized core/shell Fe3O4@Au nanoparticles and its interaction with several typical target molecules. Anal. Chem., 2008,23(80):9091-9096.
    [265]Makarova O. V., Ostafin A. E., Miyoshi H., et al. Absorption and encapsulation of fluorescent probes in nanoparticles. J. Phys. Chem. B.,1999,43(103):9080-9084.
    [266]Santra S., Yang H., Dutta D., et al. TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chem. Comm.,2004,24:2810-2811.
    [267]Wu W., He Q. G., Jiang C. Z. Magnetic iron oxide nanoparticles:synthesis and surface functionalization strategies. Nanoscale Res.Lett.,2008,3(11):397-415.
    [268]Kim J., Kim H. S., Lee N., et al. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem. Int. Ed.,2008,44(47):8438-8441.
    [269]Daniel M. C., Astruc D. Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.,2004,104(1):293-346.
    [270]Larsson E. M., Langhammer C., Zoric I., et al. Nanoplasmonic probes of catalytic reactions. Science,2009,326(5956):1091-1094.
    [271]Park J. H., Maltzahn G., Xu M. J., et al. Cooperative nanomaterial system to sensitize, target, and treat tumors. P NATL ACAD SCI USA.,2010,107(3):981-986.
    [272]Spindler X., Hofstetter O., McDonagh A. M., et al. Enhancement of latent fingermarks on non-porous surfaces using anti-L-amino acid antibodies conjugated to gold nanoparticles. Chem. Comm.,2011,47(19):5602-5604.
    [273]Gao D. M., Li F., Song J., et al. One step to detect the latent fingermarks with gold nanoparticles. Talanta,2009,80:479-483.
    [274]Jin Y. J., Luo Y. J., Xu G. Z., et al. Aged fingermarks detection with CdS/PAMAM nanocomposites. Adv. Mater. Res.,2011,466:282-283.
    [275]Becue A., Moret S., Champod C., et al. Use of stains to detect fingermarks. Biotechnic. Histochem.,2011,86(3):140-160.
    [276]Wu C. L., Zheng J., Huang C., Hybrid silica-nanocrystal-organic dye superstructures as post-encoding fluorescent probes. Angew. Chem. Int. Ed.,2007,28(46):5393-5396.
    [277]Fu Q., Lu C., Liu J., Selective coating of single wall carbon nanotubes with thin SiO2 layer. Nano Lett.,2002,4(2):329-332.
    [278]Nyquist R. A., Putzig C. L., Leugers M. A., Handbook of infrared and raman spectra of inorganic compounds and organic salts:infrared spectra of inorganic compounds, America: Academit press limted.1971.
    [279]Jitianu A., Crisan M., Meghea A., et al. Influence of the silica based matrix on the formation of iron oxide nanoparticles in the Fe2O3-SiO2 system, obtained by sol-gel method. J.Mater. Chem.,2002,12(5):1401-1407.
    [280]Wang L., Neoh K. G., Kang E. T., Biodegradable magnetic-fluorescent magnetite/poly (dl-lactic acid-co-a,β-malic acid) composite nanoparticles for stem cell labeling. Biomaterials, 2010,13(31):3502-3511.
    [281]Santra S., Liesenfeld B., Bertolino C., et al. Fluorescence lifetime measurements to determine the core-shell nanostructure of FITC-doped silica nanoparticles:An optical approach to evaluate nanoparticle. J.Lumin.,2006,1(117):75-82.