离子交换法从盐湖卤水中分离富集硼的工艺及应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硼及硼化合物有着广泛的用途,目前国内制取硼酸的主要原料为硼镁石,近年来,硼镁石资源日益枯竭,而我国很多的盐湖卤水硼资源丰富,具有重要的开发价值,同时对于卤水中回收镁制备高品质的镁质化工产品时,硼是有害的,需要把硼分离出来,如果在分离的过程中能够同时富集硼,可达到卤水资源综合利用的目的。
     本文采用离子交换法研究从盐湖卤水中分离富集硼。首先研究了几种树脂如D403、D564、XSC-700等在模拟卤水溶液中对硼的吸附性、解吸性、选择性以及各树脂的稳定性等性能,结果表明D403. D564、XSC-700在适宜的条件下最大吸附量分别为6.6、7.1、7.31mg·mL-1; Mg2+、K+、Na+、Li+等金属离子对D403、D564、XSC-700树脂吸附硼的影响较小;去离子水很难将吸附在树脂上的硼水洗下来,水洗液中的硼是通过表面吸附粘附在树脂上的,而去离子水很容易将吸附在树脂上的Mg2+、K+、Na、Li+等离子洗下来;酸溶液有利于解吸反应的进行,在适宜的条件下,盐酸和硫酸溶液对硼的解吸率均大于95%。三种树脂比较而言,XSC-700在适宜的条件下比D403、D564树脂对溶液中的硼的吸附能力强,选择性最佳,且机械、化学、热稳定性较好。
     采用静态吸附法考察了XSC-700树脂在罗布泊盐湖卤水中对硼离子的吸附、解吸、转型等性能。结果表明,XSC-700树脂能适应原料的性质,能够有效地提取硼,吸附能力较大,树脂对硼离子具有优良的选择吸附性,对其它离子吸附较少,工艺简单方便、不带入二次污染;XSC-700在适宜条件下最大吸附量为6.16mg·mL-1,吸附完后用去离子水水洗负载树脂,可以有效分离硼与卤水中的其它离子,对后续制备硼酸有着重要的意义。
     对XSC-700在盐湖卤水中的硼的吸附过程进行了动力学、热力学研究。结果表明,XSC-700树脂对卤水中硼的吸附交换过程符合准二级吸附交换动力学过程。随着温度的升高,反应速率有所增大,计算出反应活化能为6.527kJ/mol。吸附过程符合Langmuir吸附等温式和Freundich吸附等温式,且更符合前者;采用热力学公式计算吸附过程的ΔG、ΔS和ΔH,结果可知吸附自由能ΔG小于零,且随着温度的升高,△G的绝对值增大,说明XSC-700树脂对硼的吸附反应可自发进行,但同时可以看出△G绝对值增加得不是很大,因此虽然升高温度有利于硼的吸附,但影响不是很大;焓变ΔH大于零,说明树脂吸附硼为吸热反应;熵变△S大于零,说明吸附是一个熵增加的过程。
     采用动态吸附法考察XSC-700树脂在卤水中对硼离子的吸附性能、解吸性能、转型性能等。结果表明,溶液中硼离子浓度、流速、树脂体积等对穿透曲线都有影响,树脂动态吸附硼的适宜条件为树脂用量100mL,流速1.5mL·min-1卤水中初始硼浓度370~620mg·L-1;采用0.5mol·L-1的盐酸对树脂进行动态解吸,结果表明流速越低,解吸峰越窄、越高,解吸效果越好,解吸越充分彻底,但解吸时间越长,工作效率降低,动态解吸的适宜条件为解吸流速5~10mL·min-1,耗酸量120~140mL,解吸时间14~24min;解吸后用200mL水量可将树脂洗至弱酸性至中性;用0.5mol·L-1的氢氧化钠对树脂进行动态转型,结果表明转型的适宜条件为流速4mL·min-1耗碱量40mL以上;转型后用200mL水量可将树脂洗至弱碱性至中性。
     当树脂用量扩大到2000mL时,结果表明,吸附的较佳实验条件为:流速120mL·min-1所能处理的卤水体积8000mL左右;吸附后用3600~4000mL去离子水淋洗树脂就基本上可以把树脂吸附的各种离子水洗下来;用2800mL0.5mol·L-1的盐酸对树脂进行解吸,较佳流速为160mL·min-1;当流出液体积为4000mL左右时能够将树脂洗至弱酸性;用800mL0.5mol·L-1的氢氧化钠对树脂进行转型,较佳流速为80mL-min-1;当水洗量为4000mL能够将树脂层中残余的碱液洗涤下来以免其会与后续吸附过程中卤水中的Mg2+发生反应。实验室扩大循环实验结果表明,XSC-700在扩大生产中具有较好的循环工作性能,树脂未采用转型处理工序的循环实验结果中的吸附率比采用转型处理工序的循环实验结果的吸附率稍低,但基本都能稳定在95%左右,然而,树脂未采用转型处理工序过程中硼的水洗率较大,树脂采用转型处理工序过程中硼的水洗率较小。
     根据实验室扩大试验的结果确定的中试的工艺参数,每天进行10次循环,每次处理5.68m3卤水,所需树脂为1.3吨;吸附流速(逆流)为5.68m3·h-1,吸附时间为60min;采用0.5mol·L-1的盐酸2.112m3对负载树脂进行解吸,流速为6.336m3·h-1,解吸时间为20min;采用0.5mol·L-1的氢氧化钠0.5952m3对树脂进行转型,流速(逆流)为3.5712m3·h-1,转型时间为10min;每次吸附、解吸、转型后分两次水洗,每次的水洗量为1.448m3,流速(顺流)均为29.76m3.h-1,水洗时间均为3min。在此条件下的中试试验循环实验结果中无论是未转型后的还是转型后的树脂的吸附率和解吸率均基本保持稳定,充分说明树脂具有良好的循环性能,转型后的树脂在水洗过程中硼的水洗率比未转型后的树脂在水洗过程中硼的水洗率小,这些均与实验室扩大实验中的循环实验结果基本吻合。
     解吸液经过蒸发浓缩得到的硼酸经过XRD图谱和ICP测试可知其产品结晶度好,纯度高。对比新旧树脂的IR图可以看出,树脂的官能团结构没有发生变化,且新旧树脂的吸附量、含水量变化都不大,表明该树脂稳定性较强,可循环多次使用。图63幅,表72个,参考文献126篇。
