三种植物的河岸适应性及对含盐污染水体的净化效果
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河岸带水陆交互的边际效应决定了整个流域的多样性相对丰富,影响着整个流域的水和营养平衡,起到物理缓冲器及生物缓冲器的作用。河岸植被作为河岸带重要的组成因素日益受到各国学者的关注。自然状态及人工管理下河岸的特征不同,对整个河流流域起到的作用也有明显差别。人为管理下的河岸土壤盐分含量相对较高,河岸植物的种类与自然状态下河岸的植物有所差异。本文选取自然河岸带常见物种柽柳及人工管理河岸下的常见物种紫穗槐和黑麦草,测定其在不同NaCl浓度下的生长和生理状况及对富营养化水体的净化效果。为水质净化及防止河岸水土流失、护岸护坡的生态工程设计提供理论依据。研究结果表明:
     (1)长期浸泡条件下,适量NaCl均能促进柽柳和紫穗槐的生长。两植物生长的最适NaCl浓度分别为6 g·l-1和3 g·l-1。最适NaCl浓度下紫穗槐的生长速度大于柽柳。
     (2)与盆栽试验相比,长期浸泡条件下柽柳的耐盐能力明显下降,NaCl浓度为15 g·l-1时,部分单株出现死亡。本试验条件下柽柳的耐盐性能优于紫穗槐。
     (3)柽柳和紫穗槐叶片中MDA含量及抗氧化酶活性与其生长状况呈现一定相关性。MDA含量及SOD酶活性随NaCl浓度升高均明显增大;
     (4)适量浓度的NaCl可促进柽柳和紫穗槐对无机氮的吸收,所有NaCl处理柽柳水培液中硝态氮浓度的下降速度均大于紫穗槐。无论NaCl存在与否,两植物对硝态氮的利用效率高于氨氮;
     (5)紫穗槐根部和叶片的钠离子含量均随NaCl浓度的增大而增加。不同NaCl处理中,紫穗槐根部的钠离子含量大于叶片。柽柳根部和叶片的钠离子含量呈现不同的变化规律,根部钠离子含量随水培溶液中NaCl浓度增大未发生明显变化,叶片中钠离子含量随NaCl浓度增大迅速增加。相同NaCl处理下,柽柳叶片的钠离子含量均大于紫穗槐;
     (6)温度和NaCl的交互作用和明显影响黑麦草的发芽进程和发芽率。
     (7)黑麦草叶片中抗氧化酶活性及叶绿素、MDA含量的变化与其生长状况基本一致。30℃时黑麦草的抗NaCl性能明显下降。
     (8)在NaCl浓度为0.6%和1.2%的水培液中黑麦草的生长均明显受抑;
     (9)黑麦草对富营养化水培液中不同形态氮和总磷的净化效率均随NaCl浓度的升高而降低。
Being an interface between the catchment area and the aquatic environment, the biodiversity was relatively high in riparian area, due to the marginal utility of it, and the balance of water and related chemical fluxes of surface water systems was influenced. And riparian area acted as physical buffers as well as biological buffers. As an important ecological factor, riparian vegetation was paid more attention to by scholars in all countries increasingly. The characteristics of riverbank were different at nature and human management, the function of riverbank was different obviously. In this study, saltscedar (Tamarix chinensis), a familiar species in nature riverside, and Amorpha fruicosa L. and ryegrass (Lolium L.), the familiar species in the riverside at human’s management, were selected. The growth, the physiological condition and the purified effect to water at different NaCl concentration were determined, to provide theory basis for water purification, prevent riverside from soil erosion, and the design of ecological engineering of retaining wall. The results showed: (1) The growth of saltscedar and Amorpha fruicosa L could be accelerated by optimum NaCl, yet the optimum concentration of NaCl were different, 6 g·l-1 and 3 g·l-1 respectively. And the growth speed of Amorpha fruicosa L. was higher than saltscedar at optimum NaCl concentration; (2) The capability of salt tolerance debased obviously dipped in chronically. Capacity of salt tolerance of saltscedar was higher than that of Amorpha fruicosa L. (3) Antioxidant enzyme activity and malondialdehyde (MDA) content in leaves of Amorpha fruicosa L. and saltscedar were correlated with their growth status, the integrated change of antioxidant enzyme activity and MDA content can indicate the damage to above plants of NaCl stress; (4) The absorption of Amorpha fruicosa L. and saltscedar to inorganic nitrogen could be accelerated by appropriate NaCl concentration. And the descending speed of nitrate nitrogen in culture solution of saltscedar was higher than that of Amorpha fruicosa L. at different NaCl concentration. And the utility nitrate nitrogen by two plants to was higher than that of ammonia nitrogen in spites of the existence of NaCl; (5) Na+ both in roots and in leaves of Amorpha fruicosa L. increased with NaCl concentration increasing, and Na+ in roots was always higher than leaves of Amorpha fruicosa L. Yet, Na+ variation in roots and leaves of saltscedar was different from that of Amorpha fruicosa L. with NaCl increasing, Na+ in roots had not obvious variance while Na+ content in leaves increased rapidly with NaCl increasing. Na+ content in leaves of saltscedar was always higher than that of Amorpha fruicosa L at same NaCl treatment; (6) The interaction of NaCl and temperature affected the germinating progress and germinating rate of ryegrass evidently. The growth status of ryegrass at 10℃and 20℃had not significant difference with control expriment, as NaCl concentration lower than 0.9%. Yet, ryegrass at 30℃showed shorter figure, and thinner leaves, and so on. So, the capacity of salt tolerance of ryegrass at 30℃declined markedly; (7) The variety of antioxidant enzyme activity, chlorophyll and MDA content was accordance with growth status. Nevertheless, the capacity of salt tolerance of ryegrass debased clearly; (8) The growth of ryegrass was repressed in the culture solution at 0.6% and 1.2% NaCl concentration; (9) The purification efficiency of ryegrass to both inorganic nitrogen and total phosphate in eutrophic culture solution decreased with NaCl increasing. The antagonism of various factors should be considered as designing of ecological engineering to sewage purification.
