缺血后处理延长脑缺血再灌注治疗时间窗及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:采用线栓法建立更符合人类常见缺血性卒中类型的大鼠大脑中动脉栓塞(MCAO)模型,于再灌注即刻给予缺血后处理。观察缺血后处理对大鼠脑缺血/再灌注损伤的保护作用,并寻找其有效治疗时间窗。选择一个梗死面积和神经功能评分与缺血2h再灌注组无明显差异的最远时间点给予缺血后处理,探讨缺血后适应对炎症反应及细胞凋亡的影响。
     方法:本研究分为三部份进行。第一部份,缺血后处理对脑缺血/再灌注损伤的保护作用的研究。建立稳定的大鼠MCAO模型,于再灌注即刻给予缺血后处理。对单纯脑缺血/再灌注组和脑缺血/再灌注合并缺血后处理组的大鼠分别实施2h、3h、4h、4.5h、6h的脑缺血处理,观察缺血后处理对不同组大鼠脑缺血/再灌注48h后神经功能评分、脑梗死体积和脑水肿程度的影响,寻找有效的治疗时间窗。根据第一部分实验结果选择一个梗死面积和神经功能评分与缺血2h再灌注组无明显差异的最远时间点,进行第二、三部分实验。第二部分,HE染色观察大鼠脑组织的病理形态改变;采用免疫组化半定量测定脑缺血/再灌注组及脑缺血/再灌注合并缺血后处理组在2个时间点缺血侧皮层内TLR2和TLR4的表达变化。第三部分,采用流式细胞术、荧光定量PCR、Western-Blotting检测脑缺血/再灌注组及脑缺血/再灌注合并缺血后处理组在2个时间点缺血侧皮层内TLR2和TLR4及其下游信号通路分子IRAK4和炎性细胞因子IL-1β蛋白和mRNA的表达及细胞凋亡情况。
     结果:2h、3h、4h后处理组大鼠脑缺血/再灌注24h和48h的神经功能评分较相同缺血时间点缺血组和后处理4.5h和6h组改善(p<0.05)。2h、3h、4h后处理组大鼠脑缺血/再灌注48h的脑梗塞体积和相对脑水肿程度较相同缺血时间点缺血组和后处理4.5h和6h组明显减轻(p<0.05)。2h后处理组大鼠脑缺血/再灌注48h缺血侧皮层内TLR2和TLR4阳性细胞数量较2h缺血组和4.5h后处理组减少(p<0.05);4.5h后处理组TLR4阳性细胞数量较4.5h缺血组减少(p<0.05)。2h后处理组大鼠脑缺血/再灌注48h缺血侧皮层内细胞凋亡比例较2h缺血组和4.5h后处理组明显减少(p<0.05)。2h后处理组大鼠脑缺血/再灌注48h缺血侧皮层内TLR2、TLR4、IL-1βmRNA和蛋白及IRAK4mRNA表达量较2h缺血组降低(p<0.05);2h缺血时间点后处理组TLR2、IL-1βmRNA和蛋白及TLR4蛋白表达量较4.5h后处理组降低(p<0.05)。
     结论:缺血后处理能减轻急性脑缺血/再灌注损伤,表现为神经功能缺损的改善、脑梗塞体积和相对脑水肿程度的减轻,其保护作用的有效时间窗为脑缺血4.5h以内。缺血后处理能有效改善大鼠脑缺血/再灌注损伤所致的细胞凋亡和炎症反应,表现为2h后处理组缺血侧皮层内TLR2和TLR4及其下游信号通路分子IRAK4和炎性细胞因子IL-1β的表达及细胞凋亡受到明显抑制。
Objective To study the effects of ischemic postconditioning prolong time window and investigate the possible mechanism.
     Method There are three parts in this experiment. The first part:middle cerebral artery occlusion model was stablished and ischemic postconditioning was implemented in the beginning of reperfusion. Adult male SD rats were randomly divided into ischemia/reperfusion groups and ischemia/reperfusion with ischemic postconditioning groups at2h,3h,4h,4.5h,6h ischemic time points. The effects of ischemic postconditioning were evaluated by neurological score, infarct volume, brain edema and found out the best time window. To select one time point that neurological score and infarct volume is no difference compared to2h, then continuing the following experiments. The second part:the pathological changes of brain tissue in rats were observed by HE staining; the expression of TLR2and TLR4in ischemic cortex in ischemia/reperfusion groups and ischemia/reperfusion with ischemic postconditioning groups at2h and4.5h ischemic time points were measured through immunohistochemistry. The third part:the expression of TLR2, TLR4, IRAK4, IL-1β and apoptosis in ischemic cortex in ischemia/reperfusion groups and ischemia/reperfusion with ischemic postconditioning groups at2h and4.5h ischemic time points were measured through flow cytometry, qRT-PCR and Western-Blotting.
     Result Neurological score of ischemic postconditioning groups at2h,3h,4h ischemic time points were improved by the same time points ischemic groups and4.5h,6h postconditioning groups in reperfusion24h and48h(p<0.05). Infarct volume and brain edema of ischemic postconditioning groups at2h,3h,4h ischemic time points were reduced by the same time points ischemic groups and4.5h,6h postconditioning groups in reperfusion48h(p<0.05). The number of TLR2and TLR4positive cells in ischemic cortex at2h postconditioning group during reperfusion48h were reduced by2h ischemic group and4.5h postconditioning group (p<0.05); the number of TLR4positive cells was reduced at4.5h postconditioning group by4.5h ischemic group. The apoptosis in ischemic cortex at2h postconditioning group during reperfusion48h were reduced by2h ischemic group and4.5h postconditioning group (p<0.05). The expression of TLR2, TLR4, IL-1βmRNA and protein as well as IRAK4mRNA in ischemic cortex at2h postconditioning group during reperfusion48h were decreased by2h ischemic group (p<0.05); the expression of TLR2, IL-1βmRNA and protein as well as TLR4protein decreased by4.5h postconditioning group (p<0.05)
     Conclusion Ischemic postconditioning significantly attenuated the cerebral ischemia/reperfusion injury by neurological score, infarct volume, brain edema improved. The best time window is within4.5h. Ischemic postconditioning significantly attenuated apoptosis and inflammation caused by cerebral ischemia/reperfusion injury. The expression of TLR2, TLR4, IRAK4, IL-1βand apoptosis in ischemic cortex at2h postconditioning group significantly were inhibited.
