双模型介孔SiO_2表面功能化及其在药物缓控释中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缓控释给药体系是指在水中或特定介质中缓慢释放药物的给药体系,由于具有诸多优点,包括减少给药次数,提高病人依从性,保持平稳而有效的血药浓度,提高药物的安全性和有效性,同时能够降低药物对胃肠道的不良反应,越来越受到人们的关注。最初的药物释放体系是非降解的,随后逐渐被生物降解聚合物所取代,近年来随着纳米技术的发展,许多有机纳米材料被作为药物载体得到广泛研究。尽管作为药物载体生物降解纳米材料的优点毋庸置疑,但是由于有机材料化学稳定性差,释放速率的可控性差,相容性不理想等明显不足,近年来对无机纳米材料在药物缓控释放方面的应用越来越重视。随着1992年介孔纳米材料M41S的出现,科学家们注意到这种新型的无机纳米孔道材料能够克服上述缺陷,成为性能更加优异的载体之一。自从2001年西班牙Vallet-Regí教授首次报道应用介孔纳米材料MCM-41作为布洛芬载体,介孔纳米材料与上述其他纳米材料相比,由于自身优异的结构特性,例如孔道内表面充足的硅羟基为药物的装载提供了足够的活性位;可进行调控的介孔孔道为不同的药物分子“量身”匹配孔径;理想的生物适应性与安全性,在药物缓控释的研究应用中占据了重要的地位。双模型介孔材料(BMMs)是一种新型介孔材料,它具有双孔道结构:3 nm左右的蠕虫状一级孔与10-30 nm左右的球形颗粒堆积孔。由于BMMs有别于单一孔道介孔材料,具有结构可控和粒度可控等许多独特性质,通过进一步表面改性,能够针对特定的药物分子,尤其是不溶性药物分子进行装载与可控释放,具有很好的专一性。与MCM-41和SBA-15相比较,在模拟人体环境下可实现对多种药物的缓控释放,是药物缓控释的良好载体。
     我们主要制备BMMs,通过两种硅烷偶联剂3-氨丙基三乙氧基硅烷或3-(2-氨基乙基氨基)丙基三甲氧基硅烷对其表面进行功能化处理,作为阿司匹林,布洛芬和紫杉醇的载体,同时以MCM-41和SBA-15作为比较,研究介孔孔道结构,表面性能,以及释放介质对分子尺寸,溶解度不同药物的缓控释作用规律。应用Korsmeyer–Peppas方程计算释放动力学常数k研究药物缓控释过程,同时结合密度泛函理论,Flynn-Wall-Ozawa方法和Kissinger方法,研究介孔表面氨基改性和药物装载释放过程中表面能的变化规律,以及相应的表观活化能,从而获得介孔材料缓控释的影响因素和控制机制。
     首先对于小分子的微水溶性药物阿司匹林,与MCM-41和SBA-15相比,BMMs由于具有双孔结构,虽然装载量不及具有较大介孔孔道的SBA-15,但是能够在较大载药量的基础上实现较好的缓控释;通过改变BMMs表面功能基团的种类和数量,可以提高BMMs的表面能量从而有利于与阿司匹林分子发生相互作用,实现高载药量。因此选择孔结构不同的介孔材料并应用不同功能基团对介孔表面进行修饰是控制药物装载与释放的有效手段。
     在上述研究结论的基础上,对于难溶性药物布洛芬,由于分子尺寸增大阻碍了药物的多层物理吸附,因此BMMs的装载量大于SBA-15;同时通过改变颗粒尺寸得到具有不同二级堆积孔的BMMs应用于布洛芬的缓控释,研究表明功能基团和药物分子进入3 nm的一级孔中,而颗粒堆积孔的大小直接影响药物分子的扩散行为,因此增大BMMs颗粒尺寸可提高布洛芬释放速率;除此之外基于药物分子与表面有机基团之间的相互作用可知,释放过程中由介孔表面脱附的布洛芬以离子态存在,因此与模拟体液和模拟胃液相比,以水为释放介质有益于离子态布洛芬的释放;相反由于布洛芬分子难溶于水,在酸性模拟胃液中分子态布洛芬的释放受到阻碍,释放率低,说明释放介质的pH值和组成同样会影响药物释放性能。
     将BMMs应用为天然产物紫杉醇载体时,由于紫杉醇分子尺寸更大,且不溶于水,在装载过程中主要被吸附在介孔孔口部分,说明介孔孔径除了会影响药物分子的扩散行为,对药物尺寸的限制同样明显;由于紫杉醇分子为非极性,当纳米材料表面嫁接极性氨丙基时,对紫杉醇的装载量明显减小,再一次验证药物分子与表面功能基团的相互作用是实现药物装载的重要因素。除此之外初步探索了BMMs紫杉醇载药体系在水中的释放性能,发现BMMs作为紫杉醇载体能够实现药物的释放,但是对释放速率的控制有待进一步的研究。
     应用多种表征手段,如X-射线衍射、高分辨率扫描电子显微镜、透射电子显微镜、氮气吸附-脱附,热重分析,固态硅核磁共振、元素分析、红外光谱、紫外光谱等对功能化处理,以及药物装载与释放后的介孔材料进行表征。
     依据上述研究所提出的药物缓控释模型为实现介孔纳米材料作为药物缓控释载体的实际应用提供了可靠的实验依据,并通过密度泛函理论和热分解动力学从微观层次上探索了介孔材料作为药物载体在药物装载与释放过程中的作用机制。
Controlled drug-delivery systems, a kind of drug-delivery systems which could release drug slowly in water or specific medium, because of its advantage such as reducing administration, improving patients compliance, keeping stable and effective plasma concentration, enhancing the drug safety and effect, and reducing drug side effects on the gastrointestinal tract, have received more and more attention. The initial controlled drug-delivery systems were non-degradable, and then were substituted by biodegradable polymers. Recently, with the development of nano-technology, lots of organic nano-materials have been studied as drug carriers. Although the advantages of biodegradable nano-materials are undoubted, more and more researches have been focusing on the applications of inorganic nano-materials in the research field of controlled drug delivery in recent years, due to the obvious shortcoming such as poor chemical stability, difficult control over the release rate and imperfect compatibility,. With the appearance of the mesoporous materials M41S, the scientist realized that this new kind of inorganic porous materials could overcome the weaknesses mentioned above, and become one of the excellent carriers. Since the first report from Spanish professor Vallet-Regíof the application of MCM-41 as ibuprofen carrier, mesoporous nano-materials occupied important position in the research of controlled drug delivery because of its excellent features, for example, the adequate silanols on the inner surface could provide adequate active sites for drug molecules; the tuneable porous channels could be designed for different drug molecules, and also the ideal biocompatibility and safety compared with other nano-materials. Bimodal mesoporous material (BMMs) is a new mesoporous material consisting of worm-like mesopores of 3nm as well as large inter-particles pores around 10-30 nm. Different from mesoporous materials with only one pore distribution, BMMs could realize the loading and controlled release of specific drug molecules, especially for the insoluble drugs, through surface modification, due to the unique characteristics such as the controllable structure and particles size. In comparison with MCM-41 and SBA-15, BMMs could also achieve controlled delivery of many kinds of drug in simulated body environment, and therefore could serve as a benign drug carrier.
