阿苯达唑口服纳米球的制备及其组织靶向性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
包虫病是新疆农牧区特定环境中主要地方病之一,新疆包虫病高
    流行区人间感染率为31.5%,患病率为5%,是新疆一些地区农牧民
    因病致死的重要原因。在包虫病的防治措施中,阿苯达唑是目前国内
    外首选的治疗药物,但目前市售阿苯达唑制剂由于溶解性低、胃肠吸
    收差,以及对常见的肝包虫病缺乏靶向性的限制,尚不能充分发挥其
    药效,这是目前新疆地方病防治中迫切需要解决的课题之一。本课题
    应用纳米技术,通过对阿苯达唑纳米球靶向载体系统的研究,达到提
    高药物溶解度、生物利用度、病灶靶向性和治疗指数的目的。
     目的:1.系统研究阿苯达唑的理化性质:阿苯达唑(Albendazole,
    ABZ),为广谱抗寄生虫药物,对治疗包虫病和神经型囊尾蚴病均有效。
    由于阿苯达唑的溶解性低、胃肠吸收差及体内分布广泛等原因,致使
    临床治疗包虫病效果不理想。运用电离平衡理论对阿苯达唑理化性质
    进行研究,通过分配系数平衡溶解法和溶解度-pH曲线法测定阿苯达唑
    在水、常用有机溶媒中的溶解度,油水分配、增溶方法和重要溶解常
    数pK_a。筛选适宜的增溶剂达到改善阿苯达唑溶解性的目的。测定阿苯
    达唑在人体血浆中的蛋白结合率,为筛选制备靶向新剂型和提高药物
    的治疗指数提供科学依据。2.纳米球的研究:应用纳米技术制备TDDS
    制剂—阿苯达唑纳米球。利用阿苯达唑油水分配系数高,溶于醋酸和
    生物胶—氰基丙烯酸正丁酯在酸性条件下缓慢聚合成纳米球特性,选
    择适宜的增溶剂和稳定剂,乳化聚合法制成阿苯达唑纳米球(ABZ-
    PBCA-NP)载体制剂,以改善ABZ的溶解性和提高药物在肝、脾和肺中
    
     博士论文一阿苯达哇口服纳米球的制备及其组织靶向性研究
    的浓度,提高生物利用度和抗包虫疗效。以载药量、包封率和控制粒径
    等为指标,对ABZ纳米球的工艺进行系统研究。筛选二步和三步乳化
    聚合法制备纳米球的制备处方工艺,优化和确定了三步种于乳化聚合
    法的最佳处方工艺。3.新型纳米球载体制剂的理化特性:考察PBCA十P
    对药物的吸附特征,ABZ干BCA-NP的理化性质,稳定性和流变学特性,达
    到控制质量,安全有效的目的。4.纳米球的体外释药与在体吸收规律:
    探讨纳米球载体中ABZ在人工胃液、生理盐水、不同PH磷酸缓冲液中
    的累积释药动力学规律。比较纳米球载体制剂和混悬剂的大鼠在体胃
    肠吸收率,探明药物吸收、血药浓度与溶解度之间的关系。平衡透析法
    测定ABZ和ABZ纳米球的人血浆蛋白结合率。5.新型药物载体的药物
    动力学及靶向性研究:分别口服和腹腔注射二种剂型阿苯达哩,研究
    药物在动物体内血浆、肝、脾等重要脏器组织的药物经时动力学过程
    和组织分布特性,研究靶向载体药物ABZ干BCAWP和非靶向制剂ABZ混
    悬剂口服和腹腔注射后,血浆及肝组织动力学参数,确定靶制剂的寻靶
    特性和靶器官。应用多靶向指标评价载体制剂的寻靶器官一肝、脾和
    肺的靶向性。同时,肝细胞体外培养对靶向载体药物ABZ干BCA--NP和非
    靶向制剂ABZ的摄入差异,计算出靶向效率。
     方法:1.根据难溶物质的溶解平衡理论,推论油/水分配系数法测
    定阿苯达哩的PK。的原理,建立相关测定方法。应用液体闪烁法测定
    钮--ABZ含量,平衡透析法考察ABZ的人体血浆蛋自结合率。2.乳化聚合
    法制备纳米球:选用临床使用的504生物胶一氰基丙烯酸正丁酯oCA)
    为载体材料,以包封率、载药量和粒径为综合指标,系统地比较了一步、
    二步和三步乳化聚合法制备ABZ干BCA-NP的生产工艺;利用ABZ溶于
    醋酸和 BCA在酸性条件下聚合缓慢的特点,分别考察了注入速度、搅拌
    速度及表面活性剂等因素对纳米球的粒径、载药量和包封率的影响。
    2
    
