基于细观力学的沥青混合料紫外光老化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫外光老化是强紫外光照地区沥青路面一种主要的老化形式,现今对紫外光老化的研究多集中在沥青结合料或者是沥青混合料宏观路用性能的研究,有一定的局限性。本文基于细观力学研究紫外光老化沥青混合料在不同影响因素下的细观力学性能,并结合宏观路用性能提出强紫外光地区抗紫外光老化的沥青混合料材料设计方法。
     本文分析了我国太阳辐射强度的分区情况及紫外光照辐射对沥青路面的影响情况,选用合适的室内模拟紫外光照光源,制作了室内加速紫外光老化试验箱。
     本文进行沥青砂的单轴压缩蠕变试验,根据试验结果拟合了不同光照时间、不同集料级配和不同油石比时沥青砂的伯格斯模型四参数,为微观结构分析奠定了基础。根据该四参数在老化前后的变化分析了沥青砂的粘弹性能变化,结果表明AC-13S1型级配和AC-16S1型级配粘弹比值变化最小,AC-13II型(5.5%)和AC-16II型(5.5%)油石比粘弹比值最小,受紫外光老化影响最小。对不同老化时间和粘弹性参数进行拟合提出沥青混合料的紫外光老化评价指标J (h,1200)。
     利用离散元程序建立沥青混合料二维数值模型,结合不同光照时间、不同集料级配和不同油石比的细观力学参数,进行这些不同影响因素下的虚拟单轴蠕变试验。通过该虚拟试验获得紫外光老化前后沥青混合料的应变、颗粒间的正向接触力和剪切接触力,分析这些细观力学特性,研究不同影响因素对沥青混合料性能的影响,从而提出AC-13S1型级配和AC-16S1型级配,AC-13II型和AC-16II型油石比的微观接触力老化前后变化最小,受紫外光老化影响最小。
     进行了不同影响因素下的低温抗裂性能和高温稳定性能研究,综合路用性能研究推荐AC-13S1型级配和AC-16S1型级配,AC-13II型和AC-16II型油石比。研究表明细观力学分析结果和宏观路用性能分析结果一致,验证细观力学分析是可靠的,并推荐合理材料设计为AC-13S1和AC-16S1型级配及油石比(5.5%)。
Ultraviolet aging is one of the major forms of aging in strong UV irradiationof asphalt pavement. Today, researchers paid more attention on the asphalt binderor the asphalt mixture macro-road performance. Based on micromechanics, themicro-mechanical performance of UV aging asphalt mixture is discussed with itsunder different influencing factors. Combined with road performance and anti-UVaging asphalt mixture material design is promoted about strong UV region.
     This paper analyzes the partition of the solar radiation intensity and UVirradiation of radiation on the asphalt pavement. Establish indoor accelerated UVaging chamber by the appropriate choice of indoor simulated UV irradiation lightsource.
     In order to get the required parameters of numerical mode,tar sands uniaxialcompression creep tests are made. According to the test results to fit a differentlight, different aggregate gradation and asphalt content tar sands Burgers modelwith four parameters.UV aging asphalt mixture aging evaluation based on thefitted parameters with aging time relationship. To establish the parameters of thenumerical model, the parameters can be converted micromechanical parametersfor the establishment of a numerical model and virtual test.The results showedthat AC-13S1and AC-16S1gradation have minimum viscoelastic ratios andAC-13II (5.5%) and AC-16II (5.5%) have minimum viscoelastic ratio. UV agingasphalt mixture aging evaluation J (h,1200) is proposed by different aging timeand the viscoelastic parameters.
     Create a two-dimensional asphalt mixture numerical model using discreteelement program, and do virtual uniaxial creep under these different influencing factors tests based on a combination of different illumination time, different setGradation and asphalt content micromechanics parameters. Acquire strain, normalcontact forces between the particles and shear contact force of before and afterUV aging asphalt mixture through the virtual test. Find different influencingfactors on the performance of asphalt mixture by analyzing these micromechanicscharacteristics. Minimal change AC-13S1and AC-16S1gradation, AC-13II andAC-16II are proposed by less change in micro-contact force before and afteraging.
