时域有限差分法中完全匹配层的实现算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1966年K. S. Yee提出时域有限差分法(FDTD)以来,FDTD方法中的重要组成部分—吸收边界条件的研究就一直是研究热点。目前,效果最好的吸收边界条件是完全匹配层(PML)。完全匹配层是数学上在FDTD区域截断边界处虚拟设置一种特殊介质层,通过合理地选择PML的本构参数,能够使FDTD计算域的外行电磁波无反射地穿过分界面而进入PML层,并且无反射条件与外行电磁波的入射角、极化和频率都无关;由于PML层为有耗介质,进入PML层的透射波将迅速衰减。迄今为止,有三种完全匹配层方案:(1)Berenger的分裂场完全匹配层。(2)拉伸坐标完全匹配层(SC-PML)。(3)各向异性完全匹配层(APML或者UPML)。后来,为了吸收低频隐失波,提出了复频率偏移完全匹配层(CFS-PML)。本文的主要内容是研究各种PML公式的非分裂场形式实现方法。针对已有的PML算法中存在的缺点,提出了一些新颖并且有效的PML算法,并且对所提出的PML新算法进行了数值算例验证。
     本文的主要研究内容及创新点如下:
     1.基于SC-PML公式,利用在时域离散微分方程的方法和Z变换方法(包括双线性变换(Bilinear Transform)和零极点匹配Z变换(Matched Z-Transform)),提出了三种以非分裂场方式实现PML的新算法。它们的创新点是在三维PML的角和一些棱上每个元胞每个场分量的更新仅需要一个辅助变量。然而,在此之前所有的SC-PML实现方法在这些PML区域上都需要两个辅助变量。所以,三种SC-PML新算法具有节约内存的优点。特别地,三种SC-PML新算法在二维和一维情况下更简单和有效。这是因为在二维情况下两个横向场分量(例如,在TMz模式下的H_x和H_y两个场分量)的更新方程不需要辅助变量,而在一维情况下两个场分量的更新方程都不需要辅助变量,从而既节约内存又节约计算时间。
     2.基于APML公式,利用Z变换方法(包括双线性变换和零极点匹配Z变换)提出了两种实现PML的新算法。与Ramadan利用Z变换方法实现APML的算法相比,本文提出的APML新算法需要的辅助变量和计算步骤少,从而节约了内存和计算时间。
     3.基于带有CFS因子的SC-PML公式,分别利用辅助微分方程(ADE)方法和零极点匹配Z变换方法提出了两种实现CFS-PML的新算法。由于避免了卷积完全匹配层(CPML)所使用的卷积计算,所以两种新算法推导过程更简单,更容易理解。
     4.基于带有CFS因子的APML公式,分别利用零极点匹配Z变换和双线性变换方法提出了4种实现CFS-PML的新算法。
     5.利用由Sullivan所引入的Z变换方法提出了一种新的非线性FDTD公式,并结合SC-PML新算法给出了完整的更新方程组。
     6.提出了一种针对高阶差分方程的最小化内存新算法。
Since K. S. Yee developed the finite difference time domain (FDTD) method in 1966, absorbing boundary conditions (ABCs), as an important component in the FDTD, has always been the focus of extensive and deep research. Nowadays, the perfectly matched layer (PML) ABC has proven to be the most efficient technique. The PML is an artificial lossy material in mathematics as an absorber for truncating numerical solution domains in the FDTD computations. By properly setting the constitutive parameters of the PML, outgoing waves in the FDTD computational domains, regardless of arbitrary incidence, polarization, and frequency, propagate without reflection across the interface between the FDTD computational domains and the PML and then are effectively absorbed due to the fact that the PML is lossy. So far, there are three different formulations that have been used for the PML ABC: i) Berenger’s split-field PML, ii) the stretched-coordinate PML (SC-PML), and iii) the anisotropic PML (APML, or uniaxial PML, UPML). In order to efficiently attenuate low frequency and evanescent waves and reduce late-time reflections, the complex frequency shifted PML (CFS-PML) was introduced. The emphasis of this thesis is to research algorithms for implementing various PMLs in unsplit-field formulations. As there are a few drawbacks in the published PMLs’implementations, some novel and efficient algorithms for implementing the PMLs are proposed and validated by numerical tests in this dissertation. The main achievements and originality are listed as follows:
     1. Based on the SC-PML formulations, three efficient and unsplit-field algorithms for implementing the PML are proposed by using the method of discretizing differential equations in time-domain and the Z-transform methods (including the bilinear transform and the matched Z-transform). As compared with the published SC-PML-based algorithms which require two auxiliary variables per field component per cell in all corners and some edges of the three-dimensional PML regions, the novelty of the proposed algorithms is that only one auxiliary variable is required in these PML regions and then memory is saved. Especially in two-dimensional (2-D) and one-dimensional (1-D) cases, three new algorithms are much simpler so that they save both memory and computational time due to the fact that they require no auxiliary variable to update two transverse field components (e.g. H_x and H_y in the TM z mode) in all 2-D PML regions and to update two field components in 1-D PML regions.
     2. Based on the APML formulations, two novel algorithms are proposed by using the Z-transform methods (including the bilinear transform and the matched Z-transform). As compared with the Z-transform-based APML algorithms by Ramadan, the main advantage is that the proposed algorithms require less auxiliary variables and computational steps so that their implementations save both memory and computational time.