     博士论文一阿苯达哩口服纳米球的制备及其组织靶向性研究
     并分别采用正交试验法和均匀设计法优化出二步法和三步法的处方工
     艺。3.纳米球质量控制:采用等温吸附法测定了纳米球体的吸附性和
     载药特性。同时,考察了室温放置、光照和高温高湿下纳米球的物理
     稳定性和化学稳定性,并对纳米球的凝聚动力学、流变动力学方面进
     行系统试验。分别采用磷钨酸染色、甲醛和饿酸双重固定法制片,透射
     电镜门EM)观察纳米球的形态,SAS统计其算术平均径。4.动态透析法
     测定ABZ干BCA什P在不同介质中的释药规律。大鼠在体肠吸收循环试
     验测定6h内ABZ混悬剂和ABZ-PBCA-NP的小肠吸收速率,揭示在体吸
     收动力学规律和ABZ的体外累积释药与在体肠吸收的相关性。建立了
     药物的溶解度与胃吸收的相关方程。5.纳米球组织分布及组织靶向性
     评价:采用放射性标记法和液体闪烁技术分别考察了口服和灌胃刃ABZ
     混悬剂和’H-ABZ-PBCA-NP后小鼠体内血浆、脏#组织中’H-ABZ的动态
     分布。以二种剂型的不同给药途径后,小鼠血浆、肝、脾、?
Experimental study on preparation
     of oral albendazole nanoparticles
     and its organ tissue targets
    
     Abstracts
     IObjictivel Echinococcosis is one of the worldwide distribution
     in humans and zoic parasitic diseases. It is also one of major endemic
     diseases which can cause the death of the herdsmen in the pastoral areas
     in northwest China including Xinjiang. According to the relative papers data
     report, the infection rate of echinococcosis is 31.5% and the morbidity
     rate is about 5% in high epidemic areas in Xinjiang. Albendazole
     (methyl[5-(propylthio)-LH-benzimidazole-2-yl] carbamate, ABZ) is a
     broad-spectrum antihelminthic drug and first choice for the treatment of
     human cystic echinococcosis which has also been considered as effective drug
     against human echinococcosis and neurocysticercosis. However, its
     therapeutical effect was unsatisfactory due to poor solubility , less
     gastrointestinal absorption and lower targeting effect after oral administration.
     The purpose of this study is to improve the therapeutic effect of albendazole
     by making new dosage forms, and studing so called nanoparticle the
     drug targeting function and increasing ABZ concentration in liver, spleen
     and lung in humans.
    
     Firstly, Albendazole physichemical characteristics were determined for
     change drug dosage form including the solubility in water and some
     organic solvents, oil-water partition coefficient, the pK~. The better
     solubilizers were experimentally selected for increasing its solubility.
     Secondly, for improvement its bioavailability and absorption in humans,
     albendazole-polybutycyanocrylate-nanoparticle (ABZ-PBCA-NP) was made
    
    
     8
    
    
    
    
    
    
    
    
    
     by three kinds of emulsification-polymerized methods. The satisfied
     prescription and the best techniques were selected for increase of drug-load,
     entrapment efficiency, size control and the distribution for nanoparticle.
     Thirdly, for the confirmation of the stability and safety, ABZ-PBCA-NP
     stability and fluxion had been studied as follows: (1) to look into released
     rule for nanoparticle, the released test of albendazole was processed in
     different medium in vitro; (2) to investigate the relationship between
     albendazole release and its absorption in stomach and intestine, the
     albendazole absorption rate in different pH solutions have been determined
     by using rat抯 intestinal infusion suit; (3) to examine free albendazole
     concentration in body, the serum protein binding rate had been compared
     between albendazole and ABZ-PBCA-NP. Finally, to validate
     nanopartilce targeting features time-course in blood and tissue
     distributions were compared with albendazole suspension and ABZ-PBCA-
     NP after single dose with oral and peritoneal injection in rats.
     Pharmacokinetics parameters of non-targeting drug (albendazole suspension)
     and targeting drug (ABZ-PBCA-NP ) in sera and liver were dealt with 3p8?
     computer programs. To ascertain targeting organs of nanoparticles
     multi-parameters index was introduce as the estimating standard.
    