引文
[1] 上官铁梁,贾志力,张金屯等,汾河太原段河漫滩草地植被的数量分类与排序,草业学报,2001,10(4):31~39
    [2] Pierre Y Julien, River mechanics, Cambridge University Press, 2002
    [3] 鲁春霞,谢高地,成升魁等,水利工程对河流生态系统服务功能的影响评价方法初探,应用生态学报,2003 ,14 (5)∶803~807
    [4] Hou P. et al., Response to environmental flows in the Lower Tarim River, Xinjiang, China: An ecological interpretation of water-table dynamics, Journal of Environmental Management, 2007, 83(4): 371~382
    [5] Hattermann F.F. et al., Integrating wetlands and riparian zones in river basin modeling. Ecological Modeling, 2006, 199: 379~392
    [6] Gregory S.V., Swanson F.J., McKee W.A.et al., 1991. An ecosystem perspective of riparian zones. Bioscience, 41 (8): 540~551
    [7] Malanson G.P., Riparian Landscapes. Cambridge University Press, Cambridge, 1993
    [8] Goebel P.C., Palik B.J., Pregitzer K.S., Plant diversity contributions of riparian areas in watersheds of the Northern Lake States, USA. Ecol. Appl., 2003, 13 (6): 1595~1609
    [9] R. Muneepeerakul et al., A neutral metapopulation model of biodiversity in river networks, Journal of Theoretical Biology, 2007, 245(2): 351~363
    [10] Naiman, R.J., Décamps, H., The ecology of interfaces: riparian zones. Annual Review of Ecology and Systematics. 1997, 28: 621~658
    [11] Patten D.T., Riparian ecosystems of semi-arid North America: diversity and human impacts. Wetlands, 1998, 18: 498~512
    [12] Malanson, G.P., Riparian Landscapes. Cambridge University Press, Cambridge, 1993
    [13] Johnson W.C., Tree recruitment and survival in rivers: influence of hydrological processes. Hydrological Processes, 2000, 14: 3051~3074
    [14] Naiman R.J., Décamps H., Pollock M. The role of riparian vegetation in maintaining regional biodiversity. Ecological Applications, 1993, 3: 209~212
    [15] 张建春,彭补拙,河岸带及其生态重建研究,地理研究,2002, 21(3):3:373~383
    [16] 张建春,彭补拙,河岸带研究及其退化生态系统的恢复与重建,生态学报,2003, 23(1) : 56~63
    [17] Lowrance R., Leonard R. and Sheridan J., Managing riparian ecosystems to control nonpoint pollution, Journal of Soil and Water Conservation, 1985, 40(1): 87~91
    [18] 陈吉泉,河岸植被特征及其在生态系统和景观中的作用,应用生态学报,1996,7(4): 439~448
    [19] Carleson D., Wilson L., Report of the riparian habitat technical task force, Final Report to Oregon Deportment of Forestry and Oregon Department of Fish and Wildlife, Salem, OR,USA, 1985
    [20] Gregory S.V., Swartson F.J., Mckee W.A. et al, An ecosystem perspective of riparian zones,Bioscience, 1991,41:540~551
    [21] Naiman R.J., Watershed Management: Balancing Sustainability and Environmental Change, New York: Springer, Verlag, 1992
    [22] Raedeke K.J., Streamside management: Riparian wildlife and forestry interactions, Proceedings of A Symposium on Riparian Wildlife and Forestry interactions. Contribution No.59, University of Washington, Seattle, Washington, USA, 1988
    [23] 夏继红,生态河岸岸带综合评价理论与应用研究:[博士学位论文],南京;河海大学,2005
    [24] Gunrnell A. M., Edwards P J.A conceptual model for alpine proglacial river channel evolution under changing climatic conditions. Elsevier Science, 1999, (38): 223~242
    [25] Friedman, J.M., Osterkamp, W.R., Lewis, W.M., The role of vegetation and bed-level fluctuations in the process of channel narrowing. Geomorphology, 1996, 14: 341~351