     BMMs have been synthesized and through modifying the mesoporous surface with two silane coupling agent, 3-(2-aminoethylamino)propyltrimethoxysilane and 3-aminopropyltriethoxysilane, were used as carriers of three drug, aspirin, ibuprofen and taxol, with increasing molecular size and reducing solubility, to explore the feasibility of BMMs as different drug carriers. And at the same time MCM-41 and SBA-15 were also synthesized as comparison to study the influence of mesoporous structure, superficial properties and release medium on the controlled release mechanism of drug molecules with different size and solubility. The drug release profiles were fitted with Korsmeyer–Peppas model to obtain the release kinetic constant k. Meanwhile, combined with the density function theory (DFT), the surface energy distributions (SEDs) of samples including before and after modification and drug loading were studied. Besides with Flynn-Wall-Ozawa and Kissinger methods, the apparent activation energies (Ea) were studied during the superficial amino modification and drug adsorption to explore the existence state of the functional groups and drug molecules in the mesoporous channels, and the influence factors and controlling mechanism of mesoporous materials on drug delivery will be obtained.
     Firstly for aspirin, a kind of drug with small molecular size and low solubility, BMMs could achieve good controlled release performance with a large drug loading amount based on its bimodal mesoporous structure, although the loading amount was less than SBA-15 with larger mesoporous channels. By changing the types and quantities of superficial functional groups, the surface energy of BMMs would increase which was good for the interaction with aspirin molecules and finally achieved higher drug loading amounts Therefore, choosing various mesoporous materials with different mesoporous structure and functional groups to modify the mesoporous surface is an effective way for controlled drug adsorption and release. Based on the conclusion mentioned above, for ibuprofen with poor solubility, because of the relatively large molecular size obstructing the multilayer physical adsorption, the drug loading amounts of BMMs was more than that of SBA-15. Meanwhile by changing the particle size, BMMs with different inter-particle pores were applied as ibuprofen carrier, and the results demonstrated that the functional groups and drug molecules were introduced into the mesopore around 3 nm, while the inter-particles pores would influence the drug diffusion behaviour in the mesoporous channels directly. Hence the drug release rate could be accelerated by increasing the particles size of BMMs. Besides, based on the interaction between the drug molecules and superficial groups, the desorbed ibuprofen molecular existed in ionic states, so water was better release medium for ionic ibuprofen compared with simulated body fluid and simulated gastric fluid. On the contrary, because of the low solubility of ibuprofen molecules in water, the release process will be obstructed in acid simulated gastric fluid and result in low release percentage. These phenomena indicate that the pH value and composition of release medium would also affect the drug release profiles.
     When BMMs was used as the carrier for natural product taxol, the taxol would be mainly adsorbed at the pore opening of BMMs because of their very large molecular size and insolubility, which means the pore size of mesoporous materials will also determines the size of the molecular besides the effect on the drug diffusion. On the other hand, when mesoporous surface was grafted with polar groups, the loading amount of taxol decreased obviously, because of the weak polarity of taxol molecular. This result further verifies that the interaction between the drug molecules and superficial organic groups is an important factor to obtain large drug loaded amounts. Besides, the release behaviour of Taxol/BMMs delivery system was explored preliminarily, and the results confirmed the BMMs is a potential taxol carrier with the successful release of taxol, however the characteristic of taxol after release and controlled release behaviour should be further studied in the future.
     All the mesoporous materials before and after modification, and related drug loaded samples were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption-desorption, thermogravimetric analyses, 29Si NMR, Elemental analysis, Fourier transform-infrared spectroscopy and UV-vis spectra.
     The drug loading and controlled release modal based on the research mentioned have supplied reliable experimental foundation for the practical application of mesoporous nano-materials. With the help of the density function theory and the thermal decomposition kinetics analysis, the function mechanism of mesoporous materials as drug carriers was explored and discussed at the micro-level.
引文
1梅兴国.把握创新制剂推动我国药业发展新机遇.国际药学研究杂志. 2010,37(2):89~91
    2周建平.现代药物制剂技术研究进展.中国兽药杂志. 2009, 43(10):20~23
    3吴霖萍.全球药品研发进展.中国医药工业杂志. 2009, 40(3):237~239
    4黄胜炎.药物制剂开发.上海医药. 2008, 29(10):453~458
    5中国药典2005年版.第二部. 2005, Appendix: 179~181
    6 R. Deanesly, A. S. Parkes. The Preparation and Biological Effects of Iodinated Protein. Journal of Endocrinology. 1944,4: 356~370
    7 J. Folkman, D. M. Long. The Use of Silicone Rubber as Carrier for Prolonged Drug Therapy. J. Surg. Res.. 1964, 4:139~142;
    8 J. Folkman. Tumor Angiogenesis: Therapeutic Implications. N. Engl. J. Med.. 1971, 285:1182~1186; J. Folkman, E. Merler, C. Abernathy, G. Williams. Isolation of a Tumor Factor Responsible for Angiogenesis. J. Exp. Med.. 1971, 133:275~288
    9 J. Folkman, D.M. Long, R. Rosenbau, Silicone rubber - A New Diffusion Property Useful for General Anesthesia. Science. 1966,154: 148~149
    10 J. Folkman, D.M. Long. The Use of Silicone Rubber As a Carrier for Prolonged Drug Therapy, Surg. Res. 1964,4: 139~142
    11 A. S. Hoffman. The Origins and Evolution of“Controlled”Drug Delivery Systems. Journal of Controlled Release. 2008,132: 153~163
    12 A. Zaffaroni. Bandage for Administering Drugs. US Patent. 3598122. Aug. 10. 1971
    13 F. Theeuwes, T.T. Higuchi. Osmatic Dispensing Device for Releasing Beneficial Agent. US Patent. 3845770. Nov. 5. 1974
    14 E. Schmitt, R. Polistina. Surgical Sutures. US Patent. 3297033. Jan. 10. 1967
    15张粉艳,郝红,梁国正.离子交换与吸附. 2003, 19(2): 189~192
    16 G. Boswell, R. Scribner, Polylactide-Drug Mixtures. US Patent. 3773919. Nov. 20. 1973