引文
[1]Suwanwela N, Koroshetz WJ. Acute ischemic stroke:overview of recent therapeutic developments. Annu Rev Med,2007,58:89-106.
    [2]Bravata DM, Ho SY, Meehan TP, Brass LM, Concato J. Readmission and death after hospitalization for acute ischemic stroke:5-year follow-up in the medicarepopulation. Stroke, 2007,38(6):1899-904.
    [3]Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Global and regional burden of disease and risk factors,2001:systematic analysis of population health data. Lancet, 2006,367(9524):1747-57.
    [4]中华人民共和国卫生部.2011中国卫生统计年鉴,北京:中国协和医科大学出版社.2011
    [5]The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med,1995,333(24):1581-7.
    [6]Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, Larrue V, Lees KR, Medeghri Z, Machnig T, Schneider D, Von Kummer R, Wahlgren N, Toni D. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Eng1 J Med,2008,359(13):1317-29.
    [7]国家“九五”攻关课题协作组.急性脑梗死六小时以内的静脉溶栓治疗.中华神经科杂志,2002,35(4):210-213.
    [8]Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium. Circulation,1986,74(5):1124-1136.
    [9]Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, Handa N, Fukunaga R, Kimura K, Mikoshiba K, et al.'Ischemic tolerance'phenomenon found in the brain. Brain Res, 1990,528(1):21-4.
    [10]Peralta C, Serafin A, Fernandez-Zabalegui L, Wu ZY, Rosello-Catafau J. Liver ischemic preconditioning:a new strategy for the prevention of ischemia-reperfusion injury. Transplant Proc, 2003,35(5):1800-1802.
    [11]Lang SC, Elsasser A, Scheler C, Vetter S, Tiefenbacher CP, Kubler W, Katus HA, Vogt AM. Myocardial preconditioning and remote renal preconditioning--identifying a protective factor using proteomic methods?Basic Res Cardiol.2006 Mar;101(2):149-158.
    [12]Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J. Inhibition of myocardial injury by ischemic postconditioning during reperfusion:comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol.2003,285(2):H579-88.
    [13]Zhao H, Sapolsky RM, Steinberg GK. Interrupting reperfusion as a stroke therapy:ischemic postconditioning reduces infarct size after focal ischemia in rats. J Cereb Blood Flow Metab,2006, 26(9):1114-21. [PubMed:16736038]
    [14]Alkan T. Neuroproctective effects of ischemic tolerance (preconditioning) and postconditioning. Turk Neurosurg,2009,19(4):406-412.
    [15]Zhao H. Ischemic postconditioning as a novel avenue to protect against brain injury after stroke. J Cereb Blood Flow Metab,2009,29(5):873-885.
    [16]Kong Y, Rogers MR, Qin X. Effective Neuroprotection by Ischemic Postconditioning is Associated with a Decreased Expression of RGMa and Inflammation Mediators in Ischemic Rats. Neurochem Res,2013,38(4):815-825.
    [17]Gordon S. Pattern recognition receptors:doubling up for the innate immune response. Cell, 2002,111(7):927-930. [18]Kaczorowski DJ, Mollen KP, Edmonds R, Billiar TR. Early events in the recognition of danger signals after tissue injury. J Leukoc Biol,2008,83(3):546-52.
    [19]Krmpotic L, Zirdum D, Gorup D, Mitrecic D, Curlin M, Kriz J, Gajovic S. Expression analysis of genes involved in TLR2-related signaling pathway:inflammation and apoptosis after ischemic brain injury. Neuroscience,2013,238:87-96.
    [20]Zwagerman N, Plumlee C, Guthikonda M, Ding Y. Toll-like receptor-4 and cytokine cascade in stroke after exercise. Neurol Res,2010,32(2):123-6. [21] Belayev L, Alonso OF, Busto R, et al. Middle cerebral artery occlusion in the rat by intraluminal suture. Stroke,1996,27 (9):1616-23.
    [22]Lin TN, He YY, Wu G, et al. Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats. Stroke,1993,24 (1):117-21.
    [23]Wang Y, Kilic E, Kilic U, et al. VEGF overexpression induces post-ischemic neuroprotection, but facilitates haemo dynamic steal phenomena. Brain,2005,128 (1):52-63.
    [24]何旦莎,吕明雄,Sye F Aly,Ronald W Hart.应用流式细胞术分析不同年龄大鼠脑组织细胞周期增殖特性.广东解剖学通报,1994,16(2):107-111.
    [25]Huang J, Mocco J, Choudhri TF, Poisik A, Popilskis SJ, Emerson R, DelaPaz RL, Khandji AG, Pinsky DJ, Connolly ES Jr. A.modified.transorbital_baboon_model of_reperfused_stroke. Stroke,2000,31(12):3054-63.
    [26]Ogun CO, Tastekin G, Kiresi D, Eser O, Ustun ME. A new reversible ischemic neurologic deficit model in dogs. Med Sci Monit,2008,14(10):BR214-8.
    [27]Nana Amiridze, Rao Gullapalli, Gloria Hoffman, Ribal Darwish. Experimental model of Brainstem Stroke in Rabbits via Endovascular Occlusion of the Basilar Artery. Journal of Stroke and Cerebrovascular Diseases,2009,18(4):281-287.
    [28]Imai H, Konno K, Nakamura M, Shimizu T, Kubota C, Seki K, Honda F, Tomizawa S, Tanaka Y, Hata H, Saito N. A new model of focal cerebral ischemia in the miniature pig. J Neurosurg,2006,104(2 Suppl):123-132.
