高坝泄洪雾雨作用下饱和非饱和裂隙岩质边坡稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高坝泄洪雾雨所引起的岩石高边坡稳定问题是目前我国西南地区水电工程面临的一个重大难题,它涉及水力学、两相流体力学以及岩体力学等多项交叉学科。研究高坝泄洪雾雨作用下饱和非饱和岩质高边坡的稳定性,科学问题主要集中在以下三个方面:一是对实际工程所关心的高坝泄洪雾化雨的降雨强度及分布的研究,目前主要是通过原体观测和物理模型试验,得出一些经验公式进行估算,很少有深入的系统的量化分析;二是泄洪雾雨的入渗是一个饱和非饱和渗流过程,关于裂隙岩体非饱和渗流的研究,虽然提出了一些概念模型,但很多机理还不明白,非饱和状态下的岩体水力学参数也很难确定,选择什么样的数学模型也有待研究;三是雾雨影响下的岩石高边坡稳定问题,由于雾雨的入渗使边坡岩体的基质吸力降低、暂态水荷载增加,岩体强度降低,从而加速了边坡失稳,但如何来定量研究此问题还缺少可应用的成果。本文研究工作主要基于以上三个难点和科学问题,以构皮滩水电工程右岸泄洪雾雨区的边坡为研究背景,研究高坝在泄洪雾雨作用下的岩石高边坡稳定性问题。
     本文的主要研究工作集中在以下几个方面:
     1、限于目前对高坝泄洪雾化的雾雨强度和分布范围研究的不足以及人们对其认识的模糊性,利用模糊数学的方法研究雾雨强度和分布,分析了引起泄洪雾化的影响因子,建立了泄洪雾化的模糊数学模型。为了尽量减少人为因素给工程分析带来的主观影响,寻求出一种尽可能少使用专家经验的方法来确定模糊分析所需的隶属函数,也即在统计分析基础上并结合专家经验的方法构造隶属函数,再由模糊合成和综合评判(最大隶属度原则)来分析预报降雨强度和分布范围。
     2、以构皮滩右岸雾雨区边坡为研究背景,在掌握边坡岩性、岩体结构、构造以及岩体变形和强度的基础上,划分出边坡山体工程地质岩组。重点研究了边坡卸荷带岩体特征,并在此基础上根据边坡类型、岩性及构造、岩溶发育特征、卸荷特征以及受泄洪雾化影响程度等为依据将该区自然坡体划分为五个工程地质分区。根据边坡的地表信息、开挖信息、岩层分界信息以及排水洞和帷幕信息,利用自编软件生成三维网格计算地质模型,为边坡的渗流场和应力场分析奠定基础。用此方法所建立的模型基本上保存了原山体的信息,在网格规模一定时充分利用了边坡中的控制信息,避免了建模过程中不必要的简化所造成的失真,充分的反映了原坡体面貌和人工改造后的边坡形态。
High rock slope stability issue caused by flood discharge atomization of high dam is a major problem which will be faced in the water-power engineering of the west south area of our country. It is related to hydromechanics, quarter-phase fluid mechanics, rock mass mechanics etc, many crossed subjects. In general, there are three difficulty and scientific problems in the research of stability of saturated-unsaturated high rock slope under flood discharge atomization of high dam. First, the rainfall intensity and distribution of flood discharge atomization which is concerned by project can only be estimated by some empirical equations through elementary body observation and physical model tests. The in-depth, systemic quantify analysis is scared. Second, the seepage of flood discharge atomization is a saturated-unsaturated seepage flow course. The research about unsaturated seepage flow in the fracture rock mass is in the initial step, there still exits many problems, such as: the mechanics, the confirmation of hydraulics parameters of rock mass in the unsaturated phase, the choose of mathematics model. Third, the stability of high rock slope under flood discharge atomization. The flood discharge atomization seepage causes the reduction of host suction of rock slope, the increment of temporary water loading, the decrease of rock mass strength, therefore accelerates the slope failure. But the achievements of quantify research this problem is in shortage. The research work in this dissertation is about the rock slope stability issue caused by flood discharge atomization of high dam, based on the three problems above, selecting the spandrel groove slope of flood discharge atomization area in Gou Pitan right bank as the research background.The main research work in this dissertation is focused on the following: 1、 Limited by the deficiency of rainfall intensity and distribution of flood discharge atomization and the fuzziness of our understanding, the rainfall intensity and distribution of flood discharge atomization is researched by fuzzy mathematics, and influence factor of flood discharge atomization is analyzed, the fuzzy mathematics model is established. In order to reduce the subjective influence of man-made factor, one method of determining the membership function is found, that is constitute the membership function on the basis of statistical analysis, then forecast the rainfall
    intensity and range by the fuzzy comprehensive judge (the max degree of membership rule).2、 Choose the spandrel groove slope in Gou Pitan right bank as the research background, and divide the engineering geology petrofabric of slope mountain on the basis of familiar with the slope rock character, rock mass structure, constitution, deformation and strength of rock mass. The rock mass character of slope off-load area is major researched, and the nature slope is divided to five engineering geology area based on the slope type, rock character and constitution, carst development character, off-load character, and influence degree of flood discharge atomization. According to the slope surface information, excavation information, rock formation information, draining hole and purdah information, the three dimensional grid generated by