    17 J. Panyam, V. Labhasetwar. Biodegradable Nnanoparticles for Drug and Gene Delivery to Cells andTissue. Advanced Drug Review. 2003, 55: 329~347
    18侯新朴,张宇锋,谢蜀生,胡新.第三代载药免疫脂质体及体内外寻靶研究药学学报. 2001, 36(7): 539~542
    19张宏梅.淀粉类功能材料在新型药物载体中的研究与应用.广东化工. 2007, 8(34): 61~63
    20 J. H. Park, G. Saravanakumar, K. Kim, I. C. Kwon. Targeted Delivery of Low Molecular Drugs Using Chitosan and Its Derivatives. Advaced Drug Delivery Review. 2010, 62: 28~41
    21 R. A. Muzzarelli. Chitins and Chitosans as Immunoadjuvants and Non-Allergenic Drug Carriers. Mar Drugs. 2010, 8: 292~312
    22 A. K. Singla, M. Chawla, Chitosan: Some Pharmaceutical and Biological Aspects: An Update. J. Pharm. Pharmacol.. 2001, 53: 1047~1067
    23 M. Rinaudo, Chitin and Chitosan: Properties and Applications. Polym. Sci.. 2006, 31: 603~632
    24 I. Aranaz, R. Harris, A. Heras. Chitosan amphiphilic derivatives. Chemistry and applications. Curr Org Chem, 2010, 14: 308~330
    25 L. A. Monica, L. A. Afsaneh, S. K. Glen. Amphiphilic Block Copolymers for Drug Delivery. J. Pharm. Sci.. 2003, 92(7): 1343~1355
    26 S. C. Kim, D. W. Kim, M. H. Shim. In Vivo Evaluation of Polymeric Micellar Paclitaxel Formulation: Toxicity and Efficacy. J. Controlled Release, 2001, 72: 191~202
    27 Y. Kakizawa, K. Kataoka. Block Copolymer Micelles for Delivery of Gene and Related Compounds. Adv. Drug Deliv. Rev.. 2002, 54(2): 203~222
    28 G. Gregoriadis, B. E. Ryman. Liposomes as Carriers of Enzymes of Drugs : a New Approach to the Treatment of Storage Disease. Biochemical J. 1997, 124(5): 58
    29 I. Semsei, M. Bachmann. Analysis of Expression of the Gene Encoding for the Nuclear Autoantigen La/SS-B Using Reporter Gene Constructs. Biochim. Biophys. Acta.. 1998, 1396(2):278~293
    30荣丽,薛弘燮,李志良.口服阿苯达唑脂质体治疗感染.新疆医科大学学报. 2001, 24(1):60~62
    31王述,安国顺,程道新.免疫脂质体作为阿苯达唑载体治疗小鼠泡球蚴病实验研究.寄生虫与医学昆虫学报. 1997, 4(4):211~213
    32 J. Huwyler, D. Wu, W. M. Pardridge. Brain Drug Delivery of Small Molecules Using Immunoliposomes. Proc. Natl. Acad. Sci. USA. 1996, 93(24):14164~14169. N. Shi, W. M. Pardridge. Noninvasive Gene Targeting to the Brain. Proc. Natl. Acad. Sci. USA. 2000, 97(13):7567~7512
    33方瑾,王芸庆,宋今丹.大肠癌免疫脂质体导向紫杉醇的实验研究.中国免疫学杂志. 1998, 14(3):198~200
    34 C. Mamot, D. C. Drummond, C. O. Noble, Z. Guo, K. Hong, D. B. Kirpotin, J. W.Park. Epidermal Growth Factor Receptor–Targeted Immunoliposomes Significantly Enhance the Efficacy of Multiple Anticancer Drugs In vivo. Cancer Res.. 2005, 65(24):11631~116318
    35肖光渭.临床应用淀粉和糖类的思考.江西中医学院学报. 2000, 2:23~25
    36 P. Ispas-Szabo, F. Ravenelle. Structure-properties Relationship in Cross-linked High-amylose Starch for Use in Controlled Drug Release. Carbohydrate Research. 1999, 323:163~175
    37 P. Ispas-Szabo, F. Ravenelle. Structure-properties Relationship in Cross-linked High-amylose Starch for Use in Controlled Drug Release. Carbohydrate Research. 1999, 323:163~175
    38 I. R. Wilding, J. G. Hardy, R. A. Sparrow, S. S. Davis, P. B. Daly, J. R. English. In Vivo Evalntion of an Entericcoated Naproxen Tablets Using Gamma Scintigraphy. Pharm. Res.. 2004, 9:1436~1441
    39肖苏尧,刘选明,童春义,刘俊,唐冬英,赵李剑.多聚赖氨酸淀粉纳米颗粒基因载体的研制及应用.中国科学(B辑),化学. 2004, 34(6):473~477
    40 V. Lenaerts, I. Moussa, Y. Dumoulin, F Mebsout, F Chouinard, P Szabo. Cross-linked High Amylose Starch for Controlled Release of Drugs:Recent Advances. Journal of Controlled Release. 1998: 53:225~234
    41 IUPAC. Manual of Symbols and Terminology. Pure Appl. Chem.. 1972, 31: 578~638
    42 T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato. The Preparation of Alkyltriinethylaininonium–Kaneinite Complexes and Their Conversion to Microporous Materials. Bull. Chem. Soc. Jpn.. 1990, 63:988~992
    43 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck. Ordered Mesoporous Molecular Sieves Synthesized by Aliquid Cystal Template Mechanism. Nature. 1992, 359: 710~712
    44 J. S. Beck, J. C. Vartuli, W. J. Roth, C. T. Leonowicz, K., D. Kresge, T. W. Schmitt. A New Family of Mesoporous Molecular Sieves Prepared with Liqued Crystal Templates. J. Am. Chem. Soc.. 1992, 114: 10834~10843
    45 D. Y. Zhao, J. L. Feng, Q. S. Huo, M. Nicholas, G. H. Fredrickson, B. F. Chmelka,G. D. Stucky. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science. 1998, 279:548~552
    46 D. Y. Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka, G. D. Stuckyet. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses ofHighly Ordered, Hydrothermally Stable, Mesoporous Silica StructuresJ. Am. Chem. Soc.. l998, 120:6024~6036
    47 S. K. Seong, W. Z. Zhang, J. P. Thomas. Ultrastable Mesostruetured Slliea Vesieles. Seienee. 1998, 282:1302~1305
    48 P. T. Tanev, Y. Liang, T. J. Pinnavaia. Assembly of Meso Porous Lamellar SIlieas with Hierarehical Partiele Arehiteetures. J. Am. Chem. Soc..1997, 119:8616~8624
    49 M. Kruk, M. Jaroniec, R. Ryoo, S. H. Ryoo. Characterization of Ordered Mesoporous Carbons Synthesized Using MCM-48 Silicas as Templates. J. Phys. Chem. B. 2000, 104(33):7960~7968
    50 S. H. Joo, S. Jun, R. Ryoo. Joo, S. Jun, R. Ryoo, Synthesis of Ordered Mesoporous Carbon Molecular sieves CMK-1. Microporous Mesoporous Mater.. 2001, 44~45:153~158
    51 S. Jun, s. h. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki. Synthesis of New Nanoporous Carbon with Hexagonally Ordered Mesostructure. J. Am. Chem. Soc.. 2000, 122(43):10712~10713
    52 P. T. Tanev, T. J. Pinnavaia. A Neutral Templating Route to Mesoporous Molecular Sieves. Nature. 1995, 267:865~867
    53 R. Ryoo, J. M. Kim, C. H. Shin, J. Y. Lee. Synthesis and Hydrothermal Stability of a Disordered Mesoporous Molecular Sieve. Stud. Surf. Sci. Catal.. 1997, 105:45~52
    54 K. J. Edler, J. W. White. Room-temperature Formation of Molecular Sieve MCM-41. J. Chem. Soc.. Chem. Commun.. 1995, 158:155~156
    55 M. Chatterjee, T. Iwasaki, H. Hayashi. Room-temperature Formation of Thermally Stable Aluminium-rich Mesoporous MCM-41. Catal. Lett.. 1998, 52: 21~23
    56 C.-G. Wu, T. Bein. Microwave Synthesis of Molecular Sieve MCM-41. Chem. Soc. Chem. Commun.. 1996, 8: 925~926
    57 W. Li, J. Chen, Y. Sun. Chem. Commun.. 1995, 117:2367~2368
    58 C. A. Fyfe, G. Fu. Structure Organization of Silicate Polyanions with Surfactants - a New Approach to the Syntheses, Structure Transformations, and Formation Mechanisms of Mesostructural Materials. J. Am. Chem. Soc.. 1995, l17: 9709~9714
    59 K. W. Gallis, C. C. Landry. Synthesis of MCM-48 by a Phase Transformation Process. Chem. Mater.. 1997, 9: 2035~2038