    [29]Li SQ, Zhang Y, Tang DB. Possible mechanisms of Cyclosporin A ameliorated the ischemic microenvironment and inhibited mitochondria stress in tree shrews'hippocampus. Pathophysiology,2009,16(4):279-84.
    [30]温仲民,包仕尧.大鼠急性局灶性脑缺血动物模型实验研究.中国临床神经科学,2004,12(4):409-11.
    [31]Ginsberg MD. Busto R. Rodent models of cerebral ischemia. Stroke,1989,20(12):627-642.
    [32]Sugimori H, Yao H, Ooboshi H, Ibayashi S, lida M. Krypton laser-induced photothrombotic distal middle cerebral atery occlusion without ctaniectomy in mice. Brain Res Brain Res Protoc, 2004,13(3):189-96.
    [33]Wen TC, Rogido M, Gressens P, Sola A. A reproducible experimental model of focal cerebral ischemia in the neonatal rat. Brain Res Brain Res Protoc,2004,13(2):76-83.
    [34]Atochin DN, Murciano JC, Gursoy-Ozdemir Y, Krasik T, Noda F, Ayata C, Dunn AK, Moskowitz MA, Huang PL, Muzykantov VR. Mouse model of microembolic stroke and reperfusion. Stroke,2004,35(9):2177-82.
    [35]Sekiguchi M, Takagi K, Takagi N, Date I, Takeo S, Tanaka O, Yamato I, Kobashikawa S, Torigoe K, Nowakowski RS. Time course and sequence of pathological changes in the cerebellum of microsphere-embolized rats. Exp Neural,2005,191(2):266-75.
    [36]Eklof B, Siesjo BK. The effect of bilateral carotid artery ligation upon the blood flow and the energy state of the rat brain. Acta Physiol Scand,1972,86(2):155-165.
    [37]Pulsinelli WA, Brierley JB. A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke,1979,10(3):267-272.
    [38]Kunjan R,Dave.Isabel Saul, Prado R, Busto R, Perez-Pinzon MA. Remote organ ischemic preconditioning protect brain from ischemic damage following asphyxial cardiac arrest. Neuroscience Letters,2006,404(1-2),170-175.
    [39]Koizumi J. Yoshida Y. Nakazawa T et al. Experimental studies of ischemic brain edema. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area [J]. Stroke.1986.8:1-8.
    [40]Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke,1989,20(1):84-91.
    [41]Sewell WH, Koth DR, Huggins CE. Ventricular fibrillation in dogs after sudden return of flow to the coronary artery. Surgery,1955,38(6):1050-3. [PubMed:13274263]
    [42]Grech ED, Ramsdale DR. Termination of reperfusion arrhythmia by coronary artery occlusion. Br Heart J,1994,72(1):94-5. [PubMed:8068480
    [43]Na HS, Kim YI, Yoon YW, et al. Ventricular premature beat-driven intermittent restoration of coronary blood flow reduces the incidence of reperfusion-induced ventricular fibrillation in a cat model of regional ischemia. Am Heart J,1996,132(1 pt 1):78-83. [PubMed:8701879]
    [44]Obal D, Dettwiler S, Favoccia C, Scharbatke H, Preckel B, Schlack W. The influence of mitochondrial KATP-channels in the cardioprotection of preconditioning and postconditioning by sevoflurane in the rat in vivo. Anesth Analg,2005,101(5):1252-60. [PubMed:16243977]
    [45]Kin H, Zatta AJ, Lofye MT, Amerson BS, Halkos ME, Kerendi F, Zhao ZQ, Guyton RA, Headrick JP, Vinten-Johansen J. Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovasc Res,2005,67(1):124-33. [PubMed:15949476]
    [46]Krolikowski JG, Weihrauch D, Bienengraeber M, Kersten JR, Warltier DC, Pagel PS. Role of Erk1/2, p70s6K, and eNOS in isoflurane-induced cardioprotection during early reperfusion in vivo. Can J Anaesth,2006,53(2):174-82. [PubMed:16434759]
    [47]Iliodromitis EK, Georgiadis M, Cohen MV, Downey JM, Bofilis E, Kremastinos DT. Protection from postconditioning depends on the number of short ischemic insults in anesthetized pigs. Basic Res Cardiol,2006,101(6):502-7.
    [48]Dosenko VE, Nagibin VS, Tumanovskaya LV, Zagoriy VY, Moibenko AA, Vaage J. Proteasome inhibitors eliminate protective effect of postconditioning in cultured neonatal cardiomyocytes. Fiziol Zh,2006,52(3):15-24.
    [49]Staat P, Rioufol G, Piot C, Cottin Y, Cung TT,L'Huillier I,Aupetit JF, Bonnefoy E,Finet G, Andre-Fouet X, Ovize M. Postconditioning the human heart. Circulation,2005,112(14):2143-8.
    [50]Yun Wang, Zhong Ze Zhang, Yun Wu, Jia Zhan, Xiang Hu He, Yan Lin Wang. Honokiol protects rat hearts against myocardial ischemia reperfusion injury by reducing oxidative stress and inflammation. Exp Ther Med,2013,5(1):315-319.
    [51]Zhao H, Wang JQ, Sun G, Yenari MA, Sapolsky RM, Steinberg GK. Conditions of protection by hypothermia and effects on apoptotic pathways in a model of permanent middle cerebral artery occlusion. J Neurosurg,2007,107(3):636-41.
    [52]Zhao H, Yenari M, Cheng D, Sapolsky R, Steinberg G. Biphasic cytochrome e release after transient global ischemia and its inhibition by hypothermia. J Cereb Blood Flow Metab,2005, 25(9):1119-1129. [PubMed:15789032]
    [53]Merkle S, Frantz S, Schon MP, Bauersachs J, Buitrago M, Frost RJ, Schmitteckert EM, Lohse MJ, Engelhardt S. A role for caspase-1 in heart failure. Circ Res,2007,100(5):645-53.