    [26] Welsch D. J., Riparian forest buffers function and design for protection and enhancement of water resources.USDA, Forest Service, Northeast area Forest Resource Management Radnos PA, 1991. NA-PR-07-91
    [27] Connell J. H., Diversity in tropical rainforests and coral reefs, Science, 1978, 199: 1302~1310
    [28] Huston M., A general hypothesis of species diversity, The American Naturalist, 1979, 113: 81~101
    [29] Ellis, L., Crawford, C., Molles, M., Comparison of litter dynamics in native and exotic riparian vegetation along the Middle Rio Grande of central NM, USA. Journal of Arid Environments, 1998, 38, 283~296
    [30] Smith, S., Devitt, D., Sala, A., et al., Water relations of riparian plants from warm desert regions. Wetlands, 1998, 18: 687~696
    [31] Gurnell A.M., Vegetation along river corridors: hydrogeomorphological interactions changing river channels. In: Gurnell A.M. and Petts G.E. (eds) Changing River Channels. John Wiley and Sons, Chichester, UK, 1995, 237~260
    [32] Poff N.L., Allan J.D., Bain M.B., Karr J.R., Prestegaard K.L., Richter B.D. et al., The natural flow regime. Bioscience, 1997, 47: 769~784
    [33] Vreugdenhil S.J. et al., Effects of flooding duration, frequency and depth on the presence of saplings of six woody species in north-west Europe, Forest Ecology and Management, 2006, 236: 47~55
    [34] Kozlowski T.T., Responses of woody plants to flooding and salinity. Tree Physiology Monograph, 1997, 1: 1~29
    [35] Kozlowski, T.T., Responses of woody plants to human-induced environmental stresses: issues, problems, and strategies for alleviating stress. Crit. Rev. Plant Sci. 2000, 19: 91~170
    [36] Kozlowski, T.T., Physiological-ecological impacts of flooding on riparian forest ecosystems. Wetlands 2002, 22, 550~561
    [37] Pollock M.M., Naiman R.J. and Hanley T.A., Plant species richness in riparian wetlands - a test of biodiversity theory. Ecology 1998, 9: 94~105
    [38] Deiller A.F., Walter J.N. and Tremolieres T., Effects of flood interruption on species richness, diversity and floristic composition of woody regeneration in the Upper Rhine alluvial hardwood forest regulated rivers. Research and Management 2001, 17: 393~405
    [39] Bendix J., Flood disturbance and the distribution of riparian species diversity. The Geographical Review 1997, 87: 468~483
    [40] Scott D. Tiegs et al. Flood disturbance and riparian species diversity on the Colorade River Delta. Biodiversity and conservation: 2005, 14: 1175~1194
    [41] Graf, W.L., Dam nation: a geographic census of American dams and their large-scale hydrologic impacts. Water Resources Research 1999, 35 (4): 1305~1311
    [42] Graf, W.L., Damage control: restoring the physical integrity of America's rivers. Annals of the Association of American Geographers 2001, 91 (1): 1~27
    [43] Hupp, C.R., Simon, A., Bank accretion and the development of vegetated depositional surfaces along modified alluvial channels. Geomorphology, 1991, 4: 111~124
    [44] Busch, D., Effects of fire on southwestern riparian plant community structure. Southwestern Naturalist, 1995, 40: 259~267
    [45] Busch, E., Smith, S., Mechanisms associated with the decline of woody species in riparian ecosystems of the southwestern U.S. Ecological Monographs, 1995, 65: 347~370
