非线性波动方程的精确解及其孤子结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在非线性科学中,非线性波动方程精确解的研究有助于理解孤立子理论的本质属性和代数结构,而且对相应自然现象的合理解释及实际应用将起到重要的作用.
     本论文首先借鉴了非线性物理的对称约化思想和线性物理中的分离变量理论,对处理非线性问题的直接代数法和多线性分离变量法进行了研究和推广,对映射变换理论进行了创新,得到了一些新的结果.将基于行波约化的代数方法推广应用到了非线性离散系统和复杂的非线性系统,寻求其精确的行波解和近似解.然后,根据非线性系统的映射变换解和多线性分离变量解,分别讨论了(2+1)维局域激发模式及其相关的非线性动力学行为.围绕一些具有深刻物理背景的非线性波动方程的局域激发模式及其相关非线性特性—分形特征和混沌行为展开了讨论,这些非线性系统源于流体力学、等离子体物理、固体物理、超导物理、凝聚态物理和光学等实际问题.本文研究表明,Charkson-Kruskal的直接约化方法,映射变换方法和多线性分离变量方法蕴藏着内在的有机联系.另外,本文所得结果说明混沌和分形存在于高维非线性系统是相当普遍的现象.现将本文的主要内容概述如下:
     第一章,简要回顾了孤立波的发现与研究历史,概述了当前研究孤子解的一些基本方法,其中包括:反散射方法,Darboux变换和B(?)cklund变换,Painlevé分析法和Hirota双线性方法等,最后给出了本论文的主要工作和结构按排.
     第二章,首先以Boussinesq方程为例,介绍了寻求非线性波动方程相似约化解的三个基本方法:经典李群法、非经典李群法和CK(Clarkson和Kruskal)直接法.然后以sine-Gordon方程组为例,给出了楼和马最近提出的对CK直接法进行的一种修正.在他们的方法中,并没有对原方程进行低维约化,而是在要求自变量不减少的情况下,直接地得到原方程的李对称群.同时,如果利用多直线孤子解的群变换,可以得到各种多曲线激发.最后,仍基于CK直接相似约化的思想,给出了目标约化的一般理论,即:对一个给定的非线性方程,事先建立一个目标函数,通过假设得到的相似约化方程为常微分方程,将其中的系数分解整理成多个规范系数的比率,而不仅仅只有一个.由此,来得到非线性系统有着更加直接而简便的丰富的精确解,其中包括孤立波解,周期波解和有理函数解.
     第三章,利用CK直接相似约化思想,给出了非线性方程的映射变换理论,突破了已有映射理论只能得到系统行波解的约束,并成功地运用到了多个非线性波动方程组中,如:(2+1)维色散长波方程组、(2+1)维广义Broer-Kaup方程组、(1+1)维非线性Schr(?)dinger方程组、修正的(2+1)维色散水波方程组、(2+1维Nizhnik-Novikov-Veselov方程组等,得到了新型的变量分离的精确解.根据所求得的映射解,分析了若干新的或典型的局域激发模式,如:双周期结构孤子,单值与多值复合的半折叠孤子,裂变孤子和聚合孤子及其演化行为特性等.讨论了一些典型孤子所蕴涵的分形特征和混沌动力学行为.研究结果表明混沌、分形存在于高维非线性系统是相当普遍的现象,其根源在于可积系统的初始状态或边界条件具有“不可积”的分形特性或混沌行为.修正了人们长期认为孤波产生于可积非线性系统而混沌、分形只存在于不可积非线性系统的认识局限性.分析表明,所有由多线性分离变量法得到的(2+1)维非线性系统的局域激发,利用映射变换理论也可以找到.映射变换方法不仅突破了原映射理论只能求解非线性系统行波解的约束,还有望进一步推广应用到其它的非线性系统中,由此,丰富和发展了非线性科学的基本理论.
     第四章,首先简要介绍了分离变量法在几个方向的发展情况,并以(2+1)维非线性系统为例,给出了楼提出的多线性变量分离法的一般步骤.然后求出了(1+1)维浅水波方程,(2+1)维mBK方程组和另外若干著名的方程组的变量分离解及其推广形式,并讨论了在普适公式下的孤子的结构及其相互作用的行为.一般说来,所得到的多线性分离变量解,可以用来描述系统场量或相应的势函数,进而讨论基于多线性分离变量解引起的系统局域激发及其相关非线性特性.文中报导了一些典型的局域激发模式,如:在所有方向都呈指数衰减的相干局域结构-dromion,在各个方向同时褶皱的多值孤波-折叠子,三维空间中的偶极子型孤子等.
     第五章,将基于行波约化的代数方法推广应用到了非线性离散系统和复杂的非线性系统,寻求其精确的行波解和近似解.首先给出了微分-差分系统双曲函数法的一般理论,其推广形式及在非线性离散系统中的应用,然后给出了基于行波约化的形变映射理论及非线性Schr(?)dinger方程基于行波的约化解,最后则引进了Adomian分解法,来研究在一定初始条件下的高阶非线性Schr(?)dinger方程的基于行波的近似解.
     第六章,给出了本文的主要结果,提出了一些未来相关研究工作的设想.
In nonlinear science,the study on the exact solution of nonlinear wave equations is helpful in clarifying the underlying algebraic structure of the soliton theory and plays an important role in reasonable explaining of the corresponding natural phenomenon and application.