Boron and its compounds have a wide range of uses. At present, the main raw materials for producing boric acid are ascharite in China. However, the ascharite resources were increasingly drying up in recent years.China has abundant boron resources in brines, it has a great development value, at the same time for recycling magnesium to prepar high quality magnesium chemical products from brine, boron need to be separated from brine because it is harmful for magnesium chemical products. If boron can be recyled during the separation process, it can achieve the purpose for comprehensively utilization of brine resource.
     Ion-exchange method is used to separate and enrich boron from brine in this paper. Comparing the ability such as boron adsorption, desorption, selectivity and stability of resin and other factors, the batch adsorption experiments were carried out in synthetic boric acid solutions to choose the most suitable one from three kinds of resins D403, D564and XSC-700under controlled conditions (initial boron concentration, volumes of resin, pH, contact time, temperature, and the behavior of foreign ions). The results showed that the maximum adsorption capacities are6.6,7.1,7.31mg-mL-1of D403, D564, XSC-700under appropriate conditions. Mg2+, K+, Na+, Li+and other metal ions has little effect on resin D403, D564, XSC-700. Deionized water is difficult to wash down boron which was adsorbed on the resin and is easy to wash down Mg+, K+, Na+, Li+and other metal ions. Desorption experiment results showed that acid solution facilitates the desorption reaction, under suitable conditions, the boron desorption rate was more than95%using hydrochloric acid and sulfuric acid solution. In comparison of three kinds of resin, the boron adsorption capacity of XSC-700is better than D403, D564resin under appropriate conditions, and it has better selectively ability, mechanical, chemical and thermal stability.
     The study was performed to investigate the boron adsorption onto the resin XSC-700in Lop Nor Saline Lake bittern.The results showed that, XSC-700resin can effectively extract boron and has a good selective adsorption.The technology is simple and convenient and not bring the secondary pollution. The maximum adsorption capacities for XSC-700are6.16mg-mL-1under appropriate conditions. After adsorption, loaded resin can be effectively separate boron and other ions by washing with deionized water. It has important significance in the following preparation of boric acid.