     3. Based on the SC-PML formulations with the CFS factor, two new algorithms for implementing the CFS-PML are proposed by using the auxiliary differential equation (ADE) method and the matched Z-transform method. The proposed algorithms are simpler and more suitable for understanding than the convolutional PML (CPML) as they need no computations of the convolutional terms.
     4. Based on the APML formulations with the CFS factor, four new algorithms for implementing the CFS-PML are proposed by using the bilinear transform and the matched Z-transform methods.
     5. A new nonlinear FDTD algorithm is proposed by using the Z-transform method introduced by Sullivan. A set of field-updated equations for truncating 1-D nonlinear FDTD lattices are given by combining the proposed nonlinear FDTD formulations and new SC-PML formulations.
     6. A new memory-minimized algorithm for high-order difference equations is proposed.
引文
[1] R. F. Harrington, J. R. Mautz, Theory of characteristic modes for conducting bodies, IEEE Trans. on AP., 1971, 19(6): 622~628
    [2] R. F. Harrington, Field computation by moment methods, New York: McGraw -Hill, 1968
    [3] Dauglas H. Norrie, Gerard DeVries, The Finite Element Method: Fundamentals and Applications, London: Academic Press, 1973
    [4] O. C. Zienkiewicz, R. L. Taylor, The finite element mothod ( 4th edition), New York: McGraw-Hill, 1989
    [5] C. A. Brebbia, S. Walker, Boundary element method in engineering, Newnes- Buterworths, London, 1980
    [6] P. K. Banererjee, R. Butterfield, Boundary element methods in engineering sciences. McGraw-Hill, London, 1981
    [7] K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell's equation in isotropic media, IEEE Trans. AP, 1966, 14(5): 302~307
    [8] A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Norwood, MA: Artech House, 2005, 3nd edn.
    [9] A. Taflove, Advances in Computational Electrodynamics: The Finite Difference Time Domain, Boston: Artech House, 1998, 263~340
    [10] A. Taflove, Review of the formulation and applications of the Finite-Difference Time-Domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures, Wave Motion, 1988, 10: 547~582
    [11] 葛德彪, 闫玉波, 电磁波时域有限差分方法, 西安: 西安电子科技大学出版社, 2002
    [12] 王长清,祝西里,电磁场计算中的时域有限差分法, 北京: 北京大学出版社, 1994
    [13] 高本庆,时域有限差分法,北京:国防工业出版社,1995
    [14] 胡来平,刘占军,FDTD 方法中的吸收边界条件,现代电子技术,2003,9: 30~32
    [15] 张清河,时域有限差分(FDTD)法中的吸收边界条件,三峡大学学报(自然科学版),2004,26(5): 464~466
    [16] B. Engquist, A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comput., 1977, 31(139): 629~651
    [17] G. Mur, Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations, IEEE Trans. Electomagn.Compat., 1981, EMC-23(4): 377~382
    [18] Z. P. Liao, H. L. Wong, B. P. Yang and Y. F. Yuan, A transmitting boundary for transient wave analysis, Scientia Sinica(series A), 1984, 27(10): 1063~1076
    [19] J. Y. Fang, K. K. Mei, A super-absorbing boundary algorithm for numerical solving electromagnetic problems by time-domain finite-difference method, 1988 IEEE AP-S International Symposium, Syrscus, NY, USA, 1988, June 6-10, 427~475
    [20] J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, 1994, 114(2): 185~200
    [21] J. P. Berenger, Three-dimensional perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, 1996, 127(2): 363~379
    [22] W. C. Chew, W. H. Weedon, A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates, Microwave and Optical Technology Letters, 1994, 7(13): 599~604
    [23] Z. S. Sacks, D. M. Kingsland, R. Lee, J. F. Lee, A perfectly matched anisotropic absorber for use as an absorbing boundary condition, IEEE Trans. Antennas and Propagation, 1995, 43(12): 1460~1463
    [24] S. D. Gedney, An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices, IEEE Trans. Antennas and Propagation, 1996, 44(12): 1630~1639
    [25] J. D. Moerloose, M. A. Stuchly, Behavior of Berenger’s ABC for evanescent waves, IEEE Microwave and Guided Wave Letters, 1995, 5(10): 344~346
    [26] J. D. Moerloose, M. A. Stuchly, Reflection analysis of PML ABC’s for low-frequency applications, IEEE Microwave and Guided Wave Letters, 1996, 6(4): 177~179
    [27] J. P. Berenger, Evanescent waves in PML’s: origin of the numerical reflection in wave-structure interaction problems, IEEE Trans. Antennas and Propagation, 1999, 47(10): 1497~1503
    [28] M. Kuzuoglu, R. Mittra, Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers, IEEE Microwave and Guided Wave Letters, 1996, 6(12): 447~449
    [29] Tong-Bin Yu, Bi-Hua Zhou, Bin Chen, An unsplit formulation of the Berenger’s PML absorbing boundary condition for FDTD meshes, IEEE Microwave and Wireless Components Letters, 2003, 13(8): 348~350
    [30] Carey M. Rappaport, Interpreting and improving the PML absorbing boundary condition using anisotropic lossy mapping of space, IEEE Trans. Magnetics, 1996, 32(3): 968~974
    [31] J. A. Roden, S. D. Gedney, Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media, Microwave and Optical Technology