     In this dissertation,with the help of the symmetry reduction theory in nonlinear physics and the variable separation approach in linear physics,the direct albebra method and the multilinear variable separation approach are studied and extended to nonlinear physics successfully, then a new algorithm - the mapping transformation approach is proposed and many kinds of new results are obtained from there.To seekig for the exact travelling wave solution and approximate solution,the algebra method based on travelling wave reduction is extended and applied to some nonlinear discrete systems and complicated equations.Based on the mapping transformation solutions and the multilinear variable separation solutions respectively, abundant localized excitations and related nonlinear dynamical behaviors for some (2+1)-dimensional(two spatial-dimensions and one time dimension) nonlinear models are investigated. The localized excitations and related fractal and chaotic behaviors in nonlinear wave equations are discussed,which are orginated from many natural sciences,such as fluid dynamics,plasma physics,solid physics,superconducting physics,condensed matter physics and optical problems.The research results indicate that one can establish the relationship among the Charkson-Kruskal(CK) direct reduction method,the mapping transformation approach and the multilinear variable separation approach.Meanwhile,fractals and chaos in higher-dimensional nonlinear soliton systems are quite universal phenomena.The main contents are summarized as folows:
     In the first chapter,a brief history of finding solitary waves and solitons is outlined and several improtant methods for studying soliton solutions are listed,including the inverse scatterng method,the Darboux transformation and the Backlund transformation,the Painlevéanalysis approach and the Hirota bilinear method.The research arrangement of the dissertation is given in the end of this chapter.
     In the second chapter,taking an example of the Boussinesq equation,three powerful methods are presented for finding similarity reduction solutions of a nonlinear wave equa- tion,i.e.,the Lie group method of infinitesimal transformations,the nonclassical Lie group method and the Clarkson and Krnskal direct method.Starting from the Lax expression of the(2+l)-dimensional sine-Gordon system,a modified technic for the CK direct method was put forward by Lou and Ma recently.The symmetry group and then the Lie symmetries and the related algebra can be reobtained via a simple combination of a gauge transformation of the spectral function and the transformations of the space time variables.Meanwhile,applying the group transformation theorem on the multiple straight line soliton solutions,one can obtain various types of multiple curved line excitations.Finally,the objective reduction approach is presented based on the idea of the above CK direct method.The main theory of this method is:For a given nonlinear equation,an objective function is first established, supposing that the obtained similarity reduction equation is an ordinary partial equation, through setting one coefficient as the normalizing coefficient in each part of this equation,we may separate all coefficients into several parts and require that the ratios of these coefficients satisfy the same objective reduction equation.From there,the abundant exact solutions of a given system are derived,including solitary wave solutions,periodic wave solutions and rational function solutions.
     In the third chapter,a new mapping transformation for a nonlinear equation is proposed using the CK direct similarity reduction theory.The approach breaks through the traditional idea,which only the travelling wave solution of a nonlinear equation can be obtained,and is applied to some nonlinear wave equations,such as the(2+1)-dimensional dispersive long wave system,the(2+1)-dimensional generalized Broer-Kaup system,the(1+1)-dimensional nonlinear Schrodinger system,the(2+1)-dimensional modified dispersive water-wave system, and the(2+1)-dimensional Nizhnik-Novikov-Veselov system.Based on the new variable separation solutions,some new or typical localized coherent excitations and their evolution properties are revealed.By introduing suitable arbitrary functions,considerably novel localized structures are constructed,such as doubly periodic patterns from the Jacobi elliptic functions,semifolded localized structures including multi-valued and single-valued solitons, and certain localized excitations with fission and fusion behaviors.Some typical localized excitations with fractal property and chaotic behavior are also discussed.Why the localized excitations possess such kinds of chaotic behavior and fractal property? If one considers the boundary or initial condition of the chaotic and fractal solutions obtained here,one can find straightforwardly that the initial or boundary condition possesses chaotic and fractal properties.These chaotic and fractal properties of the localized excitations for an integrable model essentially come from certain "nonintegrable" chaotic and fractal boundary or initial condition.From these theoretical results,one may interpret that chaos and fractals in higherdimensional integrable physical models would be a quite universal phenomenon.Therefore, all the localized excitations based on the multilinear variable separation solution can be rederived by the mapping transformation solution.Meanwhile,we have established a simple relation between the multilinear variable separation solutions and the mapping transformation solutions,which are essentially equivalent by taking certain variable transformation.The mapping transformation approach not only outbreaks its original limitation merely searching for traveling wave solutions to nonlinear systems,but also can be extended to many other nonlinear dynamical systems,which also means that the mapping approach has been richened and developed to the basic theory of nonlinearity.
     In the fouth chapter,several studying aspects of the variable separation method are first introduced briefly,and then the general process for a(2+1)-dimensional nonlinear system of the Lou's multilinear variable separation approach is given.As a result,the variable separation solutions and their generalizations of the(1+1)-dimensional shallow water wave equation, the(2+1)-dimensional mBK equations and some other famous equations are solved.Some localized excitations and their interaction behaviours are revealed under a quite "universal" variable separation formula by selecting appropriate initial and/or boundary conditions. Based on the plots and theoretical analysis,we explored some typical localized excitations. Dromions are localized solutions decaying exponentially in all directions,which can be driven not only by straight line solitons but also driven by curved line solitons and can be located not only at the cross points of the lines but also at the closed points of the curves.Foldons are a class of multi-valued solitary waves,which can be folded in all directions.The fractal solitons and chaotic solitons reveal fractal characteristics and chaotic dynamic behaviors in solitary waves,respectively.The dipole-type dromion and the paraboloid-type camber soliton solution are plotted in their equipotential form or projective density form for the(3+1)-dimensional Burgers equation.