    [46] Nanson, G.C., Young, R.W., Downstream reduction in rural channel size with contrasting urban effects in small coastal streams of southeastern Australia. Journal of Hydrology, 1981, 52: 239~255
    [47] Warner, R.F., Man’s impacts on Australian drainage systems. Australian Geographer 1984, 16: 133~141
    [48] Erskine, W.D., Webb, A.A., Desnagging to resnagging: new directions in river rehabilitation in southeastern Australia. River Research and Applications in press, 2003
    [49] Stromberg J.C. and Chew M.K. Flood pulses and restoration of riparian vegetation in the American Southwest, In: Middleton B.A. (ed.) Flood Pulsing in Wetlands: Restoring the Natural Hydrological Balance. John Wiley and Sons, New York, 2002, 11~49
    [50] Howell, J., Benson, D., McDougall, L., Developing a strategy for rehabilitating riparian vegetation of the Hawkesbury-Nepean River, Sydney, (Australia) Pacific Conservation Biology, 1994, 1: 257–271
    [51] Lake, P.S., Marchant, R., Australian upland streams: ecological degradation and possible restoration. Proceedings of the Ecological Society of Australia 1990, 16, 79~91
    [52] Erskine, W.D., Webb, A.A., Desnagging to resnagging: new directions in river rehabilitation in southeastern Australia. River Research and Applications, 2003
    [53] Maiden, J.H., The mitigation of floods in the Hunter River. Journal of the Royal Society of New South Wales, 1902, 36, 107~131
    [54] 上官铁梁,贾志力,张峰等,汾河河岸植被类型及其利用与保护,河南科学,1999,17(6):83~86
    [55] 上官铁梁,贾志力,张红等, 汾河河漫滩三种草本植物群落的生物量研究,草业科学,2000,17(6):39~45
    [56] 上官铁梁,贾志力,许念等,汾河河漫滩草地植物群落的分类及其多样性分析,中国草地,2000,4:9~15
    [57] 成克武,臧润国,周晓芳,洪水对额尔齐斯河河岸天然林植被的影响研究,北京林业大学学报,2006,28(2):46~51
    [58] 江明喜、邓红兵,唐涛,等香溪河流域河岸带植物群落物种丰富度格局.生态学报,2002,22(5):629~635
    [59] 邓红兵,王青春,代力民,等,长白山北坡河岸带群落植物区系分析应用.应用生态学报,2003,14(9):1405~1410
    [60] 张建春,史志刚,彭补拙,皖西南大别山麓河岸带滩地生态重建与植被护坡效能分析,山地学报,2002,20(1):85~89
    [61] 夏继红,严忠民,蒋传丰,河岸带生态系统综合评价指标体系研究,水科学进展,2005,6(3):345~348
    [62] 侯平,孙卫,李霞,胡杨内源保护酶系可以指征宏观生态行为效果吗—塔里木河下游生态输水效应案例研究,新疆环境保护,2004,26(zk):125~131
    [63] 李卫红,陈亚鹏等,塔里木河下游断流河道应急输水与地表植被响应,中国沙漠,2004,24(3):301~305
    [64] 庄丽,陈亚宁,塔里木河下游荒漠植被保护酶活性与地下水位变化的关系,西北植物学报,2005,35(7):1287~1294
    [65] 李睿华,管运涛,何苗等,河岸混合植物带处理受污染河水中试研究,环境科学,2006,27(4):651~654
    [66] 邓绶林等,普通水文学,北京,高等教育出版社,1985
    [67] 享普希尔,布拉姆利著,蔡雯,江焘等译,河渠护岸工程,北京,中国水利水电出版社,2001:2
    [68] 高甲荣,近自然治理—以景观生态学为基础的荒溪治理工程,北京林业大学学报,1999,21(1):80~85
    [69] 董哲仁,河流治理生态工程学的发展沿革与趋势,水利水电技术,2004,35(1):39~41
    [70] 杨海军,内田泰三,盛连喜等,受损河岸生态系统修复研究进展,东北师大学报自然科学版,2004,36(1):95~100
    [71] 孙逸增译,日本土木学会编,滨水景观设计,大连:大连理工大学出版社,2002, 11
    [72] 戴尔·米勒,美国的生物护岸工程,水利水电快报,2000,12: 8~10
    [73] 董哲仁,生态水工学的理论框架,水利学报,2003,1:1~6
    [74] 董哲仁,生态水工学 — 人与自然和谐的工程学,水利水电技术,2003,34(1):14~16,25
    [75] 董哲仁,水利工程对生态系统的胁迫,水利水电技术2003, 34(1): 1~5
    [76] 董哲仁,刘蓓,曾向辉.生态一生物方法水体修复技术,中国水利,2002:8~10
    [77] 杨海军等,受损河岸芦苇群落的生态恢复试验,东北水利水电,2004,22(240):37~39
    [78] 封福记,杨海军,于智勇,受损河岸生态系统近自然修复实验的初步研究,东北师大学报自然科学版,2004,36(1):101~106
    [79] 季永兴, 刘水芹, 张勇. 城市河道整治中生态型护坡结构探讨. 水土保持研究, 2001, 8(4): 25~28
    [80] 陈海波,网格反滤生物组合护坡技术在引滦入唐工程中的应用,中国农村水利水电,2001(8):47 ~48
    [81] 周跃,植被与侵蚀控制:坡面生态工程基本原理探索,应用生态学报,2000,11(2):297 ~300
    [82] 胡海泓,生态型护岸及其应用前景,广西水利水电,1999,4:57~59
    [83] 俞孔坚,胡海波,李健宏,水位多变情况下的亲水生态护岸设计,中国园林,2002,1:37~38
    [84] Ray C, Grisehek T, Schubert J et a1. A perspective of riverbank filtration.Journal - American Water Works Association, 2002, 94(4): 149~l60.