self-programming is used to generate the compute geology model, and provide the basis for the analysis of seepage flow field and stress field of slope. The model created by this method saves the basic mountain information, making full use of control information in the slope and reflecting the original slope feature and slope shape after excavation when the grid scale is certain, avoiding the distortion in the model building process caused by simplify incorrectly.3 、 Based on the plenty of field measured fracture data, the statistical analysis about fracture density, azimuth, size, continuity, jaw opening is carried out, the random model of discrete fracture network is established on Enhanced Baecher model. The Monte Carlo random simulation is used in fracture network random simulation, thus the three-dimensional discrete fracture network figure of different dimension is got. According to the figure, the validity analysis of equivalent continue mediator model for slope seepage field is carried and seepage tensor is computed on the basis of statistical geometry data, providing important hydraulic parameter for seepage field analysis.4 、 The movement character of slope water and the factor influencing the seepage under the flood discharge atomization and rainfall seepage condition is researched. According to the control equation of saturated-unsaturated state, the integral saturated-unsaturated unsteady seepage control equation is constituted on the connection of saturation degree. The FEM computation format of mathematic model is deduced by Galerkin weighing margin method, the compute iterate mode of nonlinear FEM is developed, and the three dimensional FEM program USSEEPAGE3D of computing saturated-unsaturated unsteady seepage under ground seepage condition by FORTRAN language. This program includes fore treatment part, main compute
    program part and post treatment part, and each part has definite function meaning, can handle the complexity of practical matter and is flexible. The unsaturated hydraulic parameter problem and initial water head field problem in the FEM solve is treated, thus the solve equation is in high efficiency, fast convergence and stationary. Based on the programmed and technique method in the course of FEM computation to simulate the seepage field under flood discharge atomization of slope in Gou Pitan hydroelectric station right bank, and the result can be provided an important reference for slope rock mass seepage control.5、 The mechanics of slope failure due to atomization seepage is profound researched. Through the relation between seepage characters of fracture rock mass and stress, elastic-plastic constitutive equation of fracture rock mass and control equation of seepage field, the equivalent continue mediator model of seepage and stress field coupling is established. The two-field coupling is solved by iteration. The stability of slope is evaluated by FEM, which is used a lot in the slope stability analysis at present. In the end, for the example of flood discharge atomization region slope of Gou Pitan right bank, the component of slope rock mass under the coupling action and not including the influence of seepage field is computed, and the stability of slope is analyzed. At the same time, the influence of different seepage control measures is discussed, and the result can be provided an important science gist for safety estimate in practical project.
引文
[1] 刘士和,梁在潮.水利枢纽中雾化雨的模拟与防范[J].武汉大学学报(工学版),2001,34(3):1-4.
    [2] 李瓒.龙羊峡水电站挑流水雾诱发滑坡问题[M].大坝与安全,2001,3:17-20.
    [3] 韩建设.李家峡水电站坝前滑坡体的变形特性及处理措施[J].水力发电,1997,(6):35-37.
    [4] 苏建明,李浩然.二滩水电站泄洪雾化对下游边坡的影响[J].水文地质工程地质,2002,(2):22-25.
    [5] 肖兴斌,芦俊英.高拱坝泄洪消能水力设计研究与应用述评[J].水利水电科技进展,2000,20(2):19-23.
    [6] Darcy, H.. Les Fontaines Publiques de la Ville de Dijon[M]. Victor Dalmont, Paris, 1856.
    [7] Louis, C.. Rock Hydraulics, Rock Mechanics[M]. Edited by L. Muller, 1974, 299-387.
    [8] 汝乃华,姜忠胜.大坝事故与安全·拱坝[M].中国水利水电出版社,1995.
    [9] 肖兴斌.高坝泄洪消能研究与运用的新发展[J].长江水利教育,1994,11(1):43-48.
    [10] 肖兴斌.高坝挑流水流雾化问题研究综述[J].长江水利教育,1997,14(1):69-72.
    [11] 孙双科,刘之平.泄洪雾化降雨的纵向边界估算[J].水利学报,2003,(12):53-58.
    [12] 刘宣烈.泄洪雾化入水喷溅物理及数学模拟研究[J].天津大学水利系,1989.
    [13] 刘宣烈.二滩水电站泄洪水流雾化及其影响的研究[J].天津大学,1989.
    [14] 梁在潮,李奇.坝下游雾化问题的研究[J].高速水流,1986.
    [15] 吴柏春.白山水电站泄洪雾化观测结果分析[J].泄水工程与高速水流,1993(1).