     In the fifth chapter,to seekig for the exact travelling wave solution and approximate solution for some nonlinear discrete systems and complicated equations,the algebra method based on travelling wave reduction is extended and applied to them.The tanh function approach is devised for the nonlinear differential-difference equations,its two generalized applications are presented.The deformation mapping theory based on travelling wave reduction and the reduction solutions of the nonlinear Schrodinger equation are given.At last,the Adomian decomposition method is implemented for solving a hlgher-order nonlinear Schrodinger equation in atmospheric dynamics with the initial condition to obtain the approximate solutions based on the travelling wave transformation.
     Finally,some main and important results as well as future research topics are outlined in the last chapter.
引文
[1]Russell J S,Report of the committee on waves,Report of the 7th meeting of the British association for the advancement of science,Liverpool,1938,417-496.
    [2]Russell J S,Report on waves,Report of the 14th meeting of the British association for the advancement of science,John Murray,London,1844,311-390.
    [3]Korteweg D J and de Vries G,On the change of form of long waves advancing in a rectangular canal,and on a new type of long stationary waves,Philos.Mag.Ser.5,1895,39:422-443.
    [4]Miura R M,Baklund transformations,Vol.515 in Lecture Notes in Math.,Springer-Verlag,Berlin,(1976).
    [5]Fermi A,Pasta J,and Ulam S,Studies of nonlinear problems,I.Los Alamos Report,LA1940,(1955).
    [6]Gardner C S,Greene J M,Kruskal M D,and Miura R M,Method for solving the Korteweg-de Vries equation,Phys.Rev.Lett.1967,19:1095-1097.
    [7]Perring J K and Skyrme T H R,A model unified field equation,Nucl.Phys.1962,31:550-555.
    [8]Zabusky N J and Kruskal M D,Interactions of solitons in a collisionless plasma and the recurrence of initial states,Phys.Rev.Lett.1965,15:240-243.
    [9]Toda M,Wave propagation in anharmonic lattices,J.Phys.Soc.Jpn.,1967,23b:501-506.
    [10]Hasegawa A and Tappert F,Transmission of stationary nonlinear optical pulses in dispersive dielectric fibres.I.Anomalous dispersion,App.Phys.Lett.,1973,23:142-144.
    [11]Lamb H,Hydrodynamics,Dover,New York,(1945).
    [12]Donnelly R J,Quantized Vortices in Helium Ⅱ,Cambridge University Press,New York,(1991).
    [13]Denschlag J et al.,Generating solitons by phase engineering of a Bose-Einstein condensate,Science,2000,287:97-101.
    [14]Carr L D,Clark C W,and Reinhardt W P,Stationary solutions of the one-dimensional nonlinear Schodinger equation I Case of repulsive nonlinearity,Phys.Rev.A,2000,62:063610-063611.
    [15]Bronski J C,Carr L D,Deconinck B,and Kutz J N,Bose-Einstein condensates in standing waves:The cubic nonlinear Schrodinger equation with a periodic potential,Phys.Rev.Lett.,2001,86:1402-1405.
    [16]Chowdhury A R,Painlevé analysis and its applications,CHAPMAN & HALL/CRC monographs and surveys in pure and applied mathematics 105,CHAPMAN & HALL/CRC 2000.
    [17]Drazin P G and Johnson R S,Solitons:An Introduction,Cambridge University Press,Cambridge,England,(1989).
    [18]Gardner C S,Greene J M,Kruskal M D,and Miura R M,Method for solving the KdV equation,Phys.Rev.Lett.,1967,19:1095-1097.
    [19]Miura R M,The Koeteweg-de Vries equation and generalization.I.A remark able explicit nonlinear transformation,J.Math.Phys.,1968,9:1202-1204.
    [20]Ablowitz M J and Segur H,Soliton and the inverse scattering transform,SIAM,Philadelphia,USA,(1981).
    [21]Ablowitz M J and Clarkson P A,Solitons,nonlinear evlution equation and inverse scattering,Cambridge University Press,Cambridge,(1991).
    [22]Ablowitz M J,Kaup D J,Newell A C,and Segur H,The inverse scattering transform-Fourier analysis for nonlinear problems,Stud.Appl.Math.,1974,53:249-315.
    [23]Konopelchenko B G,Introduction to multidimensional integrable equations,Plenum Publishing,New York,(1992).
    [24]Boiti M,Pempinelli F,Pogrebkov A K,and Prinari B,Towards an inverse scattering theory for two-dimensional nondecaying potentials,Theor.Math.Phys.,1998,116:741-781.
    [25]Steudal H and Kaup D J,Inverse scattering transform on a finite interval,J.Phys.A,1999,32:6219-6231.
    [26]Zheng Y B,Ma W X,and Lin R L,Integration of the soliton hierarchy with self-consistent sources,J.Math.Phys.,2000,41:5453-5489.
    [27]陈登远,孤子引论,科学出版社,(2006).
    [28]Darboux G,Sur une proposition relative aux équations linéaires,Compts Rendus Hebdomadaires des Seance de l'Academie des Sciences,Paris,1882,94:1456-1459.
    [29]Rogers C and Shadwick W,“Backlund transformations and applications”,in:Mathematics in science and engineering,161,Academic,New York,(1982).
    [30]Hu X B and Clarkson P A,Rational solutions of a differential-difference KdV equation,the Toda equation and the discrete KdV equation,J.Phys.A,1995,28:5009-5015.