    60 P. Yang, D. Y. Zhao, D. I. Margolese. Generalized Syntheses of Large-poreMesoporous Metal Oxides with Semicrystalline Frameworks. Nature. 1998, 396: 152~155
    61 M. J. Maclachlan, N. Coombs, G. A. Ozin. Non-aqueous Supramolecular Assembly Giant Crystals of Zeolites and Molecular Sieves Germanium Sulphides from (Ge4S10)4-clusters. Nature. 1998, 397: 681~684
    62 S. Inagaki, A. Koiwai, N. Suzuki, Y. Fukushima, K. Kuroda. Syntheses of Highly Ordered Mesoporous Materials, FSM-16, Derived from Kanemite. Bull. Chem. Soc. Jpn.. 1996, 69:1449~1457
    63 T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato. The Preparation of Alkyltriinethylaininonium–Kaneinite Complexes and Their Conversion to Microporous Materials. Bull. Chem. Soc. Jpn.. 1990, 63:988~992
    64 Kimura, T. Kamata, M. Fuziwara, Y. Takano, M. Kaneda, Y. Sakamoto, O. Terasaki, K. Kuroda. Angew. Chem. Int. Ed. Engl.. 2000, 39:3855~3859
    65 J. Vartuli, C. T. Kresge, M. Leonowicz, A. Chu, S. Mccullen, I. Johnsen, E. Sheppard. Synthesis of Mesoporous Materials: Liquid-Crystal. Templating versus Intercalation of Layered Silicates. Chem. Mater.. 1994, 6: 2070~2077
    66 J. C. Vartuli, K. D. Schmitt, C. T. Kresge, W. J. Reth, M. E. Leonowicz, S. B. Mccullen, S. D. Herllring, J. S. Beck, J. L. Schlenker, D. H. Olson, E. W. Shappad. Effect of Surfactant/Silica Molar Ratios on the. Formation of Mesoporous Molecular Sieves. Chem. Mater.. 1994, 6: 2317~2326
    67 Q. S. Huo, R. Leon, P. M. Petroff, G. D. Stucky. Mesostructre Design with Gemini Surfactants: Supercage Formation in a Three Dimensional Hexagonal Array. Science. 1995, 268: 1324~1327
    68 A. Monnier, F. Schuth, Q. S. Huo. Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures. Science. 1993, 261: 1299~1303
    69 A. Steel, S. Carr, M. Anderson. 14N NMR Study of Surfactant Mesoporous Material in the Synthesis of Mesoporous Silicates. J. Chem. Soc. Chem. Commun.. 1994, 13: 1571~1572
    70 S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia, Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants. Science. 1995, 269: 1242~1244
    71 S. Inagaki, Y. Fukushima, A. Okada, T. Kurida. Synthesis of Highly Ordered Mesoporous Materials From Alayered Polysilicate. J. Chem. Soc. Chem. Commun,1993, 37: 680~681
    72 W. D. Bossaert, D. E. De Vos, W. M. Van Rhijn, J. Bullen, P. Grobet, P. A. Jacobs. Sulfonic Acids as Selective Heterogeneous Catalysts for the Synthesis of Monoglycerides. J. Catal.. 1999, 182: 156~164
    73 P. Sutra, D. Brunel. Preparation of MCM-41 Type Silica-Bound Manganese(III). Schiff-Base Complexes. Chem. Commun.. 1996, 749 :2485~2486
    74李剑,胡瑞,靖晶.介孔材料化学改性研究进展.贵州化工. 2004, 29(4): 10~13
    75 T. Maschmeyer, F. Rey, G. Sankar, J. M. Thomas. Heterogeneous Catalysts Obtained by Grafting Metallocene Complexes onto Mesoporous Silica. Nature. 1995, 378: 159~162
    76 X. S. Zhao, G. Q. Lu, X. Hu, Characterization of the Structural and Surface Properties of Chemically Modified MCM-41 Material. Micro. Meso. Mater.. 2000, 41:37~47
    77 S. L. Burkett, S. D. Sims, S. Mann. Synthesis of Hrid Iorganic–organic Msoporous silica by C-condensation of siloxane and Organosiloxane Precursors. Chem. Commun.. 1996, 11:1367~1368
    78 C. E. Fowler, S. L. Burkett, S. Mann. Synthesis and Characterization of Ordered Organo-silica-surfactant Mesophases with Functionalized MCM-41-type Architecture. Chem. Commun.. 1997, 1769~1760
    79 V. Umamaheswari, M. Hartmann, A. Poppl. Broadband Dielectric Spectroscopy of Water Confined in MCM-41 Molecular Sieve Materials-Low-temperature Freezing Phenomena. J. Phys. Chem. B. 2005, 109(4):1537~1546
    80 T. Witula, K. Holmberg. Use of Different Types of Mesoporous Materials as Tools for Organic Synthesis. Journal of Colloid and Interface Science. 2007, 310:536~545
    81 L. F. Chen, J. A. Wang, L. E. Noren, J. Aguilar, J. Navarrete, P. Salas, J. A. Montoya, P. Del. Angel. Synthesis and Physicochemical Properties of Zr-MCM-41 Mesoporous Molecular Sieves and Pt/H3PW12O40/Zr-MCM-41 Catalysts. Journal of Solid State Chemistry. 2007, 180:2958~2972
    82 R. Srivastava, D. Srinivas, P. Ratnasamy. Sites for CO2 Activation Over Amine-functionalized Mesoporous Ti(Al)-SBA-15 Catalysts. Microporous and Mesoporous Materials. 2006, 90:314~326
    83 A. Vinu, K. Usha Nandhini, V. Murugesan, W. B?hlmann, V. Umamaheswari, A. P?ppl, M. Hartmann. Mesoporous FeAlMCM-41: an Improved Catalyst for theVapor Phase Tert-butylation of Phenol. Applied Catalysis A: General. 2004, 265:1~10
    84 V. Fornés, C. López, H.H. López, A. Martinez. Catalytic Performance of Mesoporous VOx/SBA-15 Catalysts for the Partial Oxidation of Methane to Formaldehyde. Applied Catalysis A: General. 2003, 249:345~354
    85宋艳,李永红,介孔纳米材料的应用.化学进展. 2007, 19(5):659~664
    86 M. Hartmann. Ordered Mesoporous Materials for Bioadsorption and Biocatalysis. Chem. Mater.. 2005, 17:4577~4593
    87 T. Itoh, K. Yano, Y. Inada, Y. Fukushima. Stabilization of Chlorophyll a in Mesoporous Silica and its Pore Size Dependence. J. Mater. Chem.. 2002, 12:3275~3277
    88 T. Itoh, K. Yano, Y. Inada, Y. Fukushima. Photostabilized Chlorophyll a in Mesoporous Silica: Adsorption Properties and Photoreduction Activity of Chlorophyll a. J. Am. Chem. Soc.. 2002, 124:13437~13441
    89 T. Itoh, M. Yano, T. Kajino, S. Itoh, Y. Shibata, H. Mino, R. Miyamoto, Y. Inada, S. Iwai, Y. Fukushima. Nanoscale Organization of Chlorophyll a in Mesoporous Silica: Efficient Energy Transfer and Stabilized Charge Separation as in Natural Photosynthesis. J. Phys. Chem. B. 2004, 108:13683~13687
    90 A. Vinu, G. Chandrasekar, M. Hartmann. Adsorption of Vitamin E on Mesoporous Carbon Molecular Sieves. Chem. Mater.. 2005, 17:829~833
    91 J. M. Kisler, A. Daehler, G. W. Stevens, A. J. O’Connor. Separation of Biological Molecules Using Mesoporous Molecular Sieves. Microporous Mesoporous Mater.. 2001, 44:769~774
    92 J. F. Diaz, K. F. Balkus Jr. J. Mol. Catal. B:Enzym.. Enzyme Immobilization in MCM-41 Molecular Sieve. 1996, 2:115~126
    93 M. E. Gimon-Kinsel, V. L. Jimenez, L. Washmon, K. F. Balkus Jr. Mesoporous Molecular Sieve Immobilized Enzymes. Stud. Surf. Sci. Catal.. 1998, 117:373~380
    94 L. Washmon-Kriel, V. L. Jimenez, K. F. Balkus Jr. Cytochrome c Immobilization into Mesoporous Molecular Sieves. J. Mol. Catal. B:Enzym.. 2000, 10:453~469
    95 J. Deere, E. Magner, J. G. Wall, B. K. Hodnett. Adsorption and Activity of Cytochrome c on Mesoporous Silicates. Chem. Commun.. 2001, 465.