     In order to verify the anti-UV material aging asphalt mixture design methodbased on micromechanics study, and get the corresponding material designmethod based on macro-Road Performance of, the low temperature crackresistance and high temperature stability studies under diffirent factors.Recommend reasonable material designed for AC-13S1and AC-16S1gradationand aggregate ratio (5.5%).
引文
[1]沈金安.沥青及沥青混合料路用性能[M].北京:人民交通出版社,2001.
    [2] VALLERGA B, MONISMITH C, GRANTHEM K. A study of some factors influ-encing the weathering of paving asphalts[C]//Assoc Asphalt Paving Technol Proc..[S.l.]:[s.n.],1957.
    [3] TRAXLERRN. DURABILITYOFASPHALTCEMENTS(WITHDISCUSSION)[C]//Association of Asphalt Paving Technologists Proceedings..[S.l.]:[s.n.],1963,32.
    [4] GLOTOVAN,KATSB,GORSHKOVV. Photooxidationofasphaltsinthinfilms[J].Chemistry and Technology of Fuels and Oils,1974,10(11):876–879.
    [5] EDLER A, HATTINGH M, SERVAS V, et al. Use of aging tests to determine theefficacyofhydratedlimeadditionstoasphaltinretardingitsoxidativehardening[C]//Proceedings, Association of Asphalt Paving Technologists..[S.l.]:[s.n.],1985,54:118–139.
    [6]王佳妮.模拟紫外环境下沥青流变行为及老化机理的研究[D].哈尔滨:哈尔滨工业大学,2008.
    [7]李海军,黄晓明,曾凡奇.道路沥青老化性状分析及评价[J].公路交通科技,2005,22(4):5–8.
    [8]胡行俊.合成材料的大气老化(续)[J].塑料,2005,8:9.
    [9]叶奋,孙大权,黄彭,等.沥青强紫外线光老化性能分析[J].中国公路学报,2006,19(6).
    [10]庞凌.沥青紫外光老化特性研究[D].武汉:武汉理工大学,2008.
    [11] HVEEM F, ZUBE E, SKOG J. Proposed new tests and specifications for pavinggradeasphalts[C]//AssociationofAsphaltPavingTechnologistsProceedings..[S.l.]:[s.n.],1963,32.
    [12] KEMP G R, PREDOEHL N H. A comparison of field and laboratory environmentson asphalt durability[C]//Association of Asphalt Paving Technologists Proceedings..[S.l.]:[s.n.],1981,50.
    [13] AIREY G. State of the art report on ageing test methods for bituminous pavementmaterials[J]. International Journal of Pavement Engineering,2003,4(3):165–176.
    [14] TIA M, RUTH B, CHARAI C, et al. Investigation of original and in-service asphaltproperties for the development of improved specifications-final phase of testing andanalysis[J]. Final Report, Engineering and Industrial Experiment Station, Universityof Florida, Gainesville, FL,1988.
    [15]成志辉.老化对沥青路面的影响[J].湖南交通科技,2006,31(3):44–45.
    [16]田小革,莫一魁,郑健龙.抽提回收过程对沥青老化程度评价的影响[J].交通运输工程学报,2005,5(2):23–26.
    [17]叶奋,黄彭.沥青紫外线老化仿真系统的建立[J].建筑材料学报,2006,8(5):567–571.
    [18]李洪军.沙漠高速公路沥青路面耐久性研究[D].西安:长安大学,2005.
    [19]樊朝向,郭黎黎.紫外光对沥青及沥青混合料性能影响研究[J].河北交通科技,2009,3:006.
    [20]柳浩,王佳妮,谭亿秋.紫外老化对沥青性能影响的研究(英文)[J].科学技术与工程,2010(019):4679–4686.
    [21]齐亚妮,王晓飞,张广泰,等.新疆强紫外线地区橡胶沥青的光老化研究[J].公路,2010,11:040.
    [22] ELICES M, ROCCO C. Effect of aggregate size on the fracture and mechanicalproperties of a simple concrete[J]. Engineering fracture mechanics,2008,75(13):3839–3851.
    [23] ROCCO C, ELICES M. Effect of aggregate shape on the mechanical properties ofa simple concrete[J]. Engineering Fracture Mechanics,2009,76(2):286–298.