    [31]Wahlquist H D and Estabrook F B,Backlund transformations for solutions of the Korteweg-de Vries equation,Phys.Rev.Lett.,1973,31:1386-1390.
    [32]谷超豪等著,孤立子理论与作用,浙江科技出版社,(1990).
    [33]李翊神,孤子与可积系统,上海教育出版社,(1999).
    [34]Hu X B and Liu Q P,New Darboux transformation for Hirota-Sastuma coupled KdV system,Chaos,Solitons & Fractals,2003,17:921-928.
    [35]Li Y S and Zhang J E,The multiple-soliton solution of the Camassa-Holm equation,Proc.R.Soc.Lond.A 2004,460:2617-2627.
    [36]Zheng Y B,New factorization of the Kaup-Newell hierarchy,Phys.D,1994,73:171-188.
    [37]曾云波,带附加项的AKNS方程族的Darboux变换。数学物理学报,1995,15:337-345.
    [38]Zheng Y B,Ma W X,and Shao Y,Two binary Darboux transformations for the KdV hierarchy with self-consistent sources,J.Math.Phys.,2001,42:2113-2128.
    [39]谷超豪,胡和生,周子翔,孤立子理论中的达布变换及其几何作用,上海科学技术出版社,(1999).
    [40]Hirota R,A new form of Backlund transformations and its relation to inverse scattering problem,Prog.Theor.Phys.,1974,52:1498-1512.
    [41]陈登远,Backlund变换与N-孤子解,全国第三届孤立子与可积系统讨论会,郑州大学,(2001).
    [42]唐晓艳,2+1维非线性系统的局域激发和对称性研究,上海交通大学博士学位论文,2004.
    [43]Ablowitz M J,Ramini A,and Segur H,A connection between nonlinear evolution equations and ordinary differential equations of P-type.Ⅰ,Ⅱ,J.Math.Phys.,1980,21:715-721;1006-1015.
    [44]Weiss J,Backlund transformation and the Painlevé property,J.Math.Phys.,1986,27:1296-1305.
    [45]Newell A C,Ratiu T,Tabor M,and Zeng Y B,Proc.Int.Conf.Nonlinear Dynamical System,Montreal,(1986).
    [46]Musette M and Conto R,Algorithmic method for deriving Lax Pairs from the invariant Painlevéanalysis of nonlinear partial differential equations,J.Math.Phys.,1991,32:1450-1457.
    [47]Weiss J,Backlund transformation and the Painlevé property,J.Math.Phys.,1986,27:1293-1305.
    [48]Hirota R,Exact soliton of the KdV equation for multiple collisions of solitons,Phys.Rev.Lett.,1971,27:1192-1194.
    [49]Oishi S,A method of analyzing soliton equations by bilinearization,J.Phys.Soc.Jpn.,1980,48:639-646.
    [50]Nakamura A,Simple similarity-type multiple-decay-mode solution of the two-dimensional KdV equation,Phys.Rev.Lett.,1989,46:751-753.
    [51]Hirota R and Ito M,Resonance of solitons in one dimension,J.Phys.Soc.Jpn.,1983,52:744-748.
    [52]Jaworski M and Zagrodzinski J,Positon solutions of the sine-Gordon equation,Chaos,Solitons & Fractais,1995,5:2229-2234.
    [53]Chen D Y,Zhang D J,and Deng S F,The novel multisoliton solutions of the mKdV-sine-Gordon equation,J.Phys.Soc.Jpn.,2002,71:658-659.
    [54]Zhang Y,New Nosoliton solution for the Sawada-Kotera equation,Journal of Shanghai University (English Edition),2004,8:132-133.
    [55]Zhang Y and Chen D Y,The novel multi-solitary wave solution for the fifth order KdV equation,Chin.Phys.,2004,13:1606-1810.
    [56]Satsuma J and Ablowitz M J,Two dimensional lumps in nonlinear dispersive systems,J.Math.Phys.,1979,20:1496-1503.
    [57]Hu X B,Rational solutions of integrable equations via nonlinear superposition formula,J.Phys.A,1997,30:8225-8240.
    [58]Matsuno Y,A new proof of the rational N-soliton solution for the Kadomtsev-Petviashvili equation,J.Phys.Soc.Jpn.,1989,58:67-72.
    [59]Hietarinta J and Hirota R,Multidromion solutions to the Davey-Stewartson equation,Phys.Lett.A,1990,145:237-244.
    [60]Gilson C R,Resonant behaviour in the Davey-Stewartson equation,Phys.Lett.A,1992,161:423-428.
    [61]Chow K W,etc.,Positon-like solutions of nonlinear evolution equations in(2+1) dimensions,Chaos,Solitons & Fractals,1998,9:1901-1912.
    [62]Chow K W,Coalescence of ripplons,breathers,dromions and dark solitons,J.Phys.Soc.Jpn.,2001,70:666-677.
    [63]Hietarinta J,Gauge symmetry and the generalization of Hirota's bilinear method,J.Nonlin.Math.Phys.,1996,3:260-265.
    [64]Li Z B and Wang M L,Travelling wave solutions to the two-dimensional KdV-Burgers equation,J.Phys.A:Math.Gen.,1993,26:6027-6032.
    [65]Wang M L,Zhou Y B,and Li Z B,Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics,Phys.Lett.A,1996,216:67-75.