    96 J. Deere, E. Magner, J. G. Wall, B. K. Hodnett. Structural and Mechanistic Studies of Proteins Adsorbed on to Mesoporous Silicates. J. Phys. Chem. B. 2002, 106:7340~7347
    97 J. Deere, E. Magner, J. G. Wall, B. K. Hodnett. Adsorption and Activity of Proteins onto Mesoporous Silica. Catal. Lett.. 2003, 85:19~23
    98 J. M. Kisler, G. W. Stevens, A. J. O’Connor. Adsorption of Proteins on Mesoporous Molecular Sieve. Mater. Phys. Mech.. 2001, 4:89~93
    99 J. Yang, A. Daehler, G. W. Stevens, A. J. O’Connor. Adsorption of Lysozyme and Trypsin onto Mesoporous Silica Mmaterials. Stud. Surf. Sci. Catal.. 2003, 146:775~778
    100 J. Fan, J. Lei, L. Wang, C. Yu, B. Tu, D. Zhao. Rapid and High-capacity Immobilization of Enzymes Based on Mesoporous Silicas with Controlled Morphologies. Chem. Commun.. 2003, 17:2140~2141
    101 A. Vinu, V. Murugesan, M. Hartmann. Adsorption of Lysozyme Over Mesoporous Molecular Sieves MCM-41 and SBA-15: Influence of pH and Aluminum Incorporation. J. Phys. Chem. B. 2004, 108:7323~7330
    102 Y. S. Chaudhary, S. K. Manna, S. Mazumdar, D. Khushalani. Protein Encapsulation into Mesoporous Silica Hosts. Microporous and Mesoporous Materials. 2007, 109:535-541
    103 J. F. Diaz, K. F. Balkus Jr. Enzyme Immobilization in MCM-41 Molecular Sieve. J. Mol. Catal. B:Enzym.. 1996, 2:115~126
    104 J. M. Gomez, J. Deere, D. Goradia, J. Cooney, E. Magner, B.K. Hodnett. Transesterification Catalysed by Trypsin Supported on MCM-41. Catal. Lett.. 2003, 88:183~186
    105 X. X. Yan, C. Z. Yu, X. F. Zhou, J. W. Tang, D. Y. Zhao. Highly Ordered Mesoporous Bioactive Glasses with Superior in Vitro Bone-forming Bioactivities. Angew. Chem. Int. Ed.. 2004, 43:5980~5984.
    106 M. Vallet-Regi, A. Ramila, R.P. del Real, J. Perez-Pariente. A New Property of MCM-41: Drug Delivery System. Chem. Mater.. 2001, 13:309~311
    107 B. Munoz, A. Ramila, J. Perez-Pariente, I. Diaz, M. Vallet-Regi. MCM-41 Organic Modification as Drug Delivery Rate Regulator. Chem. Mater.. 2003, 15:500-503
    108 G. Cavallaro, P. Pierro, F. S. Palumbo, F. Testa, L. Pasqua, R. Aiello. Drug Delivery Devices Based on Mesoporous Silicate. Drug Deliv. 11 (2004) 41~46
    109 F. Y. Qu, G. S. Zhu, S. Y. Huang, S. G. Li, S. L. Qiu. An Effective Control Release of Captopril Drug by Silylation of Mesoporous MCM-41. Chemphyschem.. 2006, 7:400~406.
    110 I. Izquierdo-Barba, A. Martinez, A. L. Doadrio, J. Perez-Pariente, M. Vallet-Regi. Ordered Mesoporous Materials in the Context of Drug Delivery Systems and Bone Tissue Engineering. Eur. J. Pharm. Sci.. 2006, 26:365~373
    111 A. L. Doadrio, E. M. B. Sousa, J. C. Doadrio, J. P. Pariente, I. Izquierdo-Barba, M. Vallet-Regi. Mesoporous SBA-15 HPLC Evaluation for Controlled Gentamicin Drug Delivery. J. Control Release. 2004, 97:125~132
    112 M. Vallet-Regi, J. C. Doadrio, A. L. Doadrio, I. Izquierdo-Barba, J. Perez-Pariente. Hexagonal Ordered Mesoporousmaterial as a Matrix for the Controlled Release of Amoxicillin. Solid State Ionics. 2004, 172:435~439
    113 J. C. Doadrio, E. M. B. Sousa, I. Izquierdo-Barba, A. L. Doadrio, J. Perez-Pariente, M. Vallet-Regi. Functionalization of Mesoporous Materials with Long Alkyl Chains as a Strategy for Controlling Drug Delivery Pattern. J. Mater. Chem.. 2006, 16:462~466
    114 S. W. Song, K. Hidajat, S. Kawi. Functionalized SBA-15 Materials as Carriers for Controlled Drug Delivery: Influence of Surface Properties on Matrix-Drug Interactions. Langmuir. 2005, 21:9568~9575
    115 Y. F. Zhu, J. L. Shi, W. H. Shen, X.P. Dong, J. W. Feng, M. L. Ruan, Y. S. Li, Novel Stimuli-Responsive Controlled Drug Release from a Hollow Mesoporous Silica Sphere/Polyelectrolyte Multilayers Core-Shell Structure. Angew. Chem. Int. Ed.. 2005, 44:5083~5087
    116 Y. F. Zhu, J. L. Shi, Y. S. Li, H. R. Chen, W. H. Shen, X. P. Dong, Hollow Mesoporous Spheres with Cubic Pore Network as a Potential Carrier for Drug Storage and its in Vitro Release Kinetics, J. Mater. Res.. 2005, 20:54~61.