    [24]高政国,刘光廷.二维混凝土随机骨料模型研究[J].清华大学学报:自然科学版,2003,43(5):710–714.
    [25]刘光廷,高政国.三维凸型混凝土骨料随机投放算法[J].清华大学学报:自然科学版,2003,43(8):1120–1123.
    [26] DUCB,SUNLG. NumericalSimulationofAggregateShapesofTwo-DimensionalConcrete and Its Application1[J]. Journal of Aerospace Engineering,2007,20(3):172–178.
    [27] WANG Z, KWAN A, CHAN H. Mesoscopic study of concrete I: generation ofrandom aggregate structure and finite element mesh[J]. Computers&structures,1999,70(5):533–544.
    [28] KWAN A, WANG Z, CHAN H. Mesoscopic study of concrete II: nonlinear finiteelement analysis[J]. Computers&structures,1999,70(5):545–556.
    [29]王宗敏,邱志章.混凝土细观随机骨料结构与有限元网格剖分[J].计算力学学报,2006,22(6):728–732.
    [30]田莉,刘玉,胡霞光,等.模拟沥青混合料集料的多面体颗粒随机生成算法及程序[J].中国公路学报,2007,20(3):5–10.
    [31]徐瑞.沥青混合料快速三维数值建模技术[D].武汉:华中科技大学,2008.
    [32]杨圣枫.利用三维随机模型分析沥青混合料的力学行为[D].武汉:华中科技大学,2010.
    [33]王旭东,材料,沙爱民,等.沥青路面材料动力特性与动态参数[M].北京:人民交通出版社,2002.
    [34]沥青混合料的线性粘弹性特性模型[J].国外公路,1998,18(4):46–50.
    [35] MONISMITH C L, SECOR K E. Viscoelastic behavior of asphalt concrete pave-ments[C]//International Conference on the Structural Design of Asphalt Pavements..[S.l.]:[s.n.],1962,203.
    [36] SZYDLO A, MACKIEWICZ P. Asphalt mixes deformation sensitivity to change inrheological parameters[J]. Journal of materials in civil engineering,2005,17(1):1–9.
    [37] ABBAS A, PAPAGIANNAKIS A, MASAD E. Linear and nonlinear viscoelasticanalysis of the microstructure of asphalt concretes[J]. Journal of materials in civilengineering,2004,16(2):133–139.
    [38]郑健龙. Burgers粘弹性模型在沥青混合料疲劳特性分析中的应用[J].长沙交通学院学报,1995,11(3):32–42.
    [39]郑健龙,应荣华.沥青混合料热粘弹性断裂参数研究[J].中国公路学报,1996,9(3):20–28.
    [40]周志刚,钱国平,郑健龙.沥青混合料粘弹性参数测定方法的研究[J].长沙交通学院学报,2001,17(004):23–28.
    [41]郑健龙,田小革,应荣华.沥青混合料热粘弹性本构模型的实验研究[J].长沙理工大学学报(自然科学版),2004,1(1):1–7.
    [42]吕松涛,田小革,郑健龙.沥青混合料粘弹性参数的测定及其在本构模型中的应用[J].长沙交通学院学报,2005,21(001):37–42.
    [43]徐世法.表征沥青及沥青混合料高低温蠕变性能的流变学模型[J].力学与实践,1992,14(1):37–40.
    [44]庞海峰.沥青砂浆粘弹性试验分析[D].长沙:长沙理工大学,2009.
    [45]叶永,杨新华,陈传尧.沥青砂粘弹性模型参数的试验研究[J].中外公路,2009,29(4):192–195.
    [46]王志臣.基于细观力学的沥青混合料黏弹性能研究[D].大连:大连海事大学,2011.
    [47] LI G, ZHAO Y, PANG S S. Four-phase sphere modeling of effective bulk modulusof concrete[J]. Cement and Concrete Research,1999,29(6):839–845.
    [48] LI G, ZHAO Y, PANG S S, et al. Effective Young’s modulus estimation of con-crete[J]. Cement and concrete research,1999,29(9):1455–1462.
    [49] LI G, LI Y, METCALF J, et al. Elastic modulus prediction of asphalt concrete[J].Journal of materials in civil engineering,1999,11(3):236–241.