     On static experimental data, Kinetics and thermodynamics were studied. The adsorption process is analyzed using pseudo-first-order kinetic model, pseudo-second-order kinetic model and intrapartical diffusion model and the adsorption kinetics is found to preferably obey the pseudo-second-order model. With temperature increasing, the reaction rate increased, the activation energy is calculated to6.527kJ/mol. In addition, equilibrium data are fitted to Langmuir and Freundlich isotherm equations and the equilibrium data are found to be well represented by Langmuir isotherm equation. Using thermodynamic formula to calculate AG, AS and AH during adsorption process, the results showed that△G was less than0, and with temperature increasing, the absolute value of AG increased which means the reaction process of XSC-700resin adsorbing boron can be spontaneous, while at the same time, we can see the absolute value of AG increased not greatly, so although increasing temperature is better for boron adsorption, but the impact is not great, AH is greater than0which means that the adsorption of boron is an endothermic reaction, AS is greater than0which means that the adsorption is an entropy increase process.
     The effects of flow rate, initial boron concentration and the bed volume of resin on boron adsorption were investigated in column-mode experiments. The experimental results showed the breakthrough capacity of XSC-700decreased with flow rate and initial boron concentration increasing. The appropriate condition was the flow rate1.5mL·min-1, resin volume100mL and initial boron concentration370-620mg·L-1.The dynamic desorption results showed that when the velocity is lower, the desorption peak is narrower and higher, the effect of desorption is better, while the desorption time is longer, work efficiency is reduced. The appropriate desorption condition was desorption velocity5~10mL·min-10.5mol·L-1HC1120-140mL, desorption time14-24min. After desorption, the water washing experimental results showed that200mL water can wash resin to weakly acidic to neutral. Resin transformation experiment results demonstrated that when the flow rate was4mL·min-1,0.5mol·L-1NaOH is above40mL, the resin can be completely transformation. After transconformation, the water washing experimental results showed that200mL water can wash resin to weakly acidic to neutral.
     When the amount of resin is expanded to2000mL, that the appropriate experimental conditions was the flow rate120mL·min-1, penetration time66.7min which can handle brine volume8000mL. After adsorption,3600-4000mL deionized water can basically washing down the other ions which adsorbed onto the resin. It can be desorbed with2800mL0.5moL·L-1HCl under the flow rate of160mL-min-1. It can wash down the residual desorption solution with4000mL water. When using800mL0.5mol·L-1NaOH to transite the resin, the appropriate transconformation flow rate is80mL·min-1. When the volume of water is about4000mL, it can wash down the residual alkali solution to avoid the reaction with Mg2+in brine in the subsequent adsorption process.
     The resin was tested for cycle test. The adsorption rates of cycle test result under no transformation process is slightly lower than the the cycle test result under transformation process, but can be basically stable at around95%. However, the washing rates of cycle test result under no transformation process is higher than the the cycle test result under transformation process. XSC-700in expanding production has good cycle performance.
     Based on the results of Enlarged laboratory experiment and the scale of treatable5.68m3brine each time in the trial experiment, it can be calculated the qulity of required resin is1.3ton, pilot plant process parameters were adjusted, the appropriate condition is that adsorption flow rate is (countercurrent)5.68m3·h-1, the adsorption time is60min.; Using2.112m0.5mol·L-1hydrochloric to wash loaded resin, the flow rate is6.336m3·h-1, and the desorption time was20min,0.5mol·L-1sodium hydroxide the0.5952m3resin transformation velocity (countercurrent)3.5712m3·h-1, the transconformation time is10min after washing; after every step,1.448m3water is used to wash the resin twice, the flow rate (downstream) is29.76m3·h-1, and the washing time is3min. Loop experimental results of the pilot test in this condition either not transformed or transformed resin showed that the adsorption and desorption rates remained stable. It illustrated that resin has a good cycle performance.The washing rate in the washing process of the resin under notransformation is lower than the resin under transformation.
     By evaporating the boron concentrated eluate, boric acid was crystallized in pure form as confirmed by XRD and ICP analysis technique. The IR diagrams of old and new resin showed that the functional structure exchange capacity and water content has not changed which indicated that the resin has better stability, and can be repeatedly used.
引文
[1]郑学家.硼化合物生产与应用.北京:化学工业出版社,2007.
    [2]王太明.硼在冶金和材料科学的应用.北京:冶金工业出版社,1987.
    [3]武汉大学,吉林大学,等.无机化学(第三版,下册).北京:高等教育出版,1994.