    117 C. Tourne-Peteilh, D. A. Lerner, C. Charnay, L. Nicole, S. Begu, J. M. Devoisselle. Pentapeptide Encapsulated in a MSU-Tween 80. Chemphyschem. 2003, 4:281~286
    118 V. P. Lehto, K. Vaha-Heikkila, J. Paski, J. Salonen. Use of Thermoanalytical Methods in Quantification of Drug Load in Mesoporous Silicon Microparticles. J. Therm. Anal. Calorim. 2005, 80:393~397
    119 B. G. Trewyn, C. M. Whitman, V. S. Y. Lin. Morphological Control of Room-Temperature Ionic Liquid Templated Mesoporous Silica Nanoparticles for Controlled Release of Antibacterial Agents. Nano Lett.. 2004, 4:2139~2143
    120 P. Horcajada, A. Ramila, J. Perez-Pariente, M. Vallet-Regi. Confinement and Controlled Release of Bisphosphonates on Ordered Mesoporous Silica-BasedMaterials. Micropor. Mesopor. Mat.. 2004, 68:105~109
    121 J. Andersson, J. Rosenholm, S. Areva, M. Linden. Influences of Material Characteristics on Ibuprofen Drug Loading and Release Profiles from Ordered Micro-and Mesoporous Silica Matrices. Chem. Mater.. 2004, 16:4160~4167
    122 A. Ramila, B. Munoz, J. Perez-Pariente, M. Vallet-Regi. Mesoporous MCM-41 as Drug Host System. J. Sol-Gel Sci. Technol.. 2003, 26:1199~1202
    123 W. Zeng, X. F. Qian, Y. B. Zhang, J. Yin, Z. K. Zhu. Organic Modified Mesoporous MCM-41 through Solvothermal Process as Drug Delivery System. Mater. Res. Bull. 2005, 40:766~772
    124 W. Zeng, X. F. Qian, J. Yin, Z. K. Zhu. Mat. The Drug Delivery System of MCM-41 Materials via Co-condensation Synthesis. Chem. Phys.. 2006, 97:437~441
    125 F. Babonneau, L. Yeung, N. Steunou, C. Gervais, A. Ramila, M. Vallet-Regi. Solid State NMR Characterisation of Encapsulated Molecules in Mesoporous Silica. J. Sol-Gel Sci. Technol.. 2004, 31:219~223
    126 S. B. Wang. Ordered mesoporous materials for drug delivery. Microporous and Mesoporous Materials. 2009, 117:1~9
    127 H. Li, G. P. Yan, S. N. Wu, Z. J. Wang, K. Y. Lam. Numerical Simulation of Controlled Nifepine Release from Chitosan Microspheres. J. Appl. Polym. Sci.. 2004, 93:1928~1937
    128 A. K. Bajpai, J. Bajpai, S. Shukla. Release Dynamics of Tetracycline from a Loaded Semi-interpenetrating Polymeric Material of Polyvinyl Alcohol and Poly(acrylamide-co-styrene). J. Mater. Sci. Mater. Med.. 2003, 14:347~357
    129 T. Heikkila, J. Salonen, J. Tuura, M. S. Hamdy, G. Mul, N. Kumar, T. Salmi, D. Y. Murzin, L. Laitinen, A. M. Kaukonen, J. Hirvonen, V. P. Lehto. Mesoporous Silica Material TUD-I as a Drug Delivery System. Int. J. Pharm.. 2007, 331:133~138
    130 J. H. Sun, Z. P. Shan, T. Maschmeyer, M.O. Coppens, Synthesis of the Structured Silica with a Controlled Bimodal Mesopore by Combination the Template Method with Sol-gel Technique. Langmuir. 2003, 19(20):8395~8402
    131 T. Kokubo, H. Kushitani, S. Sakka, T. Kisugi, T. Yamamuro. Solutions Able to Reproduce in Vivo Surface-structure Changes in Bioactive Glass-ceramic A-W. J. Biomed. Mater. Res.. 1990, 24:721~734
    132 R. A. Hermana, V. A. Korjagina, B. W. Schafer. Quantitative measurement of protein digestion in simulated gastric fluid. Regulatory Toxicology andPharmacology. 2005, 411:175~184
    133 L. M. Charles. New Research on Aspirin and Health. New York: Nova Science Publishers, 2006
    134李清晨.阿司匹林的世纪传奇.医药知识. 2010, 3:53~55
    135 R. Santiago, C. G. Santos-gallego, G. Patricia, M. García, L. Rico, M. Del Rio, T. Tejerina. Acetylsalicylic Acid Inhibits Cell Proliferation by Involving Transforming Gorwth Factor. Circulation. 2003, 107(4):626~629
    136邹凯华,张华.阿司匹林的研究进展.上海医药. 2009, 30(2):64~66
    137石志华.阿司匹林的药物研究.中国民族民间医药. 2010, 46P
    138张培培,唐忠锋.药物阿司匹林剂型的研究进展.中国现代应用药学杂志. 2009, 26(7):542~545
    139柳晨,王晓黎,陈御石,裴元英.阿司匹林HPMC骨架片药物释放因素研究.中国药学杂志. 1999, 34(10): 674~677
    140杨红梅,陈旭,赵坤杰.阿司匹林壳聚糖缓释片的体外释放度研究.河南大学学报(医学版). 2005, 24(1):37~38
    141王晋,张汝华.用渗滤理论考察阿司匹林-乙基纤维素骨架片的释药机制和释放动力学.药学学报. 2000, 35(6):461~464
    142郭英,李酽,谢静,蔡娇.阿司匹林壳聚糖纳米缓释微球的制备及体外释放性能的研究.化学世界. 2007, 48(1):38~41
    143周莉,吴奕光,罗仲宽,刘波,廖传东,张念.阿司匹林-壳聚糖缓释微球的制备和释药性能研究.广东化工. 2010, 37(2):197-199
    144金淑萍,冯雷,何文龑,韩玉琦,魏玉娟.微乳液成核-离子交联制备阿司匹林/壳聚糖纳米微球及其体外释放行为.物理化学学报. 2010, 26(9):2581-2588
    145王津,李柱来,赵传春,杨文海.壳聚糖-阿司匹林缓释微囊的制备工艺及体外溶出实验.海峡药学. 2005, 17:23~26
    146张彦青,张明春,解军波,戚务勤,韩淑珍.阿司匹林壳聚糖-海藻酸钠微囊处方优化与释药机制研究.中国药房. 2007, 18(4):278~280
    147杨凤,赵伟,张欠.阿司匹林-蒙脱土-壳聚糖缓释微球的制备及其体外释放性能.功能高分子学报. 2010, 23:29~33
    148 A. Nascimento, C. M. Laranjeira, V. T. Favere. Impregnation and Release of Aspirin from Chitosan /poly(acrylic acid) Graft Copolymer Microspheres. J. Microencapsul, 2001, 18(5): 679-684
    149 P. R. Sheth, J. L. Tossounian. The Hydro-dynamically Balanced System: A Novel Drug. Delivery System for Oral Use. Drug Dev. Ind. Pharm.. 1984, 10(2):313~339
    150 J. L. Tossounian, W. J. Mergens, P. R. Sheth. Drug Development and Industrial Pharmacy. Drug Dev. Ind. Pharm.. 1985, 11(5):1019~1050
    151 G. Wang, A. N. Otuonye, E. A. Blair, K. Denton, Z. Tao, T. Asefa. Functionalized Mesoporous Materials with Improved Adsorption Capacity and Release Properties for Different Drug Molecules: A Comparative Study. J. Solid State Chem.. 2009, 182:1649~1660
    152 W. J. Xu, Q. Gao, Y. Xua, D. Wu, Y. H. Sun, W. L. Shen, F. Deng. Controlled Drug Release from Bifunctionalized Mesoporous Silica J. Solid State Chem.. 2008, 181:2837~2844
    153 P. P. Yang, Z. W. Quan, L. L. Lu, S. S. Huang, J. Lin. Bioactive, Luminescent and Mesoporous Europium-doped Hydroxyapatite as a Drug Carrier. Biomaterials. 2008, 29:4341~4347
    154 L. Pasqua, F. Testa, R. Aiello, S. Cundari, J. B. Nagy.Preparation of Bifunctional Hybrid Mesoporous Silica Potentially Useful for Drug Targeting. Micro. Meso. Mater.. 2007, 23:166~173
    155 J. E. Bateman, R. D. Eagling, D. R. Worrall, B. R. Horrocks, A. Houlton. Alkylation of Porous Silicon by Direct Reaction with Alkenes and Alkynes. Angew. Chem. Int. Ed. 1998, 37:2683~2685.