    [85] Tufenkji N, Ryan J N, Elimelech M., The promise of riverbank filtration. Environment Science & Technology, 2002, 28: 422~428.
    [86] Kuehn W, Mueller U., Riverbank filtration:an overview, Journal - American Water Works Association, 2000, 92(12): 60~69.
    [87] Jütter F. Elimination of terpenoid odorous compounds by slow sand and riverbank filtration of the Ruhr river, Germany, Water Science Technology,1995, 3l(11): 2ll~2l7
    [88] 刘国东,丁晶,傍河水源地地下水资源评价方法述评,水科学进展,1998,9(3):289~295
    [89] Jürgen Schubert, Hydraulic aspects of riverbank filtration—field studies, Journal of Hydrology, 2002, 266: 145~161
    [90] K.M.Hiscock, T.Grischek. Attenuation of groundwater pollution by bank filtration, Journal of Hydrology, 2002, 266:139~144
    [91] Nathalie Tufenkji et al., The promise of bank filtration. Environmental Science & Technology, 2002(11): 422~428
    [92] Scientists Test Riverside Soil as a Nature Purifying Agent. Water Environment & Technology, 1998, 10: 12
    [93] Riverbank Filtration: Improve Source-water Quality. Journal - American WaterWorks Association, 2003.95(9): 134
    [94] 吴耀国,王超,王惠民,河岸渗滤作用脱氮机理及其特点的试验,城市环境与城市生态,2003,16(6):298~300
    [95] 吴耀国,曾睿,王惠民等,反硝化条件下河岸渗滤过程中苯胺的降解,地球科学——中国地质大学学报,2006,31(2):273~278
    [96] 路宣华,氨氮及苯胺在河岸渗滤系统中的环境行为研究,[硕士学位论文],西安;西北工业大学,2004
    [97] 陆静依,美国环保署水生生物资源生态恢复指导性原则,上海水务,2001,3(1):50~53
    [98] 钦佩,安树青,颜京松,生态工程学,南京,南京大学出版社,1998:7
    [99] 董哲仁,刘倩,曾向辉,受污染水体的生物—生态修复技术,水利水电技术,2002,33(2):1~4
    [100] 张征云,孙贻超,孙静等,天津市土壤盐渍化现状与敏感性评价,农业环境科学学报,2006,25(4):954~957
    [101] 许宁,高德明,天津湿地,天津,天津科学技术出版社,2005: 9, 46~47
    [102] Breckle, How do halophytes overcome salinity? In: Biology of salt plants. [Eds] Khan MAJA Ungar, 1995: 199~213
    [103] 李芊,新疆柽柳属植物抗盐机理研究,[硕士学位论文],新疆;新疆农业大学,2002,23~32
    [104] Carman J G., J D Brotherson. Comparison of sites infested and not infested with saltcedar (Tamarix pentendra) and Russian olive (Elacagnus angustifolia). Weed Sco, 1982, 30: 360~364
    [105] Jackon J J, T Ball and M R Rose, Assessment of the salinity tolerance of eight sonoran Desert riparian trees and shrubs. Final Repot for Burear of Reclamation, Yuam Projects office, Yuma, Arizono, 1990, 102
    [106] Gladwin, D., Roelle, J., Survival of plains cottonwood (Populus deltoides susp. ) (monilifera) and saltcedar (Tamarix ramosissima) seedlings in response to flooding. Wetlands 1998, 18: 669~674
    [107] Tomar, O., Minhas, P., Sharma, V., Singh, Y., Gupta, R., Performance of 31 tree species and soil conditions in a plantation established with saline irrigation. Forest Ecology and Management, 2003, 177: 333~346
    [108] Shafroth, P., Friedman, J., Ischinger, L., Effects of salinity on establishment of Populus fremontii (cottonwood) and Tamarix ramosissima (saltcedar) in the southwestern United States. Great Basin Naturalist, 1995, 55: 58~65
    [109] Sala, A., Smith, S., Devitt, D., Water use by Tamarix ramosissima and associated phreatophytes in a Mojave Desert Floodplain. Ecological Applications 1996, 6: 888~898
    [110] Bosabalidis A M., W W. Thomson, Ultrastructural development and secretion in the salt glands of Tamarix aphylla L., Journal of ultrastructure research, 1985, 92: 55~62
    [111] Thomon W W, The ultrastructure of plasmodesmata of the salt glands of Tamarix as revealed by transmission and freeze-fracture electron microscopy, Proto, 1985, 25: 13~23