    [4]陶连印,郑学家.硼化合物的生产与应用.成都:成都科技大学出版社,1992.
    [5]王彦强.硼元素在化工生产中的应用[J].化工之友,1998(1):10.
    [6]司徒杰生.化工产品手册(第三版):无机化工产品.北京:化学工业出版社,1999.
    [7]晓非.世界硼矿资源及开发利用近况[J].化工矿物与加工,1999(8):21.
    [8]李钟模.我国硼矿资源开发现状[J].化工矿物与加工,2003(9):38.
    [9]吕品,施醇辉,刘景泽,等.我国硼酸生产现状及发展建议[J].辽宁省硼工业协会会员代表大会论文集,2004(10):40-46.
    [10]Liu W G, Xiao Y K, Peng Z C, An Z S, He X X. Boron concentration and isotopic composition of halite from experiments and salt lakes in the Qaidam Basin[J]. Geochimica et Cosmochimica Acta,2000,64(13):2177-2183.
    [11]曹兆汉.智利阿塔卡码盐湖及开发利用[J].盐湖研究,1988(2):45-52.
    [12]韩井伟,韦法强.从盐湖矿中提取硼的研究进展[J].盐湖研究,2007,15(2):57-60.
    [13]高仕扬,杨存道,黄师强.从大柴旦盐湖卤水中分离提取钠盐、钾盐、硼酸和锂盐[J].盐湖研究,1988(1):17-26.
    [14]郭光远.青海大柴旦硼资源开发现状和前景[J].化工矿物与加工,2006(2):1-3.
    [15]郑喜玉,张明刚,李秉孝,等.中国盐湖志.北京:科学出版社,2002:130.
    [16]高世杨,杨存道,黄师强.从大柴旦盐湖卤水中分离提取钠盐、钾盐、硼酸和铿盐[J].盐湖研究,1988(1):17-26.
    [17]张彭熹.中国盐湖自然资源及其开发利用.北京:科学出版社,1999.
    [18]李海民,程怀德,张全有.卤水资源开发利用技术述评(续完)[[J].盐湖研究,2004(1):62-72.
    [19]Yilmaz I, Kabay N, Brjyak M, Yuksel M, Wolska J, Koltuniewicz A. A submerged membrane-ion-exchange hybrid process for boron removal [J]. Desalination,2006,198(1-3):310-315.
    [20]王路明Mg(OH)2对海水中硼的吸附效果[J].海湖盐与化工,2003,32(5):5-7.
    [21]王路明Mg(OH)2和树脂联合吸附法制取低硼镁砂的研究[J].海湖盐与化工,1994,24(1):14-16.
    [22]顾黎.环境中硼及其生物作用[J].国外医学、医学地理分册,2000,21(2):95.
    [23]Col M, Col C. Environmental boron contamination in waters of Hisarcik area in the Kutahya Province of Turkey[J]. Food and Chemical Toxicology,2003, 41(10):1417-1420.
    [24]Hunt C D. Dietary boron:An overview of the evidence for its role in immune function[J]. Journal of Trace Elements in Experimental Medicine,2003,16(4): 291-306.
    [25]Weir Jr R J, Fisher R S. Toxicologic studies on borax and boric acid[J]. Toxicology and Applied Pharmacology,1972,23(3):351-364.
    [26]Garcia-Soto D D, Camacho E M. Boron removal from industrial wastewaters by ion exchange:an analytical control parameter[J]. Desalination,2005, 181(1-3):207-216.
    [27]Melnyk L, Goncharuk V, Butnyk I, Tsapiuk E. Boron removal from natural and wastewaters using combined sorption/membrane process[J]. Desalination, 2005,185(1-3):147-157.
    [28]Organization W H. Boron Environmental Health Criteria 204. Vol. Geneva: World Health Organization,1998.
    [29]Col M, Col C. Environmental boron contamination in waters of Hisarcik area in the Kutahya Province of Turkey [J]. Food and Chemical Toxicology,2003, 41(10):1417-1420.
    [30]Simonnot M-O, Castel C, NicolaI M, Rosin C, Sardin M, Jauffret H. Boron removal from drinking water with a boron selective resin:is the treatment really selective?[J]. Water research,2000,34(1):109-116.
    [31]Nadav N, Priel M, Glueckstern P. Boron removal from the permeate of a large SWRO plant in Eilat[J]. Desalination,2005,185(1-3):121-129.