    [16] 刘士和,梁在朝.深窄峡谷区泄洪雾化及其影响的研究[J].武汉水利电力大学学报,1997,30(4):6-9.
    [17] 张华,练继建,王善达.湾塘水电站泄流雾化的数值计算[J].水利学报,2003,(4):8-14.
    [18] 戴丽荣,张云芳,张华等.挑流泄洪雾化影响范围的人工神经网络模型预测[J].水利水电技术,2003,(34)5:5-9.
    [19] 周辉,陈慧玲.挑流泄洪雾化降雨的模糊综合评判方法[J].南京水利科学研究院,1994,1:165-170.
    [20] 宋晓晨,徐卫亚,邵建富等.雾雨作用下的非饱和边坡稳定性研究[J].河海大学学报(自然科学版),2002,30(6):16-20.
    [21] Carman, P. C.. Flow of Gases Through Porous Media[J]. Butterworths, London. 1956.
    [22] 张有天.岩石水力学的理论及应用[M].中国岩石力学与工程世纪成就,河海大学出版社,2004,p278-303.
    [23] Snow, D.. Anisotropic permeability of fractured media[J]. Water Resour. Res., 1969,5(6), 1273-1289.
    [24] Snow, D. T.. Three-hole test for anisotropic foundation permeability[J]. Rock Mech. Eng. Geol. 1966,4,293-316.
    [25] Snow, D.. Rock-fracture spacing, openings and porosities [J]. J. Soil Mech. Founda. Div. ASCE, 1968, 94, 73-91.
    [26] Louis, C., T. Maini. Determination of in situ hydraulic parameters in jointed rock[C]. Proc. 2nd Cong, ISRM, 1970, 235-245.
    [27] 田开铭.裂隙水交叉流的水力特性[J].地质学报,1986,2,202-213.
    [28] 张有天,张武功.裂隙岩体渗流特性,数学模型及系数量测[J].岩石力学,1982,8,41-52.
    [29] Witherspoon, P. A., Wang, J. S. Y., K. Iwai, and J. E. Gale. Validity of cubic law for fluid flow in a deformable rock fracture[J]. Water Resou. Res., 1980, 16(6): 1016-1024.
    [30] Bear, J.. Dynamics of Fluids in Porous Media[J]. Elservier, New York, 1972.
    [31] Tai-sheng Liou. Statistical analysis of liquid seepage in partially saturated heterogeneous fracture systems[D]. PH. D. thesis, Bell & Howell Information and Learning Company,1999.
    [32] Raven, K. G., and J. E. Gale. Water flow in a natural rock fracture as a function of stress and sample size[J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 1985.22(4):251-261.
    [33] Pyrak-Nolte, L. J., L. R. Myer, N. G. W. Cook, and P. A. Witherspoon. Hydraulic and mechanical properties of natural fracture in low permeability rock[C]. Proc. 6th international congress on rock mechanics (eds. Herget, G., and Vongpaisal, S.) Montreal, Canada (A. A. Balkema, Rotterdam) 1987, 225-231.
    [34] Durham, W. B., and B. P. Bonner. Self-propping and fluid flow in slightly offset joints at high effective pressures[J]. Journal of Geophysical Research 1994.99(B5): 9391-9399.
    [35] Novakowski, K. S., G. V. Evans, D. A. Lever, and K. G. Raven. A field example of measuring hydrodynamic dispersion in a single fracture [J] e. Water Resources Research 1985, 21: 1165-1174.
    [36] Novakowski, K. S., P. A. Lapcevic, J. Voralek, and G. Bickerton. Preliminary interpretation of tracer experiments conducted in a discrete rock fracture under conditions of natural flow[J]. Geophysical Research Letters, 1995, 22:1417-1420.
    [37] Rasmuson, A., and I. Neretnieks. Radio nuclide transport in fast channels in crystalline rock[J]. Water Resources Research, 1986, 22:1247-1256.
    [38] Raven, K. G., K. S. Novakowski, and P. A. Lapcevic. Interpretation of field tracer tests of a single fracture using a transient solute storage model[J]. Water Resources Research 1988, 24: 2019-2032.
    [39] Iwai, K.. Fundamental studies of fluid flow through a single fracture[D]. PH. D. thesis, Univ.of Calif., Berkeley, 1976, p208.
    [40] Tsang, Y. W., and P. A. Witherspoon. Hydromechanical behavior of a deformable rock fracture subject to normal stress[J]. J. Geoghys. Res., 1981, 86: 9287-9298.
    [41] Pyrak-Nolte, L. J., N. G. W. Cook, and D. D. Nolte. Fluid percolation through single fractures [J]. Geophysical Research Letters, 1988, 15(11): 1247-1250.
    [421] Kranz, R. L., A. D. Frankel, T. Engeider, and C. H. Schoiz. The permeability of whole and jointed Barre granite[J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1979,16:225-234.