    [66]Yah Z Y and Zhang H Q,Multiple soliton-like and periodic-like solutions to the generalization of integrable of(2+1)-dimensional dispersive long-wave equations,J.Phys.Soc.Jpn.,2002,71:437-442.
    [67]Lou S Y and Chen L L,Formally variable separation approach for nonintegrable models,J.Math.Phys.,1999,40:6491-6500.
    [68]Lan H B and Wang K L,Exact solutions for two nonlinear equations,J.Phys.A:Math.Gen.,1990,23:4097-4106.
    [69]Huang G X,Lou S Y,and Dai X X,Exact and explicit solitary wave solutions to a model equation for water waves,Phys.Lett.A,1989,139:373-374.
    [70]Gao Y T and Tian B,Generalized hyperbolic-function method with computerized symbolic computation to construct the solitonic solutions to nonlinear equations of mathematical physics,Comput.Phys.Commun.,2001,133:158-164.
    [71]闫振亚,张鸿庆,具有三个任意函数的变系数KdV-mKdV方程的精确类孤子解,物理学报,1999,48:1957-1961.
    [72]Lu Z S and Zhang H Q,On a further extended tanh method,Phys.Lett.A,2003,307:269-273.
    [73]刘式适,傅遵涛,刘式达,赵强,Jacobi椭圆函效展开法及其在求解非线性波动方程中的应用,物理学报,2001,50:2068-2073.
    [74]Fan E G and Dai H H,A direct approach with computerized symbolic computation for finding a series of travelling waves to nonlinear equations,Comput.Phys.Commun.,2003,153:17-30.
    [75]Lou S Y and Ni G J,The relations among a special type of solutions in some(D+1)-dimensional nonlinear equations,J.Math.Phys.,1989,30:1614-1620.
    [76]Bluman G W and Cole J D,Similarity methods for differential equations,Springer-Verlag,Berlin,(1974).
    [77]Bluman G W and Kumei S,Symmetries and differential equations,Springer-Verlag,Berlin,(1989).
    [78]Olver P J,Applications of Lie Groups to Differential Equations,2nd ed.,Springer-Verlag,New York,(1993).
    [79]Boussinesq J,Théorie de l'intumescencs liquid appelée ondesolitaire ou de translation se propageant dans un canalrectangulaire,Comptes Rendns Acad.Sci.Paris,1871,72:755-759.
    [80]Nishitani T and Tajiri M,On similarity solutions of the Boussinesq equation,Phys.Lett.A,1982,89:379-380.
    [81]Rosenau P and Schwarzmeier J L,On similarity solutions of Bonssinesq-type equations,Phys.Lett.A,1986,115:75-77.
    [82]Quispel G R W,Nijhoff F W,and Capel H W,Linearization of the Boussinesq equation and the modified Boussinesq equation,Phys.Lett.A,1982,91:143-145.
    [83]Clarkson P A and Krnskal M D,New similarity reductions of the Boussinesq equation,J.Math.Phys.,1989,30:2201-2213.
    [84]Clarkson P A,Nonclassical symmetry reductions of the Bonssinesq equation,Chaos,Solitons &Fractals,1995,5:2261-2301.
    [85]Reid G J,Finding abstract Lie symmetry algebras of differential equations without integrating determing equations,Europ.J.Appl.Math.,1991,2:319-340.
    [86]Schwarz F,An algorithm for determining the size of symmetry groups,Computing,1992,49:95-115.
    [87]Hereman W,Review of symbolic software for the computation of Lie symmetries of differential equations,Euromath.Bull.,1994,1:45-79.
    [88]Ma H C,A simple method to generate Lie point symmetry groups of the(3+1)-dimensional Jimbo-Miwa equation,Chin.Phys.Lett.,2005,22:554-557.
    [89]Lou S Y and Ma H C,Non-Lie symmetry groups of(2+1)-dimensional nonlinear systems obtained from a simple direct method,J.Phys.A:Math.Gen.,2005,38:L129-L137.
    [90]Ma H C and Lou S Y,Solutions generated from the symmetry group of the(2+1)-dimensional Sine-Gordon system,Z.Naturforsch.,2005,60a 229-236.
    [91]Lou S Y and Ma H C,Finite symmetry transformation groups and exact solutions of Lax integrable systems,Chaos,Soliton & Fractals,2006,30:804-821.
    [92]Konopelchenko B G and Rogers C,On generalized Loewner systems:Novel integrable equations in 2+1 dimensions,J.Math.Phys.,1993,34:214-242.
    [93]Lou S Y,Localized excitations of the(2+1)-dimensional she-Gordon system,J.Phys.A:Math.Gen.,2003,36:3877-3892.
    [94]Lou S Y,Symmetry analysis and exact solutions of the(2+1)-dimensional sine-Gordon system,J.Math.Phys.,2000,41:6509-6524.
    [95]Clarkson P A,Mansfield E L,and Milne A E,Symmetries and exact solutions of a(2+1)-dimensional sine-Gordon system,Phil.Trans.R.Soc.A,1996,354:1807-1835.
    [96]Zheng C L,Fang J P,and Chen L Q,Localized excitations with and without propagating properties in(2+1)-dimensions obtained by a mapping approach,Chin.Phys.,2005,14:676-682.
    [97]Zheng C L,Fang J P,and Chen L Q,New variable separation excitations of(2+1)-dimensional dispersive long-water wave system obtained by an extended mapping approach,Chaos,Solitons & Fractals,2005,23:1741-1748.
    [98]Wu J,Keollan R,Rudnick I,Observation of a nonpropagating hydrodynamic soliton,Phys.Rev.Lett.,1984,52:1421-1424.