    [54]Yun Seon Song, Purnima Narasimhan, Gab Seok Kim, Joo Eun Jung, Eun-Hee Park, Pak H Chan. The role of Akt signaling in oxidative stress mediates NF-κB activation in mild transient focal cerebral ischemia. J Cereb Blood Flow Metab,2008,28(12):1917-1926.
    [55]Ruo-Bing Guo, Guo-Feng Wang, An-Peng Zhao, Jun Gu, Xiu-Lan Sun, Gang Hu. Paeoniflorin Protects against ischemia-induced brain damages in rats via inhibiting MAPKs/NF-κB-mediated inflammatory responses. PLoS One,2012,7(11):e49701
    [56]Shimohata T, Zhao H, Steinberg GK. Epsilon PKC may contribute to the protective effect of hypothermia in a rat focal cerebral ischemia model. Stroke,2007,38(2):375-80.
    [57]Kunjan R. Dave, Sanjoy K. Bhattacharya, Isabel Saul, R. Anthony DeFazio, Cameron Dezfulian, Hung Wen Lin, Ami P. Raval, Miguel A. Perez-Pinzon. Activation of Protein Kinase C delta following cerebral ischemia leads to release of cytochrome C from the mitochondria via bad pathway. PLoS One,2011,6(7):e22057.
    [58]Miou Zhou, Wei Xu, Guanghong Liao, Xiaoning Bi, Michel Baudry. Neuroprotection against neonatal hypoxia/ischemia-induced cerebral cell death by prevention of calpain-mediated mGluR1α truncation. Exp Neurol,2009,218(1):75-82.
    [59]Gao X, Ren C, Zhao H. Protective effects of ischemic postconditioning compared with gradual reperfusion or preconditioning. J Neurosci Res,2008,86(11):2505-11. [PubMed: 18438944
    [60]朱榆红,吉训明,李春艳,等.缺血后适应对大鼠脑缺血/再灌注损伤的影响.中国病理生理杂志,2008,24(11):2151-2155.
    [61]Frantseva MV, Carlen PL, Perez-Velazquez JL. Dynamics of intracellular calcium and free radical production during ischemia in pyramidal neurons. Free Radic Biol Med,2001,31(10): 1216-1227.
    [62]Jing ye Wang, Jia Shen, Qin Gao, Zhi-guo Ye, Shui you Yang, Hua wei Liang, Iain C Bruce, Benyan Luo, Qiang Xia. Ischemic postconditioning protects against global cerebral ischemia/reperfusion-induced injury in rats. Stroke,2008,39(3):983-990.
    [63]Dohmen C, Kumura E, Rosner G, Heiss WD, Graf R. Extracellular correlates of glutamate toxicity in short-term cerebral ischemia and reperfusion:a direct in vivo comparison between white and gray matter. Brain Res.2005,1037(1-2):43-51.
    [64]Shimohata T, Zhao H, Sung JH, Sun G, Mochly-Rosen D, Steinberg GK. Suppression of deltaPKC activation after focal cerebral ischemia contributes to the protective effect of hypothermia. J Cereb Blood Flow Metab,2007,27(8):1463-75. [PubMed:17293847]
    [65]武慧丽,赵永青,侯亚红,王雪莲.缺血后适应对局灶性脑缺血/再灌注大鼠p38表达的影响.中国应用生理学杂志,2011,27(2),178-179,191.
    [66]Gao X, Ren C, Zhao H. Protective effects of ischemic postconditioning compared with gradual reperfusion or preconditioning. J Neurosci Res,2008,86(11):2505-11.
    [67]Gao X, Zhang H, Takahashi T, Hsieh H, Liao J, Steinberg GK, Zhao H. The Akt signaling pathway contributes to postconditioning's protection against stroke; the protection is associated with the MAPK and PKC pathways. J Neurochem,2008,105(3):943-55.
    [68]Pignataro G, Meller R, Inoue K, Ordonez AN, Ashley MD, Xiong Z, Gala R, Simon RP. In vivo and in vitro characterization of a novel neuroprotective strategy for stroke:ischemic postconditioning. J Cereb Blood Flow Metab,2008,28(2):232-41. [PubMed:17882162]
    [69]Prasad SS, Russell M, Nowakowska M. Neuroprotection induced in vitro by ischemic preconditioning and postconditioning:modulation of apoptosis and PI3K-Akt pathways. J Mol Neurosci,2011,43(3):428-42. [PubMed:20953735]
    [70]Chung H, Seo S, Moon M, Park S. Phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase-3 beta and ERK1/2 pathways mediate protective effects of acylated and unacylated ghrelin against oxygen-glucose deprivation-induced apoptosis in primary rat cortical neuronal cells. J Endocrinol,2008,198(3):511-21.
    [71]Lee JJ, Li L, Jung HH, Zuo Z. Postconditioning with isoflurane reduced ischemia-induced brain injury in rats. Anesthesiology,2008,108(6):1055-62. [PubMed:18497606]
    [72]Zhao H, Ren C, Chen X, Shen J. From rapid to delayed and remote postconditioning: the evolving concept of ischemic postconditioning in brain ischemia. Curr Drug Targets,2012, 13(2):173-87.
    [73]Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti M T. Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J.2009;276:13-26. [PubMed]
    [74]Kriz J. Inflammation in ischemic brain injury:timing is important. Crit Rev Neurobiol,2006, 18(1-2):145-157.
    [75]Emsley H C, Hopkins S J. Acute ischaemic stroke and infection:recent and emerging concepts. Lancet Neurol,2008,7(4):341-353.
    [76]McColl B W, Allan S M, Rothwell N J. Systemic infection, inflammation and acute ischemic stroke. Neuroscience,2009,158(3):1049-1061.