    [43] Raven, K. G., and J. E. Gale. Water flow in a natural rock fracture as a function of stress and sample size[J]. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1985,22(4):225-234.
    [44] Glover, P. W. J., K. Matsuki, R. Hikima, and K. Hayashi. Fluid flow in synthetic rough fractures and application to the Hachimantai geothermal dry rock test site [J]. J. Geoghys. Res., 1998b, 103(B5): 9621-9635.
    [45] Moreno, L., Y. W. Tsang, C. F. Tsang, F. V. Hale, and I. Neretnieks. Flow and tracer transport in a single fracture: A stochastic model and its relation to some field observations [J]. Water Resources Research 1988, 24: 2033-2048.
    [46] Thompson, M. E., and S. R. Brown. The effect of anisotropic surface roughness on flow and transport in fractures [J]. Journal of Geophysical Research. 1991. 21(96B): 923-932.
    [47] David, C.. Geometry of flow paths for fluid transport in rocks[J]. Journal of Geophysical Research. 1993, 98(B7): 12,267-12,278.
    [48] Unger, A. J. A., and C. W. Masc. Numerical study of the hydro mechanical behavior of two rough fracture surfaces in contact [J]. Water Resources Research. 1993, 29: 2101-2114.
    [49] Amadei, B., and T. Illangasekare. A mathematical model for flow and solute transport in nonhomogeneous and an isotropic rock fractures [J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abs. 1994, 31: 719-731.
    [50] Oron, A. P., and B. Berkowitz. Flow in rock fractures: The local cubic law assumption reexamined [J]. Water Resources Research. 1998, 34:2811-2825.
    [51] Brown, S. R., H. W. Stockman, and S. J. Reeves. Applicability of the Reynolds equation for modeling fluid flow between rough surfaces [J]. Geophysical Research Letters. 1995, 22:2537-2540.
    [52] Ge, S.. A governing equation for fluid flow in rough fractures [J]. Water Resources Research. 1997, 33(1): 53-61.
    [53] Cook, A. M., L. R. Myer, N. G. W. Cook, and F. M. Doyle. The effect of tortuosity on flow through a natural fracture [A]. In Rock Mechanics Contributions and Challenges, Proceedings of the 31st U.S. Symposium on Rock Mechanics, W. A. Hustrulid and G. A. Johnson, eds. Rotterdam: A. A. Balkema. 1990, Pp. 371-378.
    [54] Walsh, J. B. 1981. Effect of pore pressure and confining pressure on fracture permeability. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 18:429-435.
    [55] 周创兵,熊文林.岩石节理的渗流广义立方定律[J].岩土力学,1996,17(4):1-7.
    [56] 速宝玉,詹美礼,赵坚.仿天然岩体裂隙渗流的实验研究[J].岩土工程学报,1995,17(5):19-24.
    [57] 王媛,速宝玉.单裂隙面渗流特性及等效水力隙宽[J].水科学进展,2002,13(1):62-68.
    [58] Gale J E. The Effects of Fracture Type (Induced Versus Natural) on the Stress fractures Closures fractures Permeability Relationships [J]. Proc 23th Symp on Rock Mech, Berkeley, California, 1982.
    [59] Barton N, Bandis S, Bakhtar K. Strength deformation and conductivity coupling of rock joints[J]. Int J Rock Min Sci & Geomech Abstr, 1985, 22(3).
    [60] 刘继山.单裂隙受正应力作用时的渗流公式[J].水文地质工程地质,1987,2.8.
    [61] 刘继山.结构面力学参数与水力参数耦合关系及其应用[J].水文地质工程地质,1988,2.
    [62] 仵颜卿,张倬元.岩体水力学导论[M].成都:西南交通大学出版社,1995.
    [63] 速宝玉,詹美礼,王媛.裂隙渗流与应力耦合特性的试验研究[J].岩士工程学报,1997,19(4):73~77.
    [64] 郑少河,赵阳升,段康廉.三维应力作用下天然裂隙渗流规律的实验研究[J].1999,18(2):133~136
    [65] M. Oda, T. Yamabe, et al. Elastic stress and strain in jointed rock masses by means of crack tensor analysis[J]. Rock Mech. Rock Engng. 1993, 26(2):89-112.
    [66] 周创兵,熊文林.不连续面渗流与变形耦合的机理研究[J].水文地质工程地质,1996,23(3):14-17.
    [67] 柴军瑞.大坝及其周围地质体中渗流场与应力场耦合分析研究综述[J].水利水电科技进展,2002,22(2):53~56.
    [68] 王环玲,徐卫亚.岩石变形破坏过程中渗透率演化规律的试验研究[J].岩土力学,2006,27(10):待刊.
    [69] Buckingham, E.. Studies on the movement of soil moisture [J]. Bulletin 38, U. S. Department of Agriculture—Bureau of Soils. Washington, 1907.