     LMethodl Albendazole pKa values were determined by oil-water
     partition method. The concentration of 3H-albendazole was measured by
     the liquid scintillation counting. The serum protein binding rate of ABZ and
     ABZ-PBCA-NP was determined by the equlibrium dialysis method(ED).
     Making procedure for entrapment efficiency , loading drug and size as
     synthesis index, t
引文
1.叶于聪等,细粒棘球蚴的实验研究,青海医药,1982,55:1~6
    2.尹伯约主编.人体包虫病,兰州:甘肃人民出版社出版,1983。
    3. Heath. Guidelines for treatment of cystic and alveolar echinococcosis in human. Bull world health organ 1996, 74(3): 231~242
    4. Blanton RE. Oxfendazole treatment for cystic disease in naturally infected animals. Amtimicrob Agents chemother, 1998 42(3):601~605
    5. Jura H. Bader A. Frosch M. In vitro activitties of benzimidazoles against Echinococcus multilocularis metacestodes. Antimicrob Agents Chemother, 1998 42(5):1052~1056
    6.蒋次鹏.肝泡状棘球蚴病的化疗研究,国外医学寄生虫分册,1984,(1):7~10
    7.孙铁,陈佩惠,人体包虫病的化疗,中国寄生虫病防治杂志,1990,3(1):248~249
    8.温浩,买尔旦,王建华,等.脂质体阿苯达唑及主要代谢产物的HPLC法和药代动力学研究,新疆医学院学报,1993,16(3)214~219
    9. Wen H Wang JH. Initial observation on albendazole in combination with cimetidine for the treatment of human cystic echinococcosis. Ann Trop Med Parasitol, 1990, 88(1) 49~52
    10.才学鹏等,丙硫咪唑在大白鼠体内的药物动力学研究,中国兽医科技1985,7:8~13
    11.尤纪青,孙惠良,焦佩英,等.口服[35S]阿苯达唑亚砜在感染细粒棘球蚴小鼠体内的吸收、分布和排泄,地方病通报,1991,7(3):5~7
    12.尤纪青.体外培养的细粒棘球蚴囊对甲苯咪唑、阿苯达唑和阿苯达唑亚砜的摄入与释放,中国药理学报,1991,:(4):367~371
    13.肖树华.甲苯咪唑、阿苯达唑和阿苯达唑亚砜对细粒棘球蚴糖元含量的影响.中国药理学通报,1990,(6):546~549
    
    
    14.冯建军.甲苯咪唑、阿苯达唑和吡喹酮对小鼠细粒棘球蚴碱性磷酸酶、酸性磷酸酶和ATP酶的影响,中国药理学报,1992,(6):497~501
    15.温浩,买尔旦,王建华.高效液相色谱法测定人体血液、胆汁和包虫囊液中丙硫咪唑及代谢产物的含量,地方病通报,1989,4(1):52~55
    16.肖树华,杨元清,郭惠芳,等.细粒棘球蚴囊经甲苯咪唑、阿苯达唑或阿苯达唑亚砜作用后其生发层的形态学变化和药物含量,地方病通报,1992,7(1)5~9
    17. Galtier P. Simultaneous pharmacokinetic modeling of a doge and two metabolities: Application to albendazole in sheep. J Pharm Sci. 1991,80(1):3~10
    18.邹培范,王云海,姚秉礼,等.阿苯达唑治疗肝包虫病疗效观察,新疆医学,1988,18(1):11~13
    19. Horton RJ. Chemotherapy of Echinococcsis infection in man with with albendazole. Trans R Soc Top Med Hyg 1989,83(1):97~102
    20.孙忠贵,刘家祥,王浩,等,丙硫咪唑治疗多房棘球蚴病的效果观察,宁夏医学杂志,1989,11(1):8~9
    21. Garc K Llamazares JL. Echinococcus granulosus: membrance permrbility of secondary hydatid cysts to albendazole sulfoxide. Parasitol Res. 1998,84(5): 417~420
    22.李富荣,蒋次鹏,曹和询,等.吡喹酮脂质体、吡喹酮、阿苯达唑、氟苯达唑和甲苯达唑对泡球蚴病的疗效观察,中国寄生虫病防治杂志,1995,8(1):31~34
    23.王述恒.免疫载药脂质体体内治疗小鼠泡球蚴,北京医科大学学报,1997,29(2):109~111
    24.蒋次鹏,丙硫咪唑和中药消包粉治疗小鼠腹腔多房棘球蚴早期和晚期感染的实验研究,地方病通报,1991,6(3):1~6
    25. Cobo F, Walchshofer N, Walbaum S, et al. Albendazole plus praziquantel versus albendazole alone as a peo-operative treatment in intra-abdominal hydatisosis caused by Echinococcus granulosus. Am J Trop Med Hyg, 1997 Feb, 56(2): 226~230
    