    [77]McColl B W, Rothwell N J, Allan S M. Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophil-dependent mechanisms. JNeurosci,2007,27(16):4403-4412.
    [78]Yilmaz G, Granger D N. Cell adhesion molecules and ischemic stroke. Neurol Res,2008, 30(8):783-793.
    [79]Feng R, Li SQ, Li F. Toll-like receptor 4 is involved in ischemic tolerance of postconditioning in hippocampus of Tree shrews to thrombotic cerebral ischemia. Brain Res,2011,1384:118-127.
    [80]Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell,2006, 124(4):783-801.
    [81]Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP. TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol,2005, 175(7):4320-4330.
    [82]Bowman CC. Rasley A, Tranguch SL, Marriott I. Cultured astrocytes express Toll-like receptors for bacterial products. Glia,2003,43(3):281-291.
    [83]Lehnardt S, Henneke P, Lien E, Kasper DL, Volpe JJ, Bechmann I, Nitsch R. Weber JR. Golenbock DT, Vartanian T. A mechanism for neurodegeneration induced by group B streptococci through activation of the TLR2/MyD88 pathway in microglia. J Immunol,2006,177(1):583-592.
    [84]Tang SC, Lathia JD, Selvaraj PK, Jo DG, Mughal MR, Cheng A, Siler DA, Markesbery WR, Arumugam TV, Mattson MP. Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid beta-peptide and the membrane lipid peroxidation product 4-hydroxynonenal. Exp Neurol,2008, 213(1):114-121.
    [85]Tu XK, Yang WZ, Shi SS, Chen Y, Wang CH, Chen CM, Chen Z. Baicalin inhibits TLR2/4 signaling pathway in rat brain following permanent cerebral ischemia. Inflammation,2011,34(5): 463-70.
    [86]Gay NJ, Gangloff M. Structure and function of Toll receptors and their ligands. Annu Rev Biochem,2007,76:141-165.
    [87]Matsushima N, Tanaka T, Enkhbayar P, Mikami T, Taga M, Yamada K, Kuroki Y. Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. BMC Genomics,2007,8:124.
    [88]Seong SY, Matzinger P. Hydrophobicity:an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol,2004,4(6):469-78.
    [89]Yang QW, Li JC, Lu FL, Wen AQ, Xiang J, Zhang LL, Huang ZY, Wang JZ. Upregulated expression of toll-like receptor 4 in monocytes correlates with severity of acute cerebral infarction. J Cereb Blood Flow Metab,2008,28(9):1588-1596.
    [90]Yang QW, Lu FL, Zhou Y, Wang L, Zhong Q, Lin S, Xiang J, Li JC, Fang CQ, Wang JZ. HMBG1 mediates ischemia-reperfusion injury by TRIF-adaptor independent Toll-like receptor 4 signaling. J Cereb Blood Flow Metab,2011,31(2):593-605.
    [91]Yang QW, Wang JZ, Li JC, Zhou Y, Zhong Q, Lu FL, Xiang J. High-mobility group protein box-1 and its relevance to cerebral ischemia. J Cereb Blood Flow Metab,2010,30(2):243-254.
    [92]Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, Lee JO. Crystal Structure of the TLR1-TLR2 Heterodimer Induced by Binding of a Tri-Acylated Lipopeptide. Cell,2007,130(6): 1071-1082.
    [93]Kang JY, Nan X, Jin MS, Youn SJ, Ryu YH, Mah S, Han SH, Lee H, Paik SG, Lee JO. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity,2009,31(6):873-884.
    [94]Kim HM, Park BS, Kim JI, Kim SE, Lee J, Oh SC, Enkhbayar P, Matsushima N, Lee H, Yoo OJ, Lee JO. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell,2007,130(5):906-917.
    [95]Liew FY, Xu D, Brint EK, O'Neill LAJ. Negative regulation of Toll-like receptor-mediated immune responses. Nature Reviews Immunology,2005,5(6):446-458.
    [96]O'Neill LA, Bowie AG. The family of five:TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol,2007,7(5):353-364.
    [97]Chang ZL. Important aspects of Toll-like receptors, ligands and their signaling pathways. Inflamm Res,2010,59(10):791-808.
    [98]Carpenter S, O'Neill LA. Recent insights into the structure of Toll-like receptors and post-translational modifications of their associatedsignalling proteins. Biochem J,2009,422(1):1-10.
    [99]Takeda K, Akira S. TLR signaling pathways. Semin Immunol,2004,16(1):3-9.
    [100]Kollewe C, Mackensen AC, Neumann D, Knop J, Cao P, Li S, Wesche H, Martin MU. Sequential autophosphorylation steps inthe interleukin-1 receptor-associated kinase-1 regulate its availability as an adapter in interleukin-1 signaling. J Biol Chem,2004,279(7):5227-36.
    [101]Kawagoe T, Sato S, Matsushita K, Kato H, Matsui K, Kumagai Y.Saitoh T, Kawai T, Takeuchi O, Akira S.Sequential control of Toll-like receptor-dependent responses by IRAKI and IRAK2. Nat Immunol.2008,9(6):684-691.
    [102]Kobayashi K, Hernandez LD, Galan JE, Janeway CA, Jr., Medzhitov R, Flavell RA. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell,2002,110(2):191-202.
    [103]Li S, Strelow A, Fontana EJ, Wesche H. IRAK-4:a novel member of the IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci USA,2002,99(8):5567-5572.
    [104]Suzuki N, Suzuki'S, Duncan GS, Millar DG, Wada T, Mirtsos C, Takada H, Wakeham A, Itie A, Li S, Penninger JM, Wesche H, Ohashi PS, Mak TW,Yeh WC. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature,2002,416(6882):750-6.