    [70] Hoffmann, M. R.. Macroscopic equation for flow in unsaturated porous media [M]. Dissertation Wageningen Universiteit. Wageningen, 2003.
    [71] Gray, W. G. and Hassanizadeh, S. M.. Paradoxes and realities in unsaturated flow theory [J]. Water Resources Research. 1991a, 27(8): 1847-1854.
    [72] Fuentes, C., Haverkamp, R., and Parlange, J.-Y.. Parameter constraints on closed-form soil water relationships [J]. J. of Hydrology. 1992, 134(1-4):117-142.
    [73] U. S. National Committee for Rock Mechanics. Conceptual models of flow and transport in the fractured vadose zone [M]. NATIONAL ACADEMY PRESS Washington. D. C., 2001, p19.
    [74] Peters, R. R., and E. A. Klavetter. A continuum model for water movement in an unsaturated fractured rock mass[J]. Water Resources Research 1988, 24(3): 416-430.
    [75] Dragila, M. I., and S. W. Wheatcraft. Free-surface films: CGER, Conceptual models of flow and transport in the fractured vadose zone[M]. NATIONAL ACADEMY PRESS Washington, D.C., 2001,217-242.
    [76] Tokunaga, T. K., and J. Wan. Water film flow along fracture surfaces of porous rock[J]. Water Resources Research. 1997,33(6): 1287-1295.
    [77]Pruess,K.. A mechanistic model for water seepage through thick unsaturated zones in fractured rocks of low matrix permeability Water Resources Research.. Water Resources Research. 1999,34(4): 1039-1051.
    [78]Jan M.H.Hendrickx and Markus Flury. Uniform and preferential flow mechanisms in the vadose zone[J]. Water Resources Research, 2001,149-168.
    [79]Altman,S.J., B.W.Arnold, R.W.Barnard, GE.Barr, C.K.Ho, S.A.Mckenna, and R.R.Eaton. Flow calculations for Yucca Mountain groundwater travel time (GWTT-95) [C]. Report SAND96-0819. Albuquerque, N.Mex.: Sandia National Laboratories. 1996,pl70.
    [80]Flint,L.E., A.L.Flint, and J.A.Hevesi. Shallow infiltration processes in arid watersheds at Yucca Mountain[C]. Nevada. In: Fifth International High Level Radioactive Waste Management Conference, Las Vegas, Nev., MA Proceedings. La Grange Park, III: American Nuclear Society, 1993:2315-2322.
    [81]Wang,J.S.Y., and T.N.Narasimhan. Hydrologic mechanisms governing fluid flow in a partially saturated, fractured, porous medium [J]. Water Resources Research. 1985,21(12): 1861-1874.
    [82]Kwicklis,E.M., F.Thamir, R.W.Healy, and D.Hampson. Numerical simulation of air-and water flow experiments in a block of variably saturated, fractured tuff from Yucca Mountain [J]. Nevada.U.S. Geological survey water-resources investigations report97-4274. Denver, Colo., U.S. Geological Survey. 1998,p64.
    [83]Gerke,H.H., and M.Th.van Genuchten. Evaluation of a first-order water transfer term for variably saturated dual-porosity flow models [J]. Water Resources Research. 1993b, 29(4): 1225-1238.
    [84]Ho,C.K.. Models of fracture-matrix interactions during multiphase heat and mass flow in unsaturated fractured porous media [A]. Paper presented at 6th symposium on multiphase transport in porous media. ASME International mechanical engineering congress and exposition, American society of mechanical engineering, Dallas, Texas. 1997.
    [85]Liu,H.H., C.Doughty, and GS.Bodvarsson.An active fracture model for unsaturated flow and transport in fractured rocks[J]. Water Resources Research. 1998,34(10): 2633-2646.
    [86]Neuman, S.P.and Depner,J.S.. Use of variable-scale pressure test data to estimate the log hydraulic conductivity covariance and dispersivity of fractured granites near Oracle [J]. Arizona: Journal of Hydrology, 1988,102(1-4)475-501.
    [87]Pruess.K., Narasimhan.T.N.. Practical method for modeling fluid and heat flow in fractured porous media[J]: Society of Petroleum Engineers Journal, 1985,25(1): 14-26.
    [88] Carrera,J., Heredia,J., Vomvoris, S.,and Hufschrmied,P.. Modeling of flow on a small fractured monzonitic gneiss block, Selected paper in Hydrogeology of low permeability environments [J]. International Association of Hydro geologists, Hydrogeology, and 1990,2:115-167.
    [89] Long,J.C.S., Remer,J.S., WiIson,C.R.,and Witherspoon,C.R.. Porous media equivalents for networks of discontinuous fractures [J]: Water Resources Research, 1982,18(3): 645-658.
    [90] Oda, M.. Permeability tensor for discontinuous rock masses [J]:Geotechnique. 1985,35(4):483-495.