    
    26. Speiser PP. Nanopaeticles and liposomes:a state of the art. Methods Find Exp Clin Pharm, 1991;13(5):337
    27. Akiyoshi K. Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. J Controlled Release, 1998, 54(3): 313~320.
    28.张强,等.口服胰岛素毫微球的体外释药及对糖尿病大鼠的降糖作用,药学学报 1998,32(2):152~156
    29. Stephen W, Robert BM. Pharmacokinetics of the acyclovir of the acyclovir prodrug valaciclovir after escalating single and multiple dose administration to normal volunteer. Clin Pharmacol Ther, 1993,54:595
    30. Huang TS. passage of particles through the sinusoide wall of the rabbit bone marrow. Acta phathol J. Ph. 1971,21:304.
    31. Lenaerts V, Raymond P, Juhasz J, et al. New method for prepartion of cyanoacrylic nanoparticles with imoroved colloidal properties. J Pharm Sci;1989,78:1051
    32. Dougles sj. Tilum L. Davis ss. Particle Size and size distribute of poly(buty-2-cyanoacylate)Nanoparticles. J colloid interface Sci, 1984,21:101~149
    33.张志荣,廖工铁,侯世祥,等.米托蒽醌纳米球在裸鼠肝癌模型体内的靶向性研究。华西药学杂志,1989,8(4):191~195.
    34. Huang TS. passage of particles through the sinusoide wall of rhe rabbit bone marrow. Acta phatbol J. Ph. 1971,21:304~306.
    35. Cruze CA and Meyer MC. binding of salicylate and sulfathiazole by whole blood constrituents. J Pharm Sci. 1995,65(1):33~36
    36.增经泽主编.生物药物分析(第二版),北京:北京医科大学和协和医科大学联合出版社,1998,240~143
    37.张学农,王国荃,孙殿甲,等.阿苯达唑毫微球体外释药及毒性实验,香港医药,2000,1(3):183~185
    
    
    38.张志荣,廖工铁,侯世祥,等.米托蒽醌微球在裸鼠人肝癌模型体内的靶向性研究,华西药学杂志,1991,8:191~194
    39. Divid W. Newton, W. etal. pK_a determine of benzhdrylpipreazine antihistamines in aqueous and aqueous mwthanol solutions. J. Pharm. Sci. 1982, 71(12): 1363~1367.
    40.侯新朴主编,物理化学(第四版)北京:人民卫生出版社,2000,78~91
    41. Undetrberg W. and Lingeman H. Determination of pK_a value of some prototropic functions in mitomycin. J. Pharm. Sci. 1983, 72(5):553~556
    42.殷恭宽主编.物理药学,北京:北京医科大学和中国协和医科大学联合出版社,1993,136~150
    43. Hasegawa J. pK_a determination of verapamil by liquid-liquid partition. J. Pharm. Sci. 1984,73(4): 442~445
    44. Ionzation constants by curve fitting: application to the determination of partition coefficients. J. Pharm. Sci. 1984, 73(4): 226~230
    45. Watker JL. Effects of localied pasteurella haemolytica infection on Erythromycine-binging properities of bovine alpha-l-acid glycoprotein, albumin, serum, and tissue chamber fluids. Antimicrrobial Agents Chemotherap. 1994,38(10):239
    46.姜纪荣,束汉麟,许帼英.我国人和动物的磺胺药物血浆蛋白结合率,药学通报,1986 16(12)705~708.
    47.朱秀媛,宋振玉.几种氮芥抗肿瘤药与大鼠血浆结合,药学学报,1966,13(4):253~257
    48. Deborah L, keefe DL, Yee YG, et al. Verapamil protein binding ing patients and in normal subjects. Clin Pharmacol Ther 1981,29:21~26.
    49. Scatchard G.F. The arraction of proteins for small molecules and ions. Ann. NY Acad. Sci. 1949, 51:660
    