    [112] Waisel Y E, Agami A M., Salt balance of leaves of the mangrove Avicennia marina, Physiologia plantarum, 1986, 67: 67~72
    [113] 武金华,盐胁迫下紫杆柽柳cDNA文库构建及表达序列标签(EST)分析,[硕士学位论文],东北林业大学,哈尔滨,2004
    [114] 魏岩,谭敦炎,尹林克,中国柽柳科植物叶解剖特征与分类关系的探讨,西北植物学报,1999,19( 1):113~118
    [115] 翟诗虹,柽柳属植物抱茎叶形态结构的比较观察,植物分类学报,1983,24(4):273~274
    [116] 高海峰,柽柳属植物水分状况的研究,植物生理学通讯,1988,2:20~24
    [117] 王霞等,水分胁迫对柽柳植物可溶性物质的影响,干早区研究,1999,16(2):7~11
    [118] 王霞等,土壤缓慢水分胁迫对柽柳属植物组织相对含水量和细胞膜透性的影响,干早区研究,1999,16(3):6~11
    [119] Hagemeyer J, Y Waisel, Phase-shift and memorization of the circadian rhythm of transpiration of Tamarix aphylla, Experientia, 1990, 46: 876~877
    [120] Kerpez T A, N S Smith. Salteedar control for wildlife habitat improvement in the southwestern United States, U.S.D.I.Fish and Wildlife Service, Washington, D.C Resource Publication.1987, 16
    [121] Cleverly, J., Smith, S., Sala, A., Devitt, D., Invasive capacity of Tamarix ramosissima in a Mohave Desert floodplain: the role of drought. Oecologia, 1997, 111: 12~18
    [122]李吉跃,张建国,北京主要造林树种耐旱机理及其分类模型的研究—苗木叶水势与土壤含水量的关系及分类,北京林业大学学报,1993,15(3):1~11
    [123] Davenport D C., P E. Marti, R M. Hagan, Evapotranspiration from riparian vegetation: Water relations and irrecoverable losses for slatcedar. Journal of Soil andWater Conservation, 1982, 37: 233~236
    [124] 刘铭庭,柽柳属植物综合研究及大面积推广应用,兰州,兰州大学出版社,1995
    [125] DiTomosa, J., Impact, biology, and ecology of saltcedar (Tamarix spp.) in the souwestern United States, Weed Technology, 1998, 12: 326~336
    [126] Gay L W., L J Fritschen, An energy budget analysis of water use by saltcedar, Water Resources Research, 1979, 15: 1589~1592.
    [127] Tallent-Halsell, N., Walder, L., Resonses of Salix gooddingii and Tamarix ramosissima to flooding, Wetlands, 2002, 22: 776~785
    [128] Sprenger, M., Smith, L., Taylor, J., Testing control of salcedar using spring flooding, Wetlands, 2001, 31: 437~441
    [129] Watts, J.G., Liesner D.R & Lindsey D. L., Saltcedar–a potential target for biological control. New Mexico State University Agricultural Experimental Station Bulletin, 1997, 650: 28
    [130] Brotherson J D and D. Field Tamarix: impacts of a successful weed, Rangelands, 1987, 9: 110 ~ 112.
    [131] Stevens L E., Mechanisms of riparian plant community organization and succession in the Grand Canyon, Arizona, Ph. D. Dissertation, Northern Arizona University, Flags Arizona, 1987, 103.
    [132] Stevens R, Walker S.C., Saltcedar control, Rangelands, 1998, 20(4): 9~ 12
    [133] DeLoach, C., Pitcairn, M., Woods, D., Prospects for biological control of saltcedar in southern California, In: Proceedings of the Saltcedar Management Workshop, Rancho Amira, CA, 1996, 4~8
    [134] Johnson, S., Can saltcedar be controlled? Fremontia, 1987, 15: 19~20
    [135] James R Cleverly et al. Invasive capacity of Tamarix ramosissima in a Mojave desert flood plain: the role of drought. Oecol, 1997, 111: 12 ~18
    [136] Jonathan L. et al., Leaf gas exchange characteristics differ among Sonoran Desert riparian tree species. Tree Physiology, 2001, 21: 233~241
    [137] Glenn E., Tanner R., Mendez S., Kehret T., Moore D., Garcia J., Valdes C., Growth rates, salt tolerance and water use characteristics of native and invasive riparian plants from the delta of the Colorado River delta, Mexico. Journal of Arid Environments, 1998, 40: 281~294