    156 Q. Tang., Y. Xu., D. Wu., Y. Sun., J. Wang., J. Xu., F. Deng. Studies on a New Carrier of Trimethylsilyl-modified Mesoporous Material for Controlled Drug Delivery. J. Controlled release. 2006, 114:41~46
    157 Y. F. Zhu, J. L. Shi, Y. S. Li, H. R. Chen, W. H. Shen, X. P. Dong. Storage and Release of Ibuprofen Drug Molecules in Hollow Mesoporous Silica Spheres with Modified Pore Surface, Micro. Meso. Mater.. 2005, 85:75~81
    158 F. Y. Qu, G. S. Zhu, H. M. Lin, W. W. Zhang, J. Y. Sun, S. G. Li, S. L. Qiu. A Controlled Release of Ibuprofen by Systematically Tailoring the Morphology of Mesoporous Silica Materials. J. Solid State Chem.. 2006, 179:2027~2035
    159 T. P. B. Nguyen, J.-W. Lee, W. G. Shim, H. Moon. Synthesis of Functionalized SBA-15 with Ordered Large Pore Size and Its Adsorption Properties of BSA. Micro. Meso. Mater.. 2008, 110:560~569
    160 S. J. Gregg, K. S. W. Sing. Adsorption, Surface Area and Porosity. Academic Press: London. 1982
    161 X. S. Zhao, G. Q. Lu. J. Modification of MCM-41 by Surface Silylation with Trimethylchlorosilane and Adsorption study. J. Phys. Chem. B.. 1998,102:1556~1561
    162 A. S. Mari,X. S. Chong, J. Zhao. Effect of Operating Conditions on the Removal of Pb2+ by Microporous Titanosilicate ETS-10 in a Fixed-bed Column. J. Phys. Chem. B. 2003, 107:12650~12657
    163 D. W. Sindorf, G. E. Maciel. Studies of the Reactions of Silica Surfaces with Polyfunctional Chloromethylsilanes and Ethoxymethylsilanes. J. Am. Chem. Soc.. 1983, 105:3767~3776
    164 L. Ekkehard, S. Theodore, A. Friedrich, H. A. Mayer. Chemistry in Interphases-A New Approach to Organometallic Syntheses and Catalysis. Angew. Chem. Int. Ed.. 1999, 38(15):2154~2174
    165 S. Huh, J. W. Wiench, J.-C. Yoo, M. Pruski, V. S.-Y. Lin. Organic Functionalization and Morphology Control of Mesoporous Silicas via a Co-Condensation Synthesis Method. Chem. Mater.. 2003, 15:4247~4256.
    166 C. Zhang, W. Zhou, S. X. Liu. Synthesis and Characterization of Organofunctionalized MCM-41 by the Original Stepped Templated Sol-gel Technology. J. Phys. Chem. B. 2005, 109:24319~24325
    167 M. Manzano, V. Aina, C.O. Arean, F. Balas, V. Cauda, M. Colilla, M.R. Delgado, M. Vallet-Regi. Studies on MCM- 41 Mesoporous Silica for Drug Delivery: Effect of Particle Morphology and Amine Functionalization. Chem. Eng. J.. 2008, 37:30~37
    168高琳,孙继红.阿司匹林在双模型介孔纳米材料组装过程中的缓释机理.石油学报(石油加工). 2006, B10:265~268
    169 C. Zhang, T. Hou, J. F. Chen, L. X. Wen. Preparation of Mesoporous Silica Microspheres with Multi-hollow Cores and Their Application in Sustained Drug Release. 2010, 8:447~452
    170 C. D. Nunes, P. D. Vaz, A. C. Fernandes, P. Ferreira, C. C. Romao, M. J. Calhorda. Loading and Delivery of Sertraline Using Inorganic Micro and Mesoporous Materials. Eur. J. Pharm. Biopharm.. 2007, 66:357~365
    171 P. Costa, J. M. S. Lobo. Modeling and Comparison of Dissolution Profiles. Eur. J. Pharm. Sci.. 2001, 13:123~133
    172 Q. S. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schüth, G. D. Stucky. Generalized Synthesis of Periodic Surfactant/ Inorganic Ccomposite Materials. Nature. 1994, 368:317~321
    173 R. Pitchumani, W. J. Li, M. O. Coppens. Tuning of Nanostructured SBA-15 SilicaUsing Phosphoric Acid. Catal. Today. 2005, 105:618~622
    174李云,马富,罗时杰,赵红建,孙继红.磷酸介质体系中合成SBA-15介孔纳米材料的研究.石油学报(石油加工). 2006, 2:269~271
    175 J. Sauer, F. Marlow, F. Schuth. Simulation of Powder Diffraction Patterns of Modified Ordered Mesoporous Materials. Physical Chem. Physics.. 2001, 3(24):5579~5584
    176 Y. L. Su, H. Z. Liu, C. Guo, J. Wang. Association Behavior of PEO-PPO-PEO Block Copolymers in Water or Organic Solvent Observed by FTIR Spectroscopy. Mol. Simul. 2003, 29:803
    177 E. Gianotti, V. Dellarocca, L. Marchese, G. Martra, S. Colucciaa, T. Maschmeyerc. Phys. Chem. Chem. Phys.. 2002, 4:6109~6115
    178 J. P. Olivier. Modeling Physical Adsorption on Porous and Nonporous Solids Using Density Functional Theory. J. Porous Mater.. 1995, 2:9~17
    179 J. P. Oliver. In: M.D. LeVan (Eds), Proceeding of the fifth international conference on fundamentals of adsorption. Kluwer, academic PRESS, Boston. 1996, p.699
    180 P. A. Webb PA, Orr C. (Eds), Analytical Methods in Fine Particle Technology. Norcross, USA:Micromeritics Instrument Corp.. 1997, p.89
    181 X. S. Zhao, G. Q. Lu, A. K. Whittaker, G. J. Millar, H. Y. Zhu. Comprehensive Study of Surface Chemistry of MCM-41 Using 29Si CP/MAS NMR, FTIR, Pyridine-TPD, and TGA. J. Phys. Chem. B. 1997, 101:6525~6531
    182 Y. A. Ribeiro, A. C. F. Cairesb, N. Boralleb, M. Ionashirob. Thermal Decomposition of Acetylsalicylic Acid (aspirin). Thermochimica Acta.. 1996, 279:177~181
    183 L. Barral, J. Cano, J. Lopez, I. Lopez-Bueno, P. Nogueira, C. Ramirez, M. J. Abad. Degradation Kinetics of an Epoxy/Cycloaliphatic Amine Resin Under Isothermal and Non-isothermal Conditions. J. Therm. Anal. Calorim.. 1999, 55:37~45
    184 J. Zelic, L. Ugrina, D. Jozic. The first international proficiency testing conference, Romania (2007).
    185 P. Horcajada, A. Ramila, G. Ferey, M. Vallet-Regi. Influence of Superficial Organic Modification of MCM-41 Matrices on Drug Delivery Rate. Solid State Sci.. 2006, 8:1243~1249
    186 T. Limnell, J. Riikonen, J. Salonen, A. M. Kaukonen, L. Laitinen, J. Hirvonen,V.-P. Lehto. Surface Chemistry and Pore Size Affect Carrier Properties of Mesoporous Silicon Microparticles. Int. J. Pharm.. 2007, 343:141~147