    
    50.代宗顺,周正航,章弘,等.蝙蝠葛碱血浆蛋白结合率的研究,中国临床药学杂志,1987,3(4):250~260
    51. Morris DL;Richard KS;Clarkson MJ;Taylor DH. Comparsion of Albendazole and Praziquantel therapy of Echinococcus granulosus in naturally infexted sheep. Vet parasitol, 1990, may, 36 (1-2): 83~85
    52. Keyser JL, Poupaert JH, Dumont P. Poly(diethyl methylidenematonate) nanoparticles as a potential drug carrier: preparation, distribution and elimination after intravenous and peroral administration. J. Pharm Sci. 1991,80(1):67~70
    53. Lenaerts V. Nagelkerke J F. In vivo uptake of polyisobutyl cyanoacrylate nanoparticles by rat liver kupffer, endothelial, and parenchymal cell. J. Pharm. Sci. 1984, 73(7): 980-982
    54. Polato L; Benedetti LM. Callegaro L etal. In vitro evaluation of nanoparticles formulations containing gangliosides. J Drug Target. 1994,2(1):53~59
    55.廖工铁主编,靶向药物制剂,成都:四川科学技术出版社,1997:192~220
    56.王建华,温浩,买尔旦.阿苯达唑脂质体的包封率测定及形态观察 新疆医学院学报 1994,17(1):18~21
    57.张志荣,廖工铁.均匀设计优选米托蒽醌纳米球的制备工艺,中国医院药学杂志,1994,14(6):246~249
    58. Dekeyser JL, Poupaert JH, Domont P. Poly(diethyl methyldenmalonate) Nanoparticles as a potential durg carrier:J Pharm Sci, 1991,80(1)67~70
    59. Damgc C; Vranckx H; Balschmidt P. et al. Poly (alkylcyanoacrylate) nanospheres for oral administration of insulin. J Pharm Sci, 1997, 86:12,1403-1407
    60. Gabaud S, Demoy M, Andreux J P. Cell involved in the capture of nanoparticles in hematopoietic organs. J Pharm Sci. 1996, 85(9): 944~950
    
    
    61. Pramod K, Gupta Drug targeting in cancer chemtherapy: a clinical perspective, J Pharm Sci. 1990, 79(11): 949~960
    62. Douglas S J, Davis SS. Douglas. Nanoparticles in drug delivery. Crit Rev Ther Drug Carrier Syst, 1987, 3(3): 23~61
    63. Zhng JH, Zhu JB Wang H. Determination of encapsulation effciency of liposomal amikacin, China Pharm J, 1999, 34(12): 818~820.
    64.彭应旭,庄燕黎,廖工铁.骨髓靶向柔红霉素毫微球的研究,中国医药工业杂志,2000,31(2):57~60
    65. Maincent P, Devissaguet JP Leverge R, et al. Preparation and in vitro studies of A new drug delivery system nanoparticles of alkylcyanoacrylate. Appl Biochem Biotechnol, 1984,10:265~263
    66. Marie E, PVPg C, Stephane G, et al. Polyisobutycyanoacrylate nanoparticles as drug carriers: influence if sulfur dioxide on the pharsico-chemical characteristics of ciprofloxacin and doxorubicine-loaded nanoparticles. Int J Pharm. 1998, 166:117~120
    67. Hincal AA, Sheth BB, Evaluation of adsorption from dispersion charge profile. J Pharm Sci, 1979, 68(4): 472~475
    68. Lenaerts V, Raymond P, Juhasz J. et al. New method for the preparation of cyanoacrylic nanoparticles with improve colloidal properties. J Pharm Sci, 1989, 78(12): 1051~1052
    69.张强,叶国庆,李哗,等,环孢素A硬脂酸纳米球的实验研究,药学学报,1999,34(4):308~311
    70.中华人民共和国药典委员会编,中华人民共和国药典,2000年版,二部.
    71.邓英杰,苏德森,李焕秋,等.多相脂质体注射液物理稳定性的研究.药学学报,1984,19(4):282~287
    72.侯新朴主编.物理化学(四版)北京:人民卫生出版社,2000,78~91
    