    [91] Shapiro, A. M. and Andersson, J.. Simulation of steady state flow in three dimensional fracture network using boundary element method[J]: Advances in Water Resour, 1985,8(3): 106-110.
    [92] Golder Associates.MAFIC2D & MAFIC3D: Transient flow simulation code for fluid flow through fractured rocks in 2-D and 3-D-user's manual and tutorial [M], 1990.
    [93] Herbert, A., Gale, J., Lanyon, G., and Macleod, R.. Modeling for the Stripa aite characterization and validation drift inflow: prediction of flow through fractured rock [A]: SKB Report 91-35, Swedish Nuclear Power and Waste Management Co., Stockholm, 1991.
    [94] Sudicky, E. A., and Mclaren, R. G.. The Laplace Transform Galerkin technique for large-scale simulation of mass transport in discretely fractured porous formations [J]: Water Resources Research, 1992,28(2):499-514.
    [95] Segan, S., and Karasaki, K.. TRINET: a flow and transport code for fracture networks-user's manual and tutorial[A]. LBL-34834, Lawtence Berkekey Laboratory, Berkeley, CA 94720.
    [96] Andersson, J., and Dverstorp, B.. Conditional simulations of fluid flow in three-dimensional networks of discrete fractures [J]: Water Resources Research, 1987,23 (10): 1876-1886.
    [97] Cacus, M. C., Ledoux, E., Marsily, G. De., Tille, B., Barbreau, A., Durand, E., Feuga, B., and Peaudecerf, P.. Modeling of fracture flow with a stochastic discrete fracture network: calibration and validation-1, The flow model [J]. Water Resources Research, 1990,26(3): 479-489.
    [98] Neuman, S. P., G. R. Walter, H. W. Bentley, J. J. Ward, and D. D. Gonzalez. Determination of horizontal aquifer anisotropy with three well [J]. Ground Water, 1984,22(1): 66-72.
    [99] 田开铭,万力.各向异性裂隙介质渗透性的研究与评价[M].北京:学苑出版社,1989.
    [100] 周志芳,马庆新,吴继敏,刘钊.有限分析法在反求裂隙岩体渗透张量中的应用[J].水利学报,1993,5:68-75.
    [101] 仵颜卿,张倬元.岩体水力学导论[M].成都:上海交通大学出版社,1998.
    [102] Barenblatt, G. I., I. P. Zheltov, and I. N. Kochina. Basic concepts in the theory of seepage of homogeneous liquids in fissured rock[J]. PMM, Sov. Appl. Math. Mech., 1960,24,852-864.
    [103] Neuman, S. P.. Stochastic continuum presentation of fractured rock permeability as an alternative to the REV and fracture network concepts[C], in Proc. Of the 28th U.S. Symposium on Rock Mechanics. edited by I. W. Farmer et al., pp. 533-561, A. A. Balkema, Brookfield, Vt., 1987.
    [104] Irmay, S. Flow of liquids through cracked media[J]. Bulletin of the Water Resources Council. Israel, 1955, 5A(1):84.
    [105] Childs, E. C. The anisotropic hydraulic conductivity of soil [J]. Journal of Soil Science, 1957, 8(1):42-47.
    [106] Dershowitz, W. S. Rock joint systems [D]. Ph. D. thesis, Massachusetts Institute of Technology, Cambridge, 1984.
    [107] Dershowitz W. S., Einstein H. H.. Characterize rock geometry with joint system models[J]. Rock Mechanics and Rock Engineering, 1988,(21):21-51.
    [108] Priest, S. D., and J. Hudson. Discontinuity spacing in rock. International Journal of Rock Mechanics and Mining Science[J]. 1976,13:135-148.
    [109] Long, J. C. S., J. S. Remer, C. R. Wilson, and P. A. Witherspoon. Porous media equivalents for networks of discontinuous fractures [J]. Water Resources Research, 1982.18(3):645-658.
    [110] Long, J. C. S., P. Gilmour, and P. A. Witherspoon. A model for steady state flow in random, three-dimensional networks of disk-shaped fractures [J]. Water Resources Research, 1985.21 (8):1150-1115.
    [111] U. S. National committee for rock mechanics. Rock fractures and fluid flow-contemporary understanding and applications [M]. National ACADEMY press. Washington, D. C., 1996.
    [112] 王明玉,陈劲松,万力.离散裂隙渗流方法与裂隙化渗透介质建模[J].地球科学—中国地质大学学报,2002,27(1):90-97.
    [113] Dershowitz, W., P. Wallmann, and S. Kindred. Discrete Fracture Modeling for the Stripa Site Characterization and Validation Drift Inflow Predictions[J]. Swedish Nuclear Power and Waste Management Co., Stockholm. 1991a. SKB Report 91-16.