    [32]Okay O, Giiclu H, Soner E, Balkas. T. Boron pollution in the Simav River, Turkey and various methods of boron removal[J]. Water research,1985,19(7): 857-862.
    [33]贾永衷.硼酸盐水溶液振动光谱和硼酸盐物理化学[M].兰州:兰州大学, 2000.
    [34]张金才.盐湖浓缩卤水提硼的部分实验研究:[硕士学位论文].青海:中国科学院,2005.
    [35]杨鑫,徐徽,陈白珍,等.盐湖卤水硫酸法提取硼酸的工艺研究[J].湖南师范大学自然科学学报,2008,31(1):72-77.
    [36]李武,杨存道,高世杨,等.盐卤硼酸盐化学ⅩⅩⅤ Ⅱ盐湖卤水酸化过程中硼酸生长速率[J].盐湖研究,1995,3(3):23-27.
    [37]Matsumotom M, Kondo K, Hirata M, Kokubu hano T, TAKADA T. Recovery of boric acid from wastewater by solvent extraction[J]. Separation Science and Technology,1997(32):983-991.
    [38]唐明林,邓天龙,杨建元,等.A1416从选硼后母液中萃取硼酸研究[J].盐湖研究,1994,2(1):63-66.
    [39]韩井伟.从提锂后盐湖卤水中萃取提硼的新工艺研究:[硕士学位论文].青海:中国科学院,2007.
    [40]崔荣旦,王国莲,黄师强.2-乙基己醇从盐湖卤水中萃取硼酸[J].盐湖研究,1990(4):16-21.
    [41]唐明林,邓天龙,廖梦霞.沉淀法从盐后母液中提取硼酸的研究[J].海湖盐与化工,1993(5):17-19.
    [42]Opiso E, Sato T, Yoneda T. Adsorption and co-precipitation behavior of arsenate, chromate, selenate and boric acid with synthetic allophane-like materials[J]. Journal of Hazardous Materials,2009,170(1):79-86.
    [43]魏新俊,王永浩.自卤水中同时沉淀硼锂的方法[J].CN1249272A,2000.
    [44]杨存道,贾优良,李君势.从盐湖卤水结晶硼酸的新工艺研究[J].化学工程,1992(3):22-27.
    [45]Inukai Y, Tanaka Y, Matsuda T, Mihara N, Yamada K, Nambu N, Itoh O, Doi T, Kaida Y, Yasuda S. Removal of boron(Ⅲ) by N-methylglucamine-type cellulose derivatives with higher adsorption rate[J]. Analytica Chimica Acta, 2004,511(2):261-265.
    [46]Geffen N, Semiat R, Eisen M S, Balazs Y, Katz I, Dosoretz C G. Boron removal from water by complexation to polyol compounds[J]. Journal of Membrane Science,2006,286(1-2):45-51.
    [47]Gazi M, Bicak N. Selective boron extraction by polymer supported 2-hydroxylethylamino propylene glycol functions [J]. Reactive & Functional Polymers,2007,67(10):936-942.
    [48]Rodriguez-Lopez G, Marcos M D, Martinez-Manez R, Sancenon L, Soto J, Villaescusa L A, Beltran D, Amoros P. Efficient boron removal by using mesoporous matrices grafted with saccharides[J]. Chemical Communications, 2004(19):2198-2199.
    [49]闫春燕,伊文涛,马培华,等Mg/Al型水滑石吸附硼的实验研究[J].离子交换与吸附,2009,25(3):233-240.
    [50]刘茹.海水淡化后处理吸附法除硼研究:[硕士学位论文].大连:大连理工大学,2006.
    [51]Ozturk N, Kavak D. Adsorption of boron from aqueous solutions using fly ash: Batch and column studies[J]. Journal of Hazardous Materials,2005,127(1-3): 81-88.
    [52]王丽娜,齐涛.新型硼鳌合树脂的合成及其对盐湖卤水中硼的吸附[J].过程工程学报,2004,4(12):501-507.
    [53]Cengeloglu Y, Tor A, Arslan G, Ersoz M, Gezgin S. Removal of boron from aqueous solution by using neutralized red mud[J]. Journal of Hazardous Materials,2007,142(1-2):412-417.
    [54]Ferreira O P, de Moraes S G, Duran N, Cornejo L, Alves O L. Evaluation of boron removal from water by hydrotalcite-like compounds[J]. Chemosphere, 2006,62(1):80-88.