    
    73. Gessner PK, Hasan MM Freundlich and Langmuir isotherms as models for the adsorption of toxicants on activated charcoal. J Pharm Sci, 1987,76:4, 319~327
    74. Hincal AA; Sheth BB,Evaluation of adsorption from dispersion charge profile. J Pharm Sci, 1979, 68:4, 472~475
    75. Sanvordeker DR, mahani EZ In vitro adsorption of diphenoxylate hydrochloride on activated charcoal and its relationship to pharmacological effects of drug in vivo. Ⅰ. J Pharm Sci, 1975 Nov, 64:11, 1877~1879
    76.张志燕,平其能,胡森.树脂微囊混悬剂物理稳定性及其机制研究.中国药学杂志,2000,35(8):527~530
    77.孙路路,魏树礼.白蛋白微球的制备及影响粒径大小的因素,中国医药工业杂志,2000,31(3):113~115
    78.刘辉,陈鹰,吴菡子,等.阿昔洛韦棕榈酸酯脂质体凝胶剂的研制,中国药学杂志,2000,35(7):457~460
    79. Pudipeddi M, Sokoloski TD, Duddu SP et al. Quantitative characterization of adsorption isotherms using isothermal microcalorimetry. J Pharm Sci, 1996 Apr, 85:4, 381~386
    80.张志荣,何勤.肝靶向万乃洛毫微球的研究,药学学报,1998,33(9):702~706
    81.张志荣,路伟.肝靶向羟基喜树碱缓释毫微球的研究,药学学报,1997,32(3):222~227
    82.杨时成,朱家壁,梁秉文,等.喜树碱固体脂质纳米粒的研究,药学学报,1999,33(2):146~150
    83.张强,廖工铁.硫酸庆大霉素氰基丙烯酸正丁酯毫微球的体外释药动力学研究,药学学报,1995,30(6):459~465
    84. Hof H. Intracellular microorganism:A particular problem for chemotherapy. Infwction. 1991,19(4):193~195
    85. Couvreur P, Kante B, Roland M et al. Absorption of antineoplastic drug to polyalkylcyanoacylate nanoparticles and their release in calf serum. J Pharm Sci. 1979,68:1521~1525
    
    
    86.王淑丽,陈济民.苏子油乳剂小肠吸收动力学研究.沈阳药科大学学报.2000,17(1):1~4
    87.王弘,陈济民 张清民.黄芪甙在大鼠胃、离体小肠的吸收动力学研究,沈阳药科大学学报,2000,17(1):5~7
    88.毛风斐,屠锡德,朱家壁,等.黄芪甙大鼠小肠吸收的研究.南京药学院学报,1984,15(1):61~66
    89. Nonoto M, Yamada K, Haga, M, etal. Improvement of intestinal absorption of peptide drugs by glycosylation: transport of tetrapeptide by the sodium ion-dependent D-glycose transporter. J pharm sci. 1998, 87(3):326~332
    90. James B, Lisa T and Margaret E. Reevaluation of the absoption of carbenoxolone using an in situ rat intestinal technique. J Pharm Sci 1990, 79(5):411~414
    91. Palm K, Luthman K, Ungell AL, et al. Correlation of grug absorption with molecular surface properties. J Pharm Sci 1996, 85(1): 32~39
    92. Onuki Y, Morishita M, Takayama K et al. In vivo effects of highly purified docosahexaenoic acid on rectal insulin absorption. Int J Pharm, 2000 198(2): 147~56
    93. Redondo PA; Alvarez AI; Garcia JL Presystemic metabolism of albendazole: experimental evidence of an efflux process of albendazole sulfoxide to intestinal lumen. Drug Metab Dispos, 1999, 27:6, 736~40
    94. Fred g. Poelma J. And Josef J. Evaluation of a chronically isolated internal loop in the rat for the study of drug absorption kinetics. J Pharm Sci. 1987, 76(6):433~436
    95. Polato L; Benedetti LM. Callegaro L etal. In vitro evaluation of nanoparticles formulations containing gangliosides. J Drug Target. 1994, 2(1):53~59
    96. Li VH, Wood RW, Kreuter J, et al. Ocular drug delivery of progesterone using nanoparticles. J Microencapsul, 1986 Jul-Sep, 3:3, 213~218
    