    [105]Picard C, Puel A, Bonnet M, Ku CL, Bustamante J, Yang K, Soudais C, Dupuis S, Feinberg J, Fieschi C, Elbim C, Hitchcock R, Lammas D, Davies G, Al-Ghonaium A, Al-Rayes H,A1-Jumaah S,A1-Hajjar S,A1-Mohsen IZ, Frayha HH, Rucker R, Hawn TR,Aderem A, Tufenkeji H, Haraguchi S, Day NK, Good RA.Gougerot-Pocidalo MA, Ozinsky A, Casanova JL. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science,2003,299(5615): 2076-9.
    [106]Wang Z, Wesche H, Stevens T, Walker N, Yeh WC. IRAK-4_inhibitors_for_inflammation. Curr Top Med Chem,2009,9(8):724-37.
    [107]Kawagoe T, Sato S, Jung A, Yamamoto M, Matsui K, Kato H, Uematsu S, Takeuchi O, Akira S. Essential role of IRAK-4 protein and its kinase activity in Toll-like receptor-mediated immune responses but not in TCR signaling. J Exp Med,2007,204(5):1013-1024.
    [108]Neumann H. Control of glial immune function by neurons. Glia.2001 Nov;36(2):191-9.
    [109]Saliba E. Henrot A. Inflammatory mediators and neonatal brain damage. Biol Neonate,2001, 79(3-4):224-7.
    [110]Hanamsagar R, Torres V, Kielian T. Inflammasome activation and IL-1β/IL-18 processing are influenced by distinct pathways in microglia. J Neurochem,2011,119(4):736-48.
    1. Niisslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature.1980; 287(5785):795-801.
    2. Steward R, McNally FJ, Schedl P. Isolation of the dorsal locus of Drosophila. Nature.1984; 311(5983):262-5.
    3. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature.1997; 388(6640):394-7.
    4. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;,124(4):783-801.
    5. Gordon S. Pattern recognition receptors:doubling up for the innate immune response. Cell. 2002; 111(7):927-30.
    6. Eltzschig HK, Eckle T. Ischemia and reperfusion--from mechanism to translation. Nat Med. 2011; 17(11):1391-401.
    7. Krmpotic L, Zirdum D, Gorup D, Mitrecic D, Curlin M, Kriz J, Gajovic S. Expression analysis of genes involved in TLR2-related signaling pathway:inflammation and apoptosis after ischemic brain injury. Neuroscience.2013; S0306-4522(13)00118-8. 10.1016/j.neuroscience.2013.02.001.
    8. Kaczorowski DJ, Mollen K.P, Edmonds R, Billiar TR. Early events in the recognition of danger signals after tissue injury. J Leukoc Biol.2008; 83(3):546-52.
    9. Zwagerman N, Plumlee C, Guthikonda M, Ding Y. Toll-like receptor-4 and cytokine cascade in stroke after exercise. Neurol Res.2010; 32(2):123-6.
    10. Chang ZL. Role of Toll-like receptors in regulatory functions of T and B cells. Chin Sci Bull. 2008; 53:1121-7.
    11. Mc Gettrick AF, O'Neill LA. Toll-like receptors:key activators of leucocytes and regulator of haematopoiesis. Br J Haematol.2007; 139(2):185-93.
    12. Liu G, Zhang L, Zhao Y. Modulation of immune responses through direct activation of Toll-like receptors to T cells. Clin Exp Immunol.2010; 160(2):168-75.
    13. Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP. TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol. 2005; 175(7):4320-4330.
    14. Bsibsi M, Ravid R, Gveric D, van Noort JM. Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol.2002; 61(11):1013-1021.
    15. Olson JK, Miller SD. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol.2004; 173(6):3916-3924.
    16. Marsh BJ, Williams-Karnesky RL, Stenzel-Poore MP. Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience.2009; 158(3):1007-1020.
    17. Arumugam TV, Okun E, Tang SC, Thundyil J, Taylor SM, Woodruff TM. Toll-like receptors in ischemia-reperfusion injury. Shock.2009; 32(1):4-16.
    18. Bowman CC, Rasley A, Tranguch SL, Marriott I. Cultured astrocytes express Toll-like receptors for bacterial products. Glia.2003; 43(3):281-291.
    19. Lehnardt S, Henneke P, Lien E, Kasper DL, Volpe JJ, Bechmann I, Nitsch R, Weber JR, Golenbock DT, Vartanian T. A mechanism for neurodegeneration induced by group B streptococci through activation of the TLR2/MyD88 pathway in microglia. J Immunol.2006; 177(1):583-592.
    20. Tang SC, Lathia JD, Selvaraj PK, Jo DG, Mughal MR, Cheng A, Siler DA, Markesbery WR, Arumugam TV, Mattson MP. Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid beta-peptide and the membrane lipid peroxidation product 4-hydroxynonenal. Exp Neurol.2008; 213(1):114-121.
    21. Okun E, Griffioen KJ, Lathia JD, Tang SC, Mattson MP, Arumugam TV. Toll-like receptors in neurodegeneration. Brain Res Rev.2009; 59(2):278-92
    22. Tang SC, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG, Lathia JD, Siler DA, Chigurupati S, Ouyang X, et al. Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci USA.2007; 104(34):13798-13803.
    23. Marsh B, Stevens SL, Packard AE, Gopalan B, Hunter B, Leung PY, Harrington CA, Stenzel-Poore MP. Systemic lipopolysaccharide protects brain from ischemic injury by reprogramming the response of the brain to stroke:a critical role for IRF3. J Neurosci.2009; 29(31):9839-9849.
    24. Gay NJ, Gangloff M. Structure and function of Toll receptors and their ligands. Annu Rev Biochem.2007; 76:141-165.
    25. Matsushima N, Tanaka T, Enkhbayar P, Mikami T, Taga M, Yamada K, et al. Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. BMC Genomics.2007; 8:124.
    26. Seong SY, Matzinger P. Hydrophobicity:an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol.2004; 4:469-78.
    27. O'Neill LA, Bowie AG. The family of five:TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol.2007; 7:353-364.
    28. Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, Lee JO. Crystal Structure of the TLR1-TLR2 Heterodimer Induced by Binding of a Tri-Acylated Lipopeptide. Cell.2007; 130:1071-1082.