    [50] LI Y, METCALF J B. Two-step approach to prediction of asphalt concrete modulusfrom two-phase micromechanical models[J]. Journal of Materials in Civil Engineer-ing,2005,17(4):407–415.
    [51] HUANG B, LI G, SHU X. Investigation into three-layered HMA mixtures[J]. Com-posites Part B: Engineering,2006,37(7):679–690.
    [52] HUANG B, SHU X, LI G, et al. Analytical modeling of three-layered HMA mix-tures[J]. International Journal of Geomechanics,2007,7(2):140–148.
    [53] SHU X, HUANG B. Dynamic modulus prediction of HMA mixtures based on theviscoelastic micromechanical model[J]. Journal of Materials in Civil Engineering,2008,20(8):530–538.
    [54] SHU X, HUANG B. Micromechanics-based dynamic modulus prediction of poly-meric asphalt concrete mixtures[J]. Composites Part B: Engineering,2008,39(4):704–713.
    [55]朱兴一,黄志义,陈伟球.基于复合材料细观力学模型的沥青混凝土弹性模量预测[J].中国公路学报,2010,23(3):29–33.
    [56]闵召辉,黄卫,钱振东.环氧沥青玛蹄脂粘弹性能的细观研究[J].公路交通科技,2004,21(007):9–11.
    [57]薛国强,张裕卿,黄晓明.沥青混合料粘弹性能微观力学分析[J].公路交通科技,2009,26(6):18–23.
    [58]张裕卿.基于微观力学的沥青混合料粘弹性预测[J].吉林大学学报(工学版),2010,40(1):52–57.
    [59]祝青林,于贵瑞,蔡福, et al.中国紫外辐射的空间分布特征[J].资源科学,2005,27(1):108–113.
    [60]周允华.中国地区的太阳紫外辐射[J].地理学报,1986,41(2):132–143.
    [61]胡波,王跃思,刘广仁.中国紫外辐射的时空分布变化[J].中国气象学会2006年年会“首届研究生年会”分会场论文集,2006.
    [62]李晓军,江丽华.沥青砂浆粘弹特性试验与模型参数分析[J].武汉理工大学学报,2011,33(3):82–86.
    [63]蔡宜洲,叶永.沥青砂粘弹特性实验研究[J].工程力学,2010(A01):200–204.
    [64]陈静云,周长红,王哲人.沥青混合料蠕变试验数据处理与粘弹性计算[J].东南大学学报:自然科学版,2007(6).
    [65]黄晓明,朱湘,等.沥青路面设计[M].北京:人民交通出版社,2002.
    [66]张肖宁.沥青与沥青混合料的粘弹力学原理及应用[M].北京:人民交通出版社,2006.
    [67]万成.基于X-rayCT和有限元方法的沥青混合料三维重构与数值试验研究[D].广州:华南理工大学,2010.
    [68]刘丽,郝培文.沥青胶浆粘度特性分析[J].河北工业大学学报,2006,35(2):109–1.
    [69] ZHU H, NODES J E. Contact based analysis of asphalt pavement with the effect ofaggregate angularity[J]. Mechanics of Materials,2000,32(3):193–202.
    [70] DAI Q, YOU Z. Prediction of creep stiffness of asphalt mixture with micromechani-calfinite-elementanddiscrete-elementmodels[J]. Journalofengineeringmechanics,2007,133(2):163–173.
    [71] BANDYOPADHYAYA R, DAS A, BASU S. Numerical simulation of mechanicalbehaviourofasphaltmix[J]. Constructionandbuildingmaterials,2008,22(6):1051–1058.
    [72]邓学钧.路基路面工程[M].[S.l.]:人民交通出版社,2000:332.
    [73] CUNDALL P A. A computer model for simulating progressive, large-scale move-ments in blocky rock systems[J].1971.
    [74] CUNDALL P A, STRACK O D. A discrete numerical model for granular assem-blies[J]. Geotechnique,1979,29(1):47–65.
    [75] CUNDALL P A, HART R D. Numerical modelling of discontinua[J]. Engineeringcomputations,1992,9(2):101–113.