    [99]Fang J P,Li J B,Zheng C L,and Ren Q B,Special conditional similarity reductions and exact solutions of the(2+1)-dimensional VCBKK system,Chaos,Solitons & Fractals,2008,35:530-535.
    [100]Zheng C L and Fang J P,Solitons with and without propagating behaviors in Broer-Kaup system via an object reduction approach,Chaos,Solitons & Fractals,in press,doi:10.1016/j.chaos.2006.11.029.
    [101]Hu Y H and Zheng C L,Objective reduction solutions for the(2+1)-dimensional higher-order Broer-Kaup system,(submission).
    [102]Huang D J and Zhang H Q,Variable-coefflcient projective Riccati equation method and its application to a new(2+1)-dimensional simplified generalized Broer-Kaup system,Chaos,Solitons & Fractals,2005,23:601-607.
    [103]Mei J Q and Zhang H Q,New families of soliton and periodic solutions of Bose-Einstein condensation in linear magnetic field and time-dependent laser field,Commun.Theor.Phys.,2005,44:209-212.
    [104]Lin J and Qian X M,The interaction of localized coherent structures for a 2+1 dimensional system,Phys.Lett.A,2003,313:93-100.
    [105]周振江,李志斌,Broer-Kaup系统的达布变换和新的精确解,物理学报,2003,52:262-266.
    [106]Parkes E J,Exact solutions to the two-dimensional Korteweg-de Vries-Burgers equation,J.Phys.A:Math.Gen.,1994,27:L497-L501.
    [107]Fan E G and Hon Y C,Double periodic solutions with Jacobi elliptic functions for two generalized Hirota-Satsuma coupled KdV systems,Phys.Lett.A,2002,292:335-337.
    [108]Zhu J M,Ma Z Y,Fang J P,and Zheng C L,General Jacobian elliptic function expansion method and its applications,Chin.Phys.,2004,13:798-804.
    [109]Ma Z Y and Zheng C L,Two classes of fractal structures for the(2+1)-dimensional dispersive long wave equation,Chin.Phys.,2006,15:45-52.
    [110]Zheng C L,Variable separation solutions of generalized Broer-Kaup system via a projective method,Commun.Theor.Phys.,2005,43:1061-1067.
    [111]Fang J P,Pen Q B,and Zheng C L,New exact solutions and fractal localized structures for the (2+1)-dimensional Boiti-Leon-Pempinelli system,Z.Naturforsch.,2005,60a:245-251.
    [112]范恩贵,齐次平衡法,Weiss-Tabor-Carnevale及Clarkson-Kruskal约化之间的联系,物理学报,2000,49:1409-1412.
    [113]张解放,长水波近似方程的多孤子解,物理学报,1998,47:1416-1420.
    [114]Boiti M,Leon J J P,and Pempinelli F,Spectral transform for a two spatial dimension extension of the dispersive long wave equation,Inverse Problems,1987,3:371-387.
    [115]Paquin G and Winternitz P,Group theoretical analysis of dispersive long wave equations in two space dimensions,Physics D,1990,46:122-138.
    [116]Lou S Y,Symmetries and algebras of the integrable dispersive long wave equations in 2+1dimensional spaces,J.Phys.A:Math.Gen.,1994,27:3235-3243.
    [117]Lou S Y,Painlevé test for the integrable dispersive long wave equation,Phys.Lett.A,1993,176:96-100.
    [118]Tang X Y,Lou S Y,and Zhang Y,Localized exicitations in(2+1)-dimensional systems,Phys.Rev.E.,2002,66:046601-046617.
    [119]Ma Z Y,Liu Y L,and Lu Z M,Some coherent excitations for the(2+1)-dimensional generalized Broer-Kaup system,Z.Naturforsch.,2006,61a:116-124.
    [120]张桂戌,李志斌,段一士,非线性波方程的精确孤立波解,中国科学A,2000,30:1102-1108.
    [121]Yan Z Y,Generalized method and its application in the higher-order nonlinear Schrodinger equation in nonlinear optical fibres,Chaos,Solitons & Frsctals,2003,16:759-766.
    [122]Fu Z T,Liu S D,and Liu S K,New kinds of solutions to Gardner equation,Chaos,Solitons &Fractals,2004,20:301-309.
    [123]Wang Z,Li D S,Lu H F,and Zhang H Q,A method for constructiong exact solutions and application to Benjamin Ono equation,Chin.Phys.,2005,14:2158-2163.
    [124]Verosky J M,Negative powers of Olver recursion operators,J.Math.Phys.,1991,32:1733-1736.
    [125]Nimmo J J C,A class of solutions of the Konopelchenko-Rogers equations,Phys.Lett.A,1992,168:113-119.
    [126]Lou S Y and Hu X B,Infinitely many Lax pairs and symmetry constraints of the KP equation,J.Math.Phys.,1997,38:6401-6427.
    [127]Zhang J F,Meng J P,and Huang W H,A new class of(2+1)-dimensional localized coherent structures with completely elastic and non-elastic interactive properties,Commun.Theor.Phys.,2004,42:161-170.
    [128]Tang X Y and Lou S Y,Folded solitary waves and foldons in(2+1)dimensions,Commun.Theor.Phys.,2003,40:62-66.
    [129]Hu X B,Nonlinear superposition formula of the Novikov-Veselov equation,J.Phys.A:Math.Gen.,1994,27:1331-1338.