    29. Kang JY, Nan X, Jin MS, Youn SJ, Ryu YH, Mah S, Han SH, Lee H, Paik SG, Lee JO. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity.2009; 31:873-884.
    30. Liew FY, Xu D, Brint EK, O'Neill LAJ. Negative regulation of Toll-like receptor-mediated immune responses. Nature Reviews Immunology.2005; 5(6):446-458.
    31. Kim HM, Park BS, Kim JI, Kim SE, Lee J, Oh SC, Enkhbayar P, Matsushima N, Lee H, Yoo OJ, Lee JO. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell.2007; 130:906-917.
    32. Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature.2009; 458:1191-1195.
    33. Jin MS, Lee JO. Structures of the Toll-like receptor family and its ligand complexes. Immunity.2008; 29(2):182-91.
    34. Yang QW, Li JC, Lu FL, Wen AQ, Xiang J, Zhang LL, Huang ZY, Wang JZ. Upregulated expression of toll-like receptor 4 in monocytes correlates with severity of acute cerebral infarction. J Cereb Blood Flow Metab.2008; 28:1588-1596.
    35. Yang QW, Lu FL, Zhou Y, Wang L, Zhong Q, Lin S, Xiang J. Li JC, Fang CQ, Wang JZ. HMBG1 mediates ischemia-reperfusion injury by TRIF-adaptor independent Toll-like receptor 4 signaling. J Cereb Blood Flow Metab.2011; 31:593-605.
    36. Yang QW, Wang JZ, Li JC, Zhou Y, Zhong Q, Lu FL, Xiang J. High-mobility group protein box-1 and its relevance to cerebral ischemia. J Cereb Blood Flow Metab.2010; 30:243-254.
    37. Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK. Novel signal transduction pathway utilized by extracellular HSP70:role of toll-like receptor TLR2 and TLR4. J Biol Chem.2002; 277:15028-15034.
    38. Vabulas RM, Ahmad-Nejad P, Da Costa C, Miethke T, Kirschning CJ, Hacker H, Wagner H. Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/ interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem.2001; 276: 31332-31339.
    39. Zou N, Ao L, Cleveland JC Jr, Yang X, Su X, Cai GY, Banerjee A, Fullerton DA, Meng X. Critical role of extracellular heat shock cognate protein 70 in the myocardial inflammatory response and cardiac dysfunction after global ischemia-reperfusion. Am J Physiol Heart Circ Physiol.2008; 294:2805-2813.
    40. Brea D, Blanco M, Ramos-Cabrer P, Moldes O, Arias S, Perez-Mato M, Leira R, Sobrino T, Castillo J. Toll-like receptors 2 and 4 in ischemic stroke:outcome and therapeutic values. J Cereb Blood Flow Metab.2011; 31(6):1424-31.
    41. Sha Y, Zmijewski J, Xu Z, Abraham E. HMGB1 develops enhanced proinflammatory activity by binding to cytokines. J Immunol.2008; 180:2531-2537.
    42. Peltz ED, Moore EE, Eckels PC, Damle SS, Tsuruta Y, Johnson JL, Sauaia A, Silliman CC, Banerjee A, Abraham E. HMGB1 is markedly elevated within 6 hours of mechanical trauma in humans. Shock.2009; 32:17-22.
    43. Park JS, Gamboni-Robertson F, He Q, Svetkauskaite D, Kim JY, Strassheim D, Sohn JW, Yamada S, Maruyama I, Banerjee A, Ishizaka A, Abraham E. High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J Physiol Cell Physiol.2006; 290:917-924..
    44. Faraco G, Fossati S, Bianchi ME, Patrone M, Pedrazzi M, Sparatore B, Moroni F, Chiarugi A. High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo. J Neurochem.2007; 103:590-603.
    45. Qiu J, Xu J, Zheng Y, Wei Y, Zhu X, Lo EH, Moskowitz MA, Sims JR. High-mobility group box 1 promotes metalloproteinase-9 upregulation through Toll-like receptor 4 after cerebral ischemia. Stroke.2010; 41(9):2077-82.
    46. Yu M, Wang H, Ding A, Golenbock DT, Latz E, Czura CJ, Fenton MJ, Tracey KJ, Yang H. HMGB1 signals through toll-like receptor TLR4 and TLR2. Shock.2006; 26(2): 174-9.
    47. Takeda K, Akira S. TLR signaling pathways. Semin Immunol.2004; 16:3-9.
    48. Abulafia, D P, de Rivero Vaccari JP, Lozano JD, Lotocki G, Keane RW, Dietrich WD. Inhibition of the inflamma-some complex reduces the inflam-matory response after thromboem-bolic stroke in mice. J Cereb Blood Flow Metab.2009; 29:534-544.
    49. Tu XK, Yang WZ, Shi SS, Chen Y, Wang CH, Chen CM, Chen Z. Baicalin inhibits TLR2/4 signaling pathway in rat brain following permanent cerebral ischemia. Inflammation.2011; 34(5):463-70.
    50. Gertz K, Kronenberg G, Kalin RE, Baldinger T, Werner C, Balkaya M, Eom GD, Hellmann-Regen J, Krober J, Miller KR, Lindauer U, Laufs U, Dirnagl U, Hepp-ner FL, Endres M. Essential role of interleukin-6 in post-stroke angiogenesis. Brain.2012; 135(6): 1964-80.
    51. Cao CX, Yang QW, Lv FL, Cui J, Fu HB, Wang JZ. Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice. Biochem Biophys Res Commun.2007; 353(2): 509-14.
    52. Bohacek I, Cordeau P, Lalancette-Hebert M, Gorup D, Weng YC, Gajovic S, Kriz J. Toll-like receptor 2 deficiency leads to delayed exacerbation of ischemic injury. J Neuroinflammation. 2012; 9:191.