    [138] Busch, D., Ingraham, N., Smith, S., Water-uptake in woody riparian phreatophytes of the southwestern United States—a stable isotope study. EcologicalApplications 1992, 2: 450~459
    [139] Marler. R., Stromberg. J., Patten. D., Growth response of Populus fremontii, Salix gooddingii, and Tamarix ramosissima seedlings under different nitrogen and phosphorous concentrations, Journal of Arid Environments, 2001, 49: 147~159
    [140] Sher A., Marshall. D., Seedling competition between native Populus deltoides (Salicaceae) and exotic Tamarix ramosissima (Tamaricaceae) across water regimes and substrate types, American Journal of Botany, 2003, 90: 413~422
    [141] Sher. A., Marshall. D., Gilbert. S., Competition between native Populus deltoides and invasive Tamarix ramosissima and the implications for reestablishing flooding disturbance, Conservation Biology, 2000, 14, 1744~1754
    [142] Sher. A., Marshall. D., Taylor. J., Establishment patterns of native Populus and Salix in the presence of invasive nonnative Tamarix, Ecological Applications, 2002, 12: 760~772
    [143] Levine. C., Stromberg. J., Effects of flooding on native and exotic plant seedlings: implications for restoring south-western riparian forests by manipulating water and sediment flows. Journal of Arid Environments, 2001, 49: 111~131
    [144] Stromberg. J., Growth and survivorship of Fremont cottonwood, Gooddings willow, and salt cedar seedlings after large floods in central Arizona, Great Basin Naturalist, 1997, 57, 198~208
    [145] Zamora-Arroyo F., Nagler P., Briggs, M., Radtke D., Rodriquez H., Garcia J., Valdes C., Huete A., Glenn E., Regeneration of native trees in response to flood releases from the United States into the delta of the Colorado River, Mexico. Journal of Arid Environments, 2001, 49: 49~64
    [146] Stromberg J., Chew M., Foreign visitors in riparian corridors of the American Southwest: is xenophobia justified? In: Tellman, B. (Ed.), Invasive Exotic Species in the Sonoran Region. University of Arizona Press, Tucson, AZ, 2002: 195~219
    [147] Cooper D., Andersen D., Chimner R., Multiple pathways for woody plant establishment on floodplains at local to regional scales. Journal of Ecology, 2003, 91, 182~196
    [148] Dixon M., Johnson W., Riparian vegetation along the middle Snake River, Idaho: zonation, geographical trends, and historical changes. Great Basin Naturalist, 1999, 59, 18~34
    [149] 张道远,柽柳科植物系统学及生态学研究,[博士学位论文],北京;中国科学院研究生院,2003
    [150] 侯宽昭,中国种子植物科属词典,第二版,北京,科学出版社,1982:26
    [151] 王芳,高甲荣,密云水库集水区河岸生物工程措施初探,水土保持研究,2006,13(3):238~243
    [152] 范杰英,9个树种抗旱性的分析与评价,[硕士学位论文],西安,西北农林科技大学,2005
    [153] 夏富才,松嫩平原三种豆科植物抗盐结构研究,[硕士学位论文],长春,东北师范大学,2002
    [154] 康博文,侯 琳,王得祥,几种主要绿化树种苗木耗水特性的研究,西北林学院学报,2005,20(1):29~33
    [155] 李雪华,蒋德明等,科尔沁沙地4种植物抗旱性的比较研究,应用生态学报,2002,13(11):1385~1388
    [156] 何 江,地里拜尔·苏力坦等,城市二级污水灌溉对几种园林植物生长的影响,环境污染与防治,2005, 27(3):161~164
    [157] 陈维杰,45里白沙坡生态修复试验,中国水利,2006,4:41~42
    [158] 兰剑,张丽霞等,草坪型多年生黑麦草主要生长发育特性的研究,草业科学,2003(5):43~45
    [159] F Altpeter, J. P. Xu, S. Ahmed, Generation of large number of independently transformed fertile perennial ryegrass (Lolium perenne L.) plants of forage and turf-type cultivars, Mol. Breed. 2000, 6: 519~528
    [160] 杨晓英,杨劲松,盐胁迫对黑麦草幼苗生长的影响及磷肥的缓解作用,土壤通报,2005,36(6):899~902
    [161] 刘振虎,几种草坪草NaCl胁迫反应及其耐盐机制的分析研究,北京;中国农业科学院硕士研究生学位论文,2001
    [162] 卢静君,多立安,刘祥君,盐胁迫下两草种SOD和POD及脯氨酸动态研究,植物研究,2004,24(1):115~119