    [130]Lou S Y,Tang X Y,and Chen C L,Fractal solutions of the Nizhnik-Novikov-Veselov equation,Chin.Phys.Lett.,2002,19:769-771.
    [131]Athorne C and Nimmo J J C,On the Moutard transformation for integrable partial differential equations,Inverse Probl.,1991,7:809-826.
    [132]Zhang J F,Backlund transformation and variable separation solutions for the generalized Nozhnik-Novikov-Veselov equation,Chin.Phys.,2002,11:651-655.
    [133]Zheng C L,Zhang J F,and Sheng Z M,Chaos and fractals in a(2+1)-dimensional soliton system,Chin.Phys.Lett.,2003,20:331-334.
    [134]Ma Z Y and Hu Y H,Solitons,chaos and fractals in the(2+1)-dimensional dispersive long wave equation,Chaos,Solitons & Fractals,2007,34:1667-1676.
    [135]Wang S,Tang X Y,and Lou S Y,Soliton fission and fusion:Burgers equation and Sharma-Tasso-Olver equation,Chaos,Solitons & Fractals,2004,21:231-239.
    [136]Ma Z Y and Zheng C L,Fission and fusion of localized coherent structures for a higher-order Broer-Kaup system,Commun.Theor.Phys.,2005,43:993-997.
    [137]Ablowitz M J and Clarkson P A,Solitons,nonlinear evolution equations and inverse scattering,Cambridge,England,(1992).
    [138]楼森岳,唐晓艳著,非线性数学物理方法,科学出版社,(2006).
    [139]Lou S Y and Chen L L,Formally variable separation approach for nonintegrable models,J.Math.Phys.,1999,40:6491-6500.
    [140]Qu C Z,Zhang S L,and Liu R C,Separation of variables and exact solutions to quasilinear diffusion equations with the nonlinear source,Phys.D,2000,144:97-123.
    [141]Zhang S L,Lou S Y,and Qu C Z,Variable separation and exact solutions to generalized nonlinear diffusion equations,Chin.Phys.Lett.,2002,19:1741-1744.
    [142]Zhang S L,Lou S Y,and Qu C Z,New variable separation approach:application to nonlinear diffusion equations,J.Phys.A:Math.Gen.,2003,36:12223-12242.
    [143]Zhang S L and Lou S Y,Derivative-dependent functional separation solutions for the Kdv-type equations,Physica A,2004,335:430-444.
    [144]Lou S Y and Lu J Z,Special solutions from variable separation approach:Davey-Stewartson equation,J.Phys.A:Math.Gen.,1996,29:4209-4215.
    [145]Hu H C,Tang X Y,Lou S Y,and Liu Q P,Variable separation solutions obtained from Darboux transformations for the asymmetric Nizhnik-Novikov-Veselov system,Chaos,Solitons & Fractals,2004,22:327-334.
    [146]Tang X Y,Lin J,Qina X M,and Lou S Y,A new kind of localized excitations for a large class of(2+1)-dimensional systems,Int.J.Mod.Phys.B,2003,17:4343-4348.
    [147]Tang X Y and Lou S Y,Variable separation solutions for the(2+1)-dimensional Burgers equations,Chin.Phys.Lett.,2003,3:335-337.
    [148]Chen C L,Tang X Y,and Lou S Y,Exact solutions of(2+1)-dimensional dispersive long wave equation,Phys.Rev.E.,2002,66:036605-036612.
    [149]Lou S Y,Lin J,and Tang X Y,Painlevé integrability and multi-dromion solutions of the(2+1)-dimensional AKNS system,Eur.Phys.J.B.,2001,22:473-478.
    [150]Clarkson P A and Mansfield E L,On a shallow water wave equation,Nonlinearity,1994,7:975-978.
    [151]沈守枫,(1+1)维广义的浅水波方程的变量分离解和孤立子激发模式,物理学报,2006,55:1016-1022.
    [152]Wu X F,Zhu J M and Ma Z Y,Interaction between two folded solitary waves for a modified Broer-Kaup system,Chin.Phys.,2005,14:2395-2401.
    [153]Zhang S L,Wu B,and Lou S Y,Palnlevé analysis and special solutions of generalized Broer-Kaup equations,Phys.Lett.A,2002,300:408-48.
    [154]Broer L J F,Approximate equations for long wave equations,Appl.Sci.Res.,1975,31:377-395.
    [155]Kaup D J,A high-order water-wave and method for solving it,Prog.Theor.Phys.,1975,54:296-308.
    [156]Huang D J and Zhang H Q,Variable-coefficient projective Riccati equation method and its application to a new(2+1)-dimensional simplified generalized Broer-Kaup system,Chaos,Solitons & Fractals,2005,23:601-607.
    [157]Lin J and Li H M,Painlevé integrability and abundant localized structures of(2+1)-dimensional Higher-Order Broer-Kanp system,Z.Naturforsch.,2002,57a:929-936.
    [158]Boiti M,Leon J J P,and Pempinelli F,Integrable two-dimensional generalisation of the sineand sinh-Gordon equations,Inverse Problems,1987,3:37-50.
    [159]Lü Z S and Zhang H Q,Soliton like and multi-soliton like solutions of(2+1)-dimensional Boiti-Leon-Pempinelli equation,Chaos,Solitons & Fractals,2004,19:527-531.
    [160]Ma Z Y,Zhu J M,and Zheng C L,New fractal localized structures in Boiti-Leon-Pempinelli system,Commun.Theor.Phys.,2004,42:521-523.