    
    97. Lenaerts v, Nagelkerke JF, VAN Berkel. In vivo of polyisobutyl cyanoacrylate nonpparticles by rats liver kupffer, Endothelial, and parenchymal cells, J Pharm Sci, 1984, 73(7): 980~982
    98. Damg C Michel C, Aprahamian M et al. New approach for oral administration of insulin with Diabetes, 1988 Feb, 37:2, 246~251
    99. Ayres JW; Lorskulsint D; Lock A et al. Absorption and distribution of radioactivity from suppositories containing ~3H-benzoeaine in rats. J Pharm Sci, 1976, 65(6): 832~838
    100.肖树华,俞月桂,王翠英,等.日本血吸虫对~3H-吡喹酮的摄入与分布。药学学报,1981,16(7):488~491
    101.高晓黎,程利勇,孙殿甲等.定量评价去氢骆驼蓬碱注射用乳剂的组织靶向性,药学学报.2000,35(2):142~146
    102. Araujo L, Sheppard M, Lobenberg R, et al. Uptake of PMMA nanoparticles from the gastrointestinal tract after oral administration to rats: modification of the body distribution after suspension in surfactant solutions and in oilvehicles. Int J Pharm. 1999,176:209~224
    103.黄兆胜,王宗伟,刘明平,等.虎杖苷对CCl_4损伤原代培养大鼠肝细胞的保护作用,中国药理学通报,1998,14(6):543~545
    104.汪谦主编.现代医学实验方法,北京:人民卫生出版社,1997,140~154
    105.孙毓庆,分析化学(第三版)北京:人民卫生出版社,1993:32~34
    106.孟娟如.大白鼠颈静脉及肝门静脉持久性导管术及其应用.药学学报,1987,22:326~329
    107. Singhvi SM, Kripalani KJ, Dean AV, etal. Absorption and bioavailability of captopril in mice and rats after administration by gavage and in the diet. J Pharm Sci, 1981 70(8): 885~888
    
    
    108. Watanabe J, Haba M, Muranishi H, et al. Dose-dependent uptake of radioactivity by liver parenchymal and non-parenchymal cells after intravenous administration of fractionated ~3H-heparin to rats. Biol Pharm Bull, 1993, 16(10): 1031~1034
    109. Max-DelbrckCenter for Molecular Medicine, Body distribution of free, liposomal and nanoparticle associated mitoxantrone in B16-melanoma-bearing mice. J Pharmacol Exp Ther, 1997, 280(1): 232~237
    110. Ayni I,Vauthier C, ChacunH. Spongelike alginate nanoparticles as a new potentialsystem for the delivery of antisense oligonucleotides. Antisense Nucleic Acid Drug Dev, 1999, 9(3):301~312
    111. Douglas SJ, Davis SS, Illum L. Nanoparticles in drug delivery. Crit Rev Ther Drug Carrier Syst, 1987,3(3) 233~261
    112. Couvreur P; Kante B; Lenaerts V et al. Tissue distribution of antitumor drugs associated with polyalkylcyanoacrylate nanoparticles. J Pharm Sci, 1980 69(2):199~202
    113. Morris DL;Richard KS;Clarkson MJ;Taylor DH. Comparsion of Albendazole and Praziquantel therapy of Echinococcus granulosus in naturally infexted sheep. Vet parasitol, 1990, 36(1-2): 83~85
    114. Maincent P;Devissaguet JP; Leverge R et al. Preparation and in vivo studies of a new drug delivery system-Nanoparticles of alkylcyanoacylate. J Pharm Sci, 1988, 75(2):199~202
    115. Polato L; Benedetti LM. Callegaro L etal. In vitro evaluation of nanoparticles formulations containing gangliosides. J Drug Target. 1994,2(1):53~59
    116.孙瑞元主编.定量药理学.北京:人民出版社。1987,162~167
    117.范志刚主编.计算器程序设计及其在医药学中的应用.乌鲁木齐:新疆大学出版社。1993,159~164