    [114] Long, J. C. S., A. Mauldon, K. Nelson, S. Martel, P. Fuller, and K. Karasaki. Prediction of flow and drawdown for the site characterization and validation site in the Stripa mine[J]. Swedish Nuclear Power and Waste Management Co., Stockholm. 1992b, SKB Report 92-05.
    [115] Herbert, A., J. Gale, G. Lanyon, and R. MacLeod. Modeling for the Stripa site characterization and validation drift inflow: prediction of flow through fractured rock. Swedish Nuclear Power and Waste Management Co., Stockholm. 1991. SKB Report 91-35.
    [116] Segan, S., and K. Karasaki. TRINET: a flow and transport code for fracture networks-user's manual and tutorial[A]. LBL-34834, Lawrence Berkeley Laboratory, Berkeley, Calif.1993.
    [117] Herbert, A., and G. Lanyon. Modeling tracer transport in fractured rock at Stripa[C]. Swedish Nuclear Power and Waste Management Co., Stockholm. 1992, SKB Report 92-01.
    [118] 宋晓晨.裂隙岩体渗流非连续介质数值模型研究及工程应用[D].河海大学博士学位论文,2004.
    [119] 万力,李定方,李吉庆.三维裂隙网络的多边形单元渗流模型[J].水利水运科学研究,1993,(4):347-353.
    [120] 王洪涛,李永祥.三维随机裂隙网络非稳定渗流模型[J].水利水运科学研究,1997,(2):139-146.
    [121] 张有天,刘中.降雨过程裂隙网络饱和/非饱和、非恒定渗流分析[J].岩石力学与工程学报,1991,16(2):104-111.
    [122] 于恩志,孙役,黄远智,王慧明.三维离散裂隙网络渗流模型与实验模拟[J].水利学报,2002.(5).37-40
    [123] Hudson, J. A., and P. R. La Pointe. Printed circuits for studying rock mass permeability [J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts. 1980,17:297-301.
    [124] Panda, B. B., and Kulailake, P. H. S. W.. Influence of discontinuity geometry parameters and transmissivity on hydraulic behavior of discontinuous rock[J]: Jour. of Engrg. Mech., 1999a,125(1):41-50.
    [125] Panda, B. B., and Kulailake, P. H. S. W.. Relations between fracture tensor parameters and permeability tensor parameters for discontinuous rock[J]: Jour. of Engrg. Mech., 1999b,125(1):51-59.
    [126] Kulailake, P.H.S.W., and Panda, B.B.. Effect of block size and joint geometry on jointed rock hydraulics and REV[J]: ASCE. Jour. of Engrg. Mech., in press,2000.
    [127] Cacas, M. C., E. Ledoux, G. de Marsily, and B. Tillie. Modeling fracture flow with a stochastic discrete fracture network[J]: calibration and validation. Ⅰ: The flow model. Water Resources Research, 1990.26:479-489.
    [128] 周志芳,王锦国.裂隙介质水动力学[M].中国水利水电出版社,2004.
    [129] 中国岩石力学与工程学会地面岩石工程专业委员会和中国地质学会工程地质专业委员会编.中国典型滑坡[M].科学出版社,1988.
    [130] 李焯芬.雨水渗透与香港滑坡灾害[J].水文地质工程地质,1997,4:24-28.
    [131] Sammori. T and Tsuboyama. Y. Parametric study on slope stability with numerical simulation in consideration of seepage process[J]. In: Proc. 6th,Int. Symp. on Landslide. Bell (ed.) Balkema, Rotterdam. 1991. 539~544.
    [132] Alonso. E, Gens A, Lioret A, Delahaye C. Effect of rain infiltration on the stability of slopes[J] Unsaturated Soils, 1995, 1:241-249.
    [133] 吴宏伟,陈守义,庞宇威.雨水入渗对非饱和土坡稳定性影响的参数研究[J].岩土力学,1999,20(1):1-14.
    [134] 胡云进,速宝玉,詹美礼.溪洛渡水垫塘区岸坡雾化雨入渗数值分析[J].岩石力学与工程学报,2003,22(8):1291-1296
    [135] 胡云进,速宝玉,詹美礼.雾化雨入渗对溪洛渡水垫塘区岸坡稳定性的影响[J].岩土力学,2003,24(1):8-12.
    [136] 张有天,王镭,陈平.有地表入渗的岩体渗流分析[J].岩石力学与工程学报,1991,10(2):103-111.
    [137] 张有天,刘中.降雨过程裂隙网络饱和非饱和非恒定渗流分析[J].岩石力学与工程学报,1997,16(4):104-111.
    [138] 戚国庆,黄润秋,速宝玉等.岩质边坡降雨入渗过程的数值模拟[J].岩石力学与工程学报,2003,22(4):625-629.
    [139] 孙役,王恩志,陈兴华.降雨条件下的单裂隙非饱和渗流实验研究[J].清华大学学报(自然科学版),1999,39(11):14-17.
    [140] 谭颖.挑流水雾的影响、危害及预防措施[J].水力发电,1998(2):15-20.