    [76] CUNDALL P. Formulation of a three-dimensional distinct element model-PartI. A scheme to detect and represent contacts in a system composed of many poly-hedral blocks[C]//International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts..[S.l.]:[s.n.],1988,25:107–116.
    [77] CUNDALL P. PFC2D user’s manual (Version3.1)[M]. Minnesota:[s.n.],2004.
    [78] BUTTLAR W G, YOU Z. Discrete element modeling of asphalt concrete: micro-fabric approach[J]. Transportation Research Record: Journal of the TransportationResearch Board,2001,1757(1):111–118.
    [79] YOU Z. Development of a micromechanical modeling approach to predict asphaltmixture stiffness using the discrete element method[D].[S.l.]: University of Illinoisat Urbana-Champaign,2003.
    [80] ABBAS A, MASAD E, PAPAGIANNAKIS T, et al. Micromechanical modeling ofthe viscoelastic behavior of asphalt mixtures using the discrete-element method[J].International Journal of Geomechanics,2007,7(2):131–139.
    [81] ADHIKARI S, YOU Z. Modeling of hollow cylindrical asphalt mixture speci-mens[J]. Pavements and materials,2008:100–107.
    [82] ADHIKARI S, YOU Z, DAI Q, et al. Investigation of the air void effect on theasphaltmixtureusing2Dand3DDEM[C]//1stInt.FLAC/DEMSymp.onNumericalModeling..[S.l.]:[s.n.],2008:419–426.
    [83] LIU Y, YOU Z. Simulation of cyclic loading tests for asphalt mixtures using userdefined models within discrete element method[C]//..[S.l.]:[s.n.],2008.
    [84] LIU Y, YOU Z, ADHIKARI S. Speed up discrete element simulation of asphaltmixtures with user-written C++codes[C]//Airfield and Highway Pavements: Effi-cient Pavements Supporting Transportation’s Future, Proc. of the2008Airfield andHighway Pavements Conf..[S.l.]:[s.n.],2008:64–72.
    [85] WALRAVENJ. Fundamentalanalysisofaggregateinterlock[J]. JournaloftheStruc-tural Division,1981,107(11):2245–2270.
    [86] WALRAVEN J C. Aggregate interlock: a theoretical and experimental analysis[J].1980.
    [87] VAN VLIET M R A. Size effect in tensile fracture of concrete and rock[M].[S.l.]:Delft University Press,2000.
    [88] VITTER J S. Random sampling with a reservoir[J]. ACM Transactions on Mathe-matical Software (TOMS),1985,11(1):37–57.
    [89] LIUY,DAIQ,YOUZ. Viscoelasticmodelfordiscreteelementsimulationofasphaltmixtures[J]. Journal of engineering mechanics,2009,135(4):324–333.
    [90] CHRISTENSEN D W, ANDERSON D A. Interpretation of Dynamic MechanicalTest Data for Paving Grade Asphalt Cements[J]. Journal of the Association of As-phalt Paving Technologists,1992,61.
    [91] BASU A, MARASTEANU M O, HESP S A. Time-temperature superposition andphysical hardeningeffectsinlow-temperatureasphalt binder grading[J]. Transporta-tionResearchRecord: Journal oftheTransportationResearchBoard,2003,1829(1):1–7.
    [92] ROWE G M, BAUMGARDNER G L. Evaluation of the Rheological Properties andMaster Curve Development for Bituminous Binders Used in Roofing[J]. RoofingResearch and Standards Development,2007,4(1504):103.
    [93] ZANZOTTOL,STASTNAJ. Dynamicmastercurvesfromthestretchedexponentialrelaxation modulus[J]. Journal of Polymer Science Part B: Polymer Physics,1997,35(8):1225–1232.
    [94] MALKIN A I, MALKIN A Y, ISAYEV A I. Rheology: concepts, methods, andapplications[M].[S.l.]: Chem Tec Pub,2006.
    [95] ZELELEW H M. Simulation of the permanent deformation of asphalt concrete mix-tures using discrete element method (DEM)[D].[S.l.]: Washington State University,2008.
    [96]郝培文.沥青混合料抗老化性能的研究[J].石油沥青,1994,4(2):28–32.