    [161]郑春龙,方建平,陈立群,(2+1)维Boiti-Leon-Pempinelli系统的钟状和峰状圈孤子,物理学报,2005,54:1468-1475.
    [162]Ma Z Y,Zhu J M,and Zheng C L,Fractal localized structures related to Jacobian elliptic functions in the higher-order Broer-Kaup system,Chin.Phys.,2004,13:1382-1385.
    [163]Ma Z Y and Zheng C L,Fission and fusion of localized coherent structures for a higher-order Broer-Kaup system,Commun.Theor.Phys.,2005,43:993-997.
    [164]Ma Z Y,Wu X F,and Zhu J M,Multisoliton excitations for the Kadomtsev-Petviashvili equation and the coupled Burgers equation,Chaos,Solitons & Fractals,2007,31:648-657.
    [165]Kadomtsev B B and Petviashvili V I,On the stability of solitary waves in weakly dispersive media,Sov.Phys.Dokl.,1970,15:539-541.
    [166]Ma W X,The algebraic structure of zero curvature representations and application to coupled KdV systems,J.Phys.A:Math.Gen.,1993,26:2573-2586.
    [167]Ying J P and Lou S Y,Multilinear variable separation approach in(3+1)-dimensionas:the Burgers equation,Chin.Phys.Lett.,2003,20:1448-1451.
    [168]Toda M,Theory of nonlinear lattices,Springer Verlag,Berlin,Germany,(1981).
    [169]Fermi E,Pasta J,and Ulam S,Collected papers of Enrico Fermi,Chicago University Press,Chicago,(1965).
    [170]Hereman W,Review of symbolic software for Lie symmetry analysis,Math.Comput.Modelling,1997,25:115-132.
    [171]Ma Z Y,Zhu J M,and Zheng C L,Solitary wave and periodic solutions for the relativistic Toda lattices,Commun.Theor.Phys.,2005,43:27-30.
    [172]Suris Y B,New integrable systems related to the relativistic Toda lattice,J.Phys.A:Math.Gen,1997,30:1745-1761.
    [173]Ablowitz M J and Ladik F J,A nonlinear difference scheme and inverse scattering,Stud.Appl.Math.,1976,55:213-229.
    [174]Kajiwara K and Satsuma J,The conserved quantities and symmetries of the two-dimensional Toda lattice hierarchy,J.Math.Phys.,1991,32:506-514.
    [175]Suris Y B,Miura transformations for Toda-type integrable systems,with applications to the problem of integrable discretizations,Department of Mathematics,Technical University of Berlin,Berlin,Germany,(2001).
    [176]Wang Z X and Guo D R,Introduction to special function,Peking University Press,Beijing,(2O00).
    [177]Tsuchida T,Ujino H,and Wadati M,Integrable semi-discretization of the coupled modified KdV equations,J.Math.Phys.,1998,39:4785-4813.
    [178]Wu X F,Zhu J M,and Ma Z Y,Discrete doubly periodic and solitary wave solutions for the semi-discrete coupled mKdV equations,Chin.Phys.,2007,16:2159-2166.
    [179]Wu X F,Ge H L,and Ma Z Y,Exact discrete soliton solutions of the nonlinear differential-difference equations,Chaos,Solitons & Fractals,2007,34:940-946.
    [180]Baldwin D,Goktas U,and Hereman W,Symbolic computation of hyperbolic tangent solutions for nonlinear differential-difference equations,Comput.Phys.Commun.,2004,162:203-217.
    [181]Zhu J M and Ma Z Y,Exact solutions for the cubic-quintic nonlinear Schroinger equation,Chaos,Solitons & Fractals,2007,33:958-964.
    [182]Zhang W,Wright E M,Pu H,and Meystre P,Fundamental limit for integrated atom optics with Bose-Einstein condensates,Phys.Rev.A,2003,68:023605-023610.
    [183]Adomian G and Rach R,A new algorithm for matching boundary conditions in decomposition solutions,Appl.Math.Comput.,1993,57:61-68.
    [184]Wazwaz A M,Partial differential equations:Methods and applications,Balkema,Rotterdam,(2002).
    [185]Rach R,On the Adomian(decomposition) method and comparisons with Picard's method,J.Math.Anal.Appl.1987,128:480-483.
    [186]Edwards J Y,Roberts J A,and Ford N J,Technical report No.309,Manchester Center of Computational Mathematics,Manchester,(1997).
    [187]Wazwaz A M,A comparison between Adomian decomposition method and Taylor series method in the series solutions,Appl.Math.Comput.,1998,97:37-44.
    [188]Geyikli T and Kaya D,Comparison of the solutions obtained by B-splins FEM and ADM of KdV equation,Appl.Math.Comput.,2005,169:146-156.
    [189]Gedalin M,Scott T C,and Band Y B,Optical solitary waves in the higher order nonlinear Schrodinger equation,Phys.Rev.Lett.,1997,78:448-451.
    [190]Palacios S L,Guinea A,Fernández-Díaz J M,and Crespo R D,Dark solitary waves in the nonlinear Schrodinger equation with third order dispersion,self-steepening,and self-frequency shift,Phys.Rev.E,1999,60:45-47.
    [191]E1-Sayed S M and Kaya D,A numerical solution and an exact explicit solution of the NLS equation,Appl.Math.Comput.,2006,172:1315-1322.
    [192]Abramowitz M and Stegun I A,Handbook of mathematical functions with formulsa,graphs and mathematical tables,Dover,New York,(1972).