    [55]del Mar de la Fuente Garcia-Soto M, Camacho E M. Boron removal by means of adsorption with magnesium oxide[J]. Separation and Purification Technology,2006,48(1):36-44.
    [56]Jacob C. Seawater desalination:Boron removal by ion exchange technology [J]. Desalination,2007,205(1-3):47-52.
    [57]Yurdakoc M, Seki Y, Karahan S, Yuadakoc K. Kinetic and thermodynamic studies of boron removal by Siral 5, Siral 40, and Siral 80[J]. Journal of Colloid and Interface Science,2005,286(2):440-446.
    [58]Kabay N, Yilmaz I, Yamac S. Removal and recovery of boron from geothermal waste water by selective ion-exchange resins [J]. Desalination, 2004(167):427-438.
    [59]车容睿.离子交换技术在提硼中的应用[J].天津化工,1992(2):32-37.
    [60]王丽娜,齐涛,李会泉,等.新型硼螯合树脂的合成及其对盐湖卤水中硼的吸附[J].过程工程学报,2004,4(6):502-507.
    [61]Senkal B F, Bicak N. Polymer supported iminodipropylene glycol functions for removal of boron[J]. Reactive & Functional Polymers,2003,55(1):27-33.
    [62]Yan C Y, Yi W T, Ma P H, Deng X C, Li F Q. Removal of boron from refined brine by using selective ion exchange resins [J]. Journal of Hazardous Materials,2008,154(1-3):564-571.
    [63]Kabay N, Sarp S, Yuksel M, Arar O, Bryjak M. Removal of boron from seawater by selective ion exchange resins[J]. Reactive & Functional Polymers, 2007,67(12):1643-1650.
    [64]Bicak N, Gazi M, Senkal B F. Polymer supported amino bis-(cis-propan 2,3 diol) functions for removal of trace boron from water[J]. Reactive & Functional Polymers,2005,65(1-2):143-148.
    [65]Hilal N, Kim G J, Somerfield C. Boron removal from saline water:A comprehensive review[J]. Desalination,2011,273(1):23-35.
    [66]孟令宗,邓天龙.制取硼酸的相图工艺过程解析[J].盐业与化工,2007,37(1):18-21.
    [67]钱国强,林雪,何炳林.硼酸与多羟基化合物的反应及硼选择性树脂[J].离子交换与吸附,1994,10(4):375-382.
    [68]Lyman.W, Preuss.A. U.S.P,1957,2.813.838.
    [69]Maier M, Craeiun V. Romanian Patent,1983,81.229.
    [70]Kunin R.来华离子交换树脂座谈纪要.上海:上海医药工业研究院,1978.
    [71]Hass R a. Boron removal and Brine softening with Amberlite resins[J]. Ion Exchange Resins,2003:1-4.
    [72]Liu H N, Ye X S, Li Q, Kim T, Qing B J, Guo M, Ge F, Wu Z J, Lee K. Boron adsorption using a new boron-selective hybrid gel and the commercial resin D564[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2009,341(1-3):118-126.
    [73]Schilde U, Uhlemann E. Extraction of boric acid from brines by ion exchange[J]. International Journal of Mineral Processing,1991,32(3-4): 295-309.
    [74]肖应凯,刘卫国,肖云,等.硼特效树脂离子交换法分离硼的研究[J].盐湖研究,1997,5(2):1-6.
    [75]孔亚杰,李海民,韩丽娟,等.D403树脂从盐湖卤水中提取硼酸的探索试验[J].无机盐工业,2006(7):42-43.
    [76]李文强.大柴旦卤水中硼的提取[J].光谱实验室,2006,23(4):872-874.
    [77]朱昌洛,田喜林.D564与液体矿提硼[J].矿产综合利用,2000(2):4-6.
    [78]王美玲,邹从沛,刘晓珍,等.XSC-700树脂对硼酸吸附性能的研究[J].核动力工程,2007(S1):91-94.
    [79]钱庭宝,刘维林.离子交换树脂应用手册.天津:南开大学出版社,1989.
    [80]夏笃伟.离子交换树脂.北京:化学工业出版社,1983.
    [81]Arias M F C, Bru L V i, Rico D P, Galvan P V. Comparison of ion exchange resins used in reduction of boron in desalinated water for human consumption[J]. Desalination,2011,278(1-3):244-249.