    [141] 姜树海,陈慧玲.高坝泄洪下游水雾的模糊预报模式[J].水利水运科学研究,1993, (1):77-83.
    [142] 杨伦标,高英仪.模糊数学原理及应用[M].华南理工大学出版社,1993.
    [143] 周泰文,王晓星,刘后邗.模糊数学基础简明教程[J].华中理工大学出版社,1993.
    [144] 姜树海,钱莺莺,王正臬.富春江水电站溢流坝面流消能的可靠性分析[J].南京水利科学研究院水工研究所,1992.
    [145] 许兵.论工程地质模型—涵义、意义、建模与应用[J].工程地质学报,1997,5(3):199-205
    [146] 徐卫亚,谢守益,徐瑞春等.水布垭水电站坝基岩体地质模型研究[J].工程地质学报,2002,10(3):260-265
    [147] 孙广忠.岩体结构力学[M].科学出版社,1988,P92.
    [148] 王媛,速宝玉,徐志英.三维裂隙岩体渗流耦合模型及其有限元模拟[J].1995,(3):1-5
    [149] Kulatilake P. H. S. W., Wu T.H.. The density of discontinuity traces in sampling windows[J]. International journal rock mechanics mining sciences & geomechanics abstract,1984,21(6):347-347.
    [150] 陈建平,肖树芳,王清.随机不连续面三维网络计算机模拟原理[M].长春:东北师范大学出版社,1995.
    [151] 冯允成,吕春莲.随机网络及其应用[M].北京航空学院出版社,1987A.
    [152] 毛昶煦.渗流计算分析与控制[M].中国水利水电出版社,2003,p383.
    [153] 吴宏伟,陈守义,庞宇威.雨水入渗对非饱和土坡稳定性影响的参数研究[J].岩土力学,1999,20(1):1-14.
    [154] 文康,金管生,李蝶娟等.地表径流过程的数学模拟[M].水利电力出版社,1990:31-50.
    [155] 黄昌勇.土壤学[M].中国农业出版社,2003:100-120.
    [156] 张蔚榛.地下水与土壤水动力学[M].中国水利电力出版社,1996,p200-203.
    [157] Murray D. Fredlund, D. G. Fredlund, and G. Ward Wilson. An equation to represent grain-size distribution [J]. Can. Geotech.J.Vol.37, 817-827(2000).
    [158] D. G Fredlund, H. Rahardjo著.陈仲颐,张在明,陈愈炯等译.非饱和土土力学[M].中国建筑工业出版社,1997,p131-133.
    [159] Gardner, W. R. Calculation of capillary conductivity from pressure plate outflow data. Soil Sci.Soc.Am.Proc.20, 1956:317~320.
    [160] 朱伯芳.有限单元法原理及应用[M].第2版,北京:中国水利水电出版社,1999.
    [161] 毛昶熙、段祥宝、李祖贻等.渗流数值计算与程序应用[J].河海大学出版社,1999.
    [162] 彭华,陈胜宏.饱和—非饱和岩土非稳定渗流有限元分析研究[J].水动力学研究与进展,2002,17(2):253~259.
    [164] G.T.Yeh.3DFEMWATER饱和—非饱和介质水流三维有限元模式[J].辐射防护通讯,1994,14(2):1-60
    [165] 童富果.降雨条件下坡面径流与饱和—非饱和渗流耦合计算模型研究[D].三峡大学硕士学位论文,2004
    [166] 张家发,徐春敏,王满兴等.三峡坝址区花岗岩全风化带渗流参数研究[J].岩石力学与工程学报,2001,20(5):705~709.
    [167] 张学言.岩土塑性力学[M].北京:人民交通出版社,1993.
    [168] 蒋友谅.非线性有限元法[M].北京:北京工业学院出版社,1988.
    [169] 王媛,徐志英,速宝玉.复杂裂隙岩体渗流与应力弹塑性全耦合分析[J].岩石力学与工程学报,2000,19(2):177~181.
    [170] 王媛.多孔介质渗流与应力的耦合计算方法[J].工程勘察,1995,2,33~37.
    [171] 肖位枢.模糊数学基础及应用[M].北京:航空工业出版社,1992.
    [172] 刘防.挑流泄洪雾化数学模型改进与影响因素分析研究[D].天津大学博士学位论文,2004.
    [173] 李渭新,王韦,许唯临等.挑流消能雾化范围的预估[J].四川联合大学学报(工程科学版),1999,3(6):17-23.
    [174] 潘瑞文.高坝挑流消能述评[J].云南水力发电,1998,14(3):15-19
    [175] 胡云进.裂隙非饱和渗流试验研究及有地表入渗的裂隙岩体渗流数值分析[D].河海大学博士学位论文,2001.
    [176] 张跃,邹寿平,宿芬.模糊数学方法及其应用[M].煤炭工业出版社,1992.