    187 H. E. Brown, in: Introduction to thermal analysis. Chapman and Hall, Cambridge. 1998, Vol 13.
    188 T. Hatakeyama, F. X. Quinn, in: Thermal analysis. Wiley/Interscience, UK. 1994, Vol 5
    189 J. H. Flynn, L. A. Wall. A Quick Direct Method for the Determination of Activation Energy from Thermogravimetric Data. J. Polym. Sci., Polym. Lett. Ed.. 1966, 4:323~328
    190 T. Ozawa. A New Method of Analyzing Thermogravimetric Data. Bull. Chem. Soc. Jpn.. 1965, 38:1881~1886
    191 A. W. Coats, J. P. Redfern. Kinetic Parameters from Thermogravimetric Data. Nature. 1964, 201:68~69
    192 L. Q. Tang, Y. Chen, J. Chen, J. Li, Y. Xu, D. Wu, H. Y. Sun. Drug Delivery from Hydrophobic-modified Mesoporous Silicas: Control via Modification Level and Site-selective Modification. J. Solid State Chemistry. 2010, 183:76~83
    193 V. Cauda, L. Mühlstein, B. Onid, T. Bein. Tuning Drug Uptake and Release Rates Through Different Morphologies and Pore Diameters of Confined Mesoporous Silica. Micro. Meso. Mater.. 2009, 118:435~442
    194吴琳华,刘红梅.布洛芬缓释胶囊的药代动力学研究.哈尔滨医科大学学报. 2002, 36(2):144~146
    195陈妙英.解热镇痛药再评价.药物不良反应杂志. 2002, 4(6):417~418
    196陈华兵,翁婷,常雪灵,杨亚江,杨祥良.布洛芬微乳液的制备及其透皮吸收研究.国药学杂志. 2004, 39(1):43- 45
    197 D. Henry, P. Mcgettigan. Epidemiology Overview of Gastrointestinal and Renal Toxicity of NSAIDs. Int. J. Clin. Pract.. 2003, 135(Suppl): S43~S49
    198 S. Agrawal, S. Deepankar, I. C. Dipankar. Development and Optimization of Matrix Tablet for Controlled Delivery of Nicorandil: An in Vitro Study. Journal of Molecular and Cellular Cardiology. 2001, 33(6):A2
    199 J. P. Cox, K. A. Khan, D. L. Munday, J. J. Sujja-areevath. Development and Evaluation of a Multiple-unit Oral Sustained Release Dosage Form for S(+)-ibuprofen: Preparation and Release Kinetics. International Journal of Pharmaceutics. 1999, 193:73~84
    200 C. D. Brabander, J. Vervaet, J. P. Remon. Development and Evaluation ofSustained Release Mini-matrices Prepared via Hot Melt Extrusion. J. Control Release. 2003, 89:235~247
    201 J. D. Natawukulilyayo, C. Demuynck, J. P. Remon. Microcrystalline Cellulose-sucrose Esters as Tablet Matrix Forming Agents. International Journal of Pharmaceutics. 1995, 121:205~210
    202 S. T. Leslie, S. T. Malkowska, A. J. Miller. Use of a Combination of Ibuprofen and Codeine for the Treatment of Pain. European Patent: 0535841, 1993-04-07
    203 E. Sundy, M. P. Danckwerts. A novel Compression-coated Doughnut-shaped Tablet Design for Zero-order Sustained Release. European Journal of Pharmaceutical Sciences. 2004, 22(5):477~485
    204金方,吴志明.布洛芬缓释混悬剂的研究缓释微球的研究.中国医药工业杂志. 2003, 34(5):223~225
    205王津,李柱来,陈莉敏,许秀枝.壳聚糖-海藻酸钠布洛芬缓释微球的制备工艺及性能.福建医科大学学报. 2008, 42(1):56-59
    206蒋栋毅,王中,缪丽燕,石健,周岱.布洛芬聚乳酸微球的合成和体外释放.苏州大学学报(医学版). 2004, 24(5):645~647
    207 H. Y. Liu, Master. Thesis, Beijing University of Technology, 2008.
    208 A. Galarneau, H. Cambon, F. D. Renzo, R. Ryoo, M. Choi, F. Fajula. Microporosity and Connections between Pores in SBA-15 Mesostructured Silicas as a Function of the Temperature of Synthesis. New J. Chem.. 2003, 27:73~79
    209邓三尧,雷彤.布洛芬的热行为和热分解反应动力学.中南药学. 2005, 3:72~75
    210 C. Y. Chen, H. X. Li, M. E. Davis. Studies on Mesoporous Materials.Ⅰ. Synyhesis and Characterization of MCM-41. Microporous Mater. 1993, 2:17~26
    211 J. Y. Ying, J. B. Benziger, A. Navrotsky. The Structural Evolution of Alkoxide Silica Gels to Glass: Efect of Catalyst Ph. J Am Ceram Soc.. 1993, 76(10):2571~2582
    212顾宇辉,古宏晨,徐宏.正硅酸乙酯水解过程的半经验量子化学研究.无机化学学报. 2003. 19(12):1301~1306
    213 E. K. Rowinsky, L. A. Cazenave, R. C. Donehower. Taxol: A Novel Investigational Antimicrotubule Agent. J. Natl. Cancer Inst.. 1990, 82(15):1247~1259
    214 A. Safavy, J. A. Bonner, H. W. Waksa, Synthesis and Biological Evaluation of Paclitaxel-C225 Conjugate as a Model for Targeted Drug Delivery. Bioconjug.Chem.. 2003, 14(2):302~310
    215 A. J. Tije, J. Verweij, W. J. Loos, A. Sparreboom. Pharmacological Effects of Formulation Vehicles: Implications for Cancer Chemo Therapy. Clin. Pharmacokinet.. 2003, 42(7):665~685
    216梅林,孙洪范,宋存先.紫杉醇制剂研究进展.中国药学杂志. 2006, 41(18): 1366~1370
    217阎家麒,王惠杰,童岩,臧莹安,王九一.紫杉醇微乳的研究.中国药学杂志. 2000, 35(3):173~176
    218王俊平,王玮,赵丽妮.紫杉醇微乳抗肿瘤作用的研究.中国现代医药杂志. 2009, 11(2):10~12
    219王俊平,王玮,赵丽妮.长循环紫杉醇微乳用于肿瘤小剂量化疗的研究.药学学报. 2009, 44(8):911~914
    220周丽娟,刘清飞,陈曦,王义明,罗国安.薄膜分散法制备紫杉醇微乳及其质量评价.中国药房. 2010, 21(23):2139~2141
    221 K. Kataoka, G. S. Kwon, M. Yokoyama, T. Okano, Y. Sakurai. Block Copolymermicelles as Vehicles for Drug Delivery. J. Controlled Release. 1993, 24:119~132
    222 C. Allen, D. Maysinger, A. Eisenberg. Nano-engineering Block Copolymer Aggregates for Drug Delivery. Colloids Surf B: Biointerfaces. 1999, 16:3~27
    223褚洪雨,陈志明.紫杉醇聚合物胶束载药体系的研究进展.化工时刊. 2008, 22(5):65-68
    224杜坡,崔福德,李汉蕴.紫杉醇两亲性嵌段键合物胶束的研究.沈阳药科大学学报. 2008, 25:1~5
    225 M. Licciardi, G. Giammona, J. Du, S. P. Armes, Y. Tang, A. L. Lewis. New Floate-functionalized Biocompatible Block Copolymermicelles as Potential Anti-cancer Drug Delivery System. Polymer. 2006, 47:2946~2955
    226 Y. Huang, X. M. Chen, B. X. Zhao. Antiangiogenic Activity of Sterically Stabilized Liposomes Containing Paclitaxel (SSL-PTX): in Vitro and in Vivo. Pharm. Sci. Tech.. 2010, 11(2):752~759
    227 M. Vallet-Regi, F. Balas, D. Arcos. Mesoporous Materials for Drug Delivery. Angew. Chem. Int. Ed.. 2007, 46:7548~755