    [82]中华人民共和国国家技术监督局.GB/T5476-1996.离子交换树脂预处理方法.北京:中国标准出版社,1996-10-25.
    [83]中华人民共和国国家标准局.GB5757-86.离子交换树脂含水量测定方法.北京:中国标准出版社,1986-01-08.
    [84]中华人民共和国国家质量监督检验检疫总局.GB/T12598-2001.离子交换树脂渗磨圆球率、磨后圆球率的测定方法.北京:中国标准出版社,2001-08-28.
    [85]Ozturk N, Kose T E. Boron removal from aqueous solutions by ion-exchange resin:Batch studies[J]. Desalination,2008,227(1-3):233-240.
    [86]Kabay N, Yilmaz-Ipek I, Soroko I, Makowski M, Kirmizisakal O, Yag S, Bryjak M, Yuksel M. Removal of boron from Balcova geothermal water by ion exchange-microfiltration hybrid process[J]. Desalination,2009,241(1-3): 167-173.
    [87]孙健程.D201离子交换树脂分离钒、磷、硅的应用基础研究:[硕士学位论文].长沙:中南大学,2008.
    [88]钱国强,林雪,何炳林.硼酸与多羟基化合物的反应及硼酸选择性树脂[J].离子交换与吸附,1994,10(4):375-382.
    [89]Kabay N, Yilmaz I, Yamac S, Samatya S, Yuksel M, Yuksel U, Arda M, Saglam M, Iwanaga T, Hirowatari K. Removal and recovery of boron from geothermal wastewater by selective ion exchange resins. I. Laboratory tests[J]. Reactive & Functional Polymers,2004,60:163-170.
    [90]Boncukcuoglu R, Kocakerim M M, Kocadagistan E, Yilmaz M T. Recovery of boron of the sieve reject in the production of borax[J]. Resources, Conservation and Recycling,2003,37(2):147-157.
    [91]Yilmaz A E, Boncukcuoglu R, Yilmaz M T, Kocakerim M M. Adsorption of boron from boron-containing wastewaters by ion exchange in a continuous reactor[J]. Journal of Hazardous Materials,2005,117(2-3):221-226.
    [92]Badruk M, Kabay N, Demircioglu M, Mordogan H, Ipekoglu U. Removal of boron from wastewater of geothermal power plant by selective ion-exchange resins. I. Batch sorption-elution studies[J]. Separation Science and Technology, 1999,34(13):2553-2569.
    [93]Xiao Y K, Wang L. The effect of pH and temperature on the isotopic fractionation of boron between saline brine and sediments[J]. Chemical Geology,2001,171(3-4):253-261.
    [94]Pastor M R, Ruiz A F, Chillon M F, Rico D P. Influence of pH in the elimination of boron by means of reverse osmosis [J]. Desalination,2001, 140(2):145-152.
    [95]Ingri, N., Lagerstrom G, Frydman M. Equilibrium studies of polyborates in NaClO4 medium[J]. Acta Chemica Scandinavica,1957,11:1034-1058.
    [96]张爱芸,曹敏.含硼卤水热力学研究[M].哈尔滨:哈尔滨工程大学出版社,2007.
    [97]Miyazaki Y, Matsuo H, Fujimori T, Takemura H, Matsuoka S, Okobira T, Uezu K, Yoshimura K. Interaction of boric acid with salicyl derivatives as an anchor group of boron-selective adsorbents[J]. Polyhedron,2008,27(13): 2785-2790.
    [98]Garcia-Soto M D D, Camacho E M. Boron removal by processes of chemosorption[J]. Solvent Extraction and Ion Exchange,2005,23(6): 741-757.
    [99]Sahin S. A mathematical relationship for the explanation of ion exchange for boron adsorption[J]. Desalination,2002,143(1):35-43.
    [100]Kose T E, Ozturk N. Boron removal from aqueous solutions by ion-exchange resin:Column sorption-elution studies[J]. Journal of Hazardous Materials, 2008,152(2):744-749.
    [101]Williams D H, Fleming I,王剑波,施卫峰译.有机化学中的光谱方法.北京:北京大学出版社,2001.
    [102]闫春燕,伊文涛,马培华,等.硼特效树脂吸附硼的动力学研究[J].离子交换与吸附,2008,24(3):200-207.