    53. Qiu J, Nishimura M, Wang Y, Sims JR, Qiu S, Savitz SI, Salomone S, Moskowitz MA. Early release of HMGB-1 from neurons after the onset of brain ischemia. J Cereb Blood Flow Metab.2008; 28(5):927-38.
    54. Ziegler G, Harhausen D, Schepers C, Hoffmann O, Rohr C, Prinz V, Konig J, Lehrach H, Nietfeld W, Trendelenburg G. TLR2 has a detrimental role in mouse transient focal cerebral ischemia. Biochem Biophys Res Commun.2007; 359(3):574-9.
    55. Lv M, Liu Y, Zhang J, Sun L, Liu Z, Zhang S, Wang B, Su D, Su Z. Roles of inflammation response in microglia cell through Toll-like receptors 2/interleukin-23/interleukin-17 pathway in cerebral ischemia/reperfusion injury. Neuroscience.2011; 176:162-72.
    56. Abe T, Shimamura M, Jackman K, Kurinami H, Anrather J, Zhou P, Iadecola C. Key role of CD36 in Toll-like receptor 2 signaling in cerebral ischemia. Stroke.2010; 41(5):898-904.
    57. Lehnardt S, Lehmann S, Kaul D, Tschimmel K, Hoffmann O, Cho S, Krueger C, Nitsch R, Meisel A, Weber JR. Toll-like receptor 2 mediates CNS injury in focal cerebral ischemia. J Neuroimmunol 2007; 190:28-33.
    58. Hyakkoku K, Hamanaka J, Tsuruma K, Shimazawa M, Tanaka H, Uematsu S, Akira S, Inagaki N, Nagai H, Hara H. Toll-like receptor 4 (TLR4), but not TLR3 or TLR9, knock-out mice have neuroprotective effects against focal cerebral ischemia. Neuroscience.2010; 171(1): 258-67.
    59. Stevens SL, Ciesielski TM, Marsh BJ, Yang T, Homen DS. Boule JL, Lessov NS, Simon RP, Stenzel-Poore MP. Toll-like receptor 9:a new target of ischemic preconditioning in the brain. J Cereb Blood Flow Metab.2008; 28(5):1040-7.
    60. Tu XK, Yang WZ, Shi SS, Wang CH, Zhang GL, Ni TR, Chen CM, Wang R, Jia JW, Song QM. Spatio-temporal distribution of inflammatory reaction and expression of TLR2/4 signaling pathway in rat brain following permanent focal cerebral ischemia. Neurochem Res. 2010; 35(8):1147-55.
    61. Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, Lizasoain I. Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation.2007; 115: 1599-1608.
    62. Caso JR, Pradillo JM, Hurtado O, Leza JC, Moro MA, Lizasoain I. Toll-like receptor 4 is involved in subacute stress-induced neuroinflammation and in the worsening of experimental stroke. Stroke.2008; 39:1314-1320.
    63. Brea D, Blanco M, Sobrino T, Ramos-Cabrer P, Castillo J. The levels of expression of toll-like receptors 2 and 4 in neutrophils are associated with the prognosis of ischaemic stroke patients. Rev Neurol.2011; 52(1):12-9.
    64. Ferronato S, Lira MG, Olivato S, Scuro A, Veraldi GF, Romanelli MG, Patuzzo C, Malerba G, Pignatti PF, Mazzucco S. pregulated expression of Toll-like receptor 4 in peripheral blood of ischaemic stroke patients correlates with cyclooxygenase 2 expression. U Eur J Vasc Endovasc Surg.2011; 41(3):358-63.
    65. Guo Y, Xu X, Li Q, Li Z, Du F. Anti-inflammation effects of picroside 2 in cerebral ischemic injury rats. Behav Brain Funct.2010; 9:43.
    66. Qiao H, Zhang X, Zhu C, Dong L, Wang L, Zhang X, Xing Y, Wang C, Ji Y, Cao X. Luteolin downregulates TLR4, TLR5, NF-κB and p-p38MAPK expression, upregulates the p-ERK expression, and protects rat brains against focal ischemia. Brain Res.2012; 1448:71-81.
    67. Vartanian KB, Stevens SL, Marsh BJ, Williams-Karnesky R, Lessov NS, Stenzel-Poore MP. LPS preconditioning redirects TLR signaling following stroke:TRIF-IRF3 plays a seminal role in mediating tolerance to ischemic injury. J Neuroinflammation.2011; 8:140.
    68. Lu C, Liu L, Chen Y, Ha T, Kelley J, Schweitzer J, Kalbfleisch JH, Kao RL, Williams DL, Li C. TLR2 ligand induces protection against cerebral ischemia/reperfusion injury via activation of phosphoinositide 3-kinase/Akt signaling. J Immunol.2011; 187(3):1458-66.
    69. Ma Y, He M, Qiang L. Exercise Therapy Downregulates the Overexpression of TLR4, TLR2, MyD88 and NF-kB after Cerebral Ischemia in Rats. Int J Mol Sci.2013; 14(2):3718-33.
    70. Nathan Zwagerman, Chuck Plumlee, Murali Guthikonda, Yuchuan Ding. Toll-like receptor-4 and cytokine cascade in stroke after exercise. Neurological Research.2010; 32(2):123-126.
    71. Lan L, Tao J, Chen A, Xie G, Huang J, Lin J, Peng J, Chen L. Electroacupuncture exerts anti-inflammatory effects in cerebral ischemia-reperfusion injured rats via suppression of the TLR4/NF-KB pathway. Int J Mol Med.2013; 31(1):75-80.
    72. Zhou M, Wang CM, Yang WL, Wang P. Microglial CD 14 activated by iNOS contributes to neuroinflammation in cerebral ischemia'. Brain Res.2013; Feb 14. doi.pii: S0006-8993(13)00202-3.10.1016/j.brainres.2013.02.010. [Epub ahead of print]