    [163] 于辉,沈益新. 海盐胁迫对苇状羊茅和多花黑麦草种子发芽的影响,草业科学,2004,21(10):41~44
    [164] C.Rose-Fricker,李保军(编译),耐盐草坪草育种,草业科学,2005,22(3):102~106
    [165] D. Ben-Ghedalia et al. Effect of water salinity on the composition and in vitro digestibility of winter-annual ryegrass grown in the Arava desert, Animal Feed Science and Technology, 2001,91: 139~147
    [166] Yu-Ye Wu, Qi-Jun Chen et al, Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformationof the vacuolar Na+/H+ antiporter gene , Plant Science, 2005, 169: 65~73
    [167] R. J. Luxmoore, R. J. Millington, Growth of Perennial ryegrass (Lolium perenne L.) in relation to water, nitrogen and light intensity II. Effects on dry weight production, transpiration and nitrogen uptake, Plant and Soil, 1971, 34, 561~574
    [168] H. H?gh-Jensen1 and J.K. Schjoerring, Interactions between white clover and ryegrass under contrasting nitrogen availability: N2 fixation, N fertilizer recovery, N transfer and water use efficiency, Plant and Soil, 1997, 197: 187~199
    [169] C. Amalric, H. Sallanon et al., Gas exchange and chlorophyll fluorescence in symbiotic and non-symbiotic ryegrass under water stress, Photosynthetica, 1999, 37(1): 107~112
    [170] D. W. Lucero, P. Grieu1 , A. Guckert, Water deficit and plant competition effects on growth and water use efficiency of white clover (Trifolium repens, L.) and ryegrass (Lolium perenne, L.) Plant and Soil, 2000, 227: 1~15
    [171] 张秀云,盐渍地冷地型草坪草种选择及其混播组合的研究,兰州;甘肃农业大学硕士学位论文,2000
    [172] Suhas R.Ghate,Gary J.Burtle,George Vellidis,et a1.Effectiveness of grass strips to filter catfish pond effluent.Aquaculrural Engineering,1997,16:149~159
    [173] 孙吉雄,韩烈保,陈学平,用二级城市污水灌溉草坪.草原与草坪,2001(1):36~40
    [174] 韦柳婵,多花黑麦草和美洲狼尾草对铜、锌处理的生理响应及对污染水体的净化作用,南京;南京农业大学硕士学位论文,2004
    [175] 泮进明,杨祥龙, 薄层营养液膜技术(NFT)水培多年生黑麦草对不同富氮废水的净化效果,农业工程学报,2005,21(3):138~142
    [176] 劳善根,丁伟林,崔绍荣,谢可军,多年生黑麦草对甲鱼养殖废水净化功能的工程应用研究,上海交通大学学报(农业科学版),2005,23(1):41~45
    [177] 谢可军,赵素芬,苗香雯等,富营养化废水胁迫对多年生黑麦草的影响,农业环境科学学报, 2004, 23(3): 437~440
    [178] 陈纪香等,柽柳新品种耐盐能力试验研究,山东林业科技,2006(2):16~17
    [179] 林栖凤,耐盐植物研究[M],科学出版社,2004:8
    [180] 谷 颐,白城地区盐碱生态环境3种植物的结构,东北林业大学学报,2005,33(5): 110~111
    [181] 於丙军,刘友良盐胁迫对一年生盐生野大豆幼苗活性氧代谢的影响西北植物学报2003, 23( 1) : 18-22
    [182] 陈一舞,邵桂花,常汝镇.盐胁迫下大豆子叶细胞器超氧化物歧化酶的影响,作物学报,1997, 2: 214~219
    [183] 宋福南等,盐胁迫对柽柳超氧化物歧化酶活性的影响,东北林业大学学报,2006,34(3)54~56
    [184] Ishida A, Ono K, Matsusaka T. Cell wall-associated peroxidase in cultured cells of liverwort, Marchantis polymorpha L.changes of peroxidase level and its lpcalization in the cell wall. Plant cell Reports 1985, 4: 54
    [185] 丁文明,赵毓橘,表油菜素内脂对黄瓜子叶过氧化物酶活性和可溶性蛋白质含量的影响.植物生理学报,1995,21(3):259~264
    [186] 渠晓霞,黄振英,盐生植物种子萌发对环境的适应对策,生态学报,2005,25(9):2389~2398
    [187] Badger K S, Ungar I A. The effects of salinity and temperature on the germination of the inland halophyte Hordeum jubatum, Canada Journal Botany, 1989, 67: 1420~1425
    [188] H.T. Nguyen, C.P. Joshi, Molecular strategies for the genetic dissection of water and high temperature stress adaptation in cereal crops, in: G. Kuo (Ed.), Proceedings of International Symposium on Adaptation of Food Crops to Temperature andWater Stress, Taipei, Taiwan, AVRDC, Taiwan, AVRDC, Taiwan, 1993, 3~19
    [189] 翁森红,牧草耐盐性鉴定指标和方法的初步研究,北京;中国农科院硕士研究生论文,1990
    [190] 许明丽,孙晓艳,文江祁,水杨酸对水分胁迫下小麦幼苗叶片膜损伤的保护作用,植物生理学通讯, 2000, 36( 1):35~36
    [191] 詹妍妮等,热锻炼与外源水杨酸对葡萄叶肉细胞膜脂过氧化的影响,石河子大学学报(自然科学版),2005,23(5):597~600