    [103]姜志新.离子交换动力学及其应用(上)[J].离子交换与吸附,1989,5(1):54-73.
    [104]姜志新.离子交换动力学及其应用(下)[J].离子交换与吸附,1989,5(3):221-233.
    [105]Recep Boncukcuo g, Erdem Yilmaz A, Muhtar Kocakerim M. An empirical model for kinetics of boron removal from boron-containing wastewaters by ion exchange in a batch reactor[J]. Desalination,2004,160 (2):159-166.
    [106]阿部光雄主编,王方等编译.当代离子交换技术.北京:化学工业出版社,1993.
    [107]王方编译.离子交换应用技术.北京:科学技术出版社,1990.
    [108]Boncukcuoglu R, Yilmaz A E, Kocakerim M M, Copur M. An empirical model for kinetics of boron removal from boron-containing wastewaters by ion exchange in a batch reactor[J]. Desalination,2004,160(2):159-166.
    [109]王学松,胡海琼,孙成.钠型丝光沸石吸附水溶液中铜离子平衡及动力学研究[J].科技导报,2006,24(11):31-36.
    [110]Chabani M, Amrane A, Bensmaili A. Kinetics of nitrates adsorption on Amberlite IRA400 resin[J]. Desalination,2007,206(1-3):560-567.
    [111]Lou J. Modelling of boron sorption equilibrium and kinetic studies of ion exchange with boron solution:[PhD Thesis]. USA:Oklahoma State University, 1997.
    [112]Ho Y S, McKay G. Pseudo-second order model for sorption processes[J]. Process Biochemistry,1999,34(5):451-465.
    [113]韩效钊,胡波,陆亚玲,等.钾长石与氯化钠离子交换动力学[J].化工学报,2006,57(9):2201-2206.
    [114]靳朝辉.离子交换动力学的研究:[博士学位论文].天津:天津大学化工学院,2004.
    [115]Lee I H, Kuan Y C, Chern J M. Equilibrium and kinetics of heavy metal ion exchange[J]. Journal of the Chinese Institute of Chemical Engineers,2007, 38(1):71-84.
    [116]Yurdakoc M, Seki Y, Karahan S, Yurdakoc K. Kinetic and thermodynamic studies of boron removal by Siral 5, Siral 40, and Siral 80[J]. Journal of Colloid and Interface Science,2005,286(2):440-446.
    [117]杨莉丽,康海彦,李娜,等.离子交换吸附隔的动力学[J].离子交换与吸附,2004,20(2):138-143.
    [118]文衍宣,王励生,金作美.模拟磷矿脱镁废水中镁离子的交换动力学研究[J].物理化学学报,2003,19(10):913-916.
    [119]陶祖贻,赵爱民.离子交换平衡及动力学.北京:原子能出版社,1989.
    [120]Lou J D, Foutch G L, Na J W. Kinetics of boron sorption and desorption in boron thermal regeneration system[J]. Separation Science and Technology, 2000,35(14):2259-2277.
    [121]北川浩,铃木谦一郎.吸附的基础与设计.北京:化学工业出版社,1983:33.
    [122]Lin S H, Kiang C D. Chromic acid recovery from waste acid solution by an ion exchange process:equilibrium and column ion exchange modeling[J]. Chemical Engineering Journal,2003,92(1-3):193-199.
    [123]Bicak N, Bulutcu N, Senkal B F, Gazi M. Modification of crosslinked glycidyl methacrylate-based polymers for boron-specific column extraction[J]. Reactive & Functional Polymers,2001,47(3):175-184.
    [124]Kose T E, Ozturk N. Boron removal from aqueous solutions by ion-exchange resin:Column sorption-elution studies [J]. Journal of Hazardous Materials, 2008,152(2):744-749.
    [125]Badruk M, Kabay N, Demircioglu M, Mordogan H, Ipekoglu U. Removal of boron from wastewater of geothermal power plant by selective ion-exchange resins. Ⅱ. Column sorption-elution studies[J]. Separation Science and Technology,1999,34(15):2981-2995.
    [126]Kabay N, Yilmaz I, Yamac S, Yuksel M, Yuksel U, Yildirim N, Aydogdu O, Iwanaga T, Hirowatari K. Removal and recovery of boron from geothermal wastewater by selective ion-exchange resins-Ⅱ. Field tests [J]. Desalination, 2004,167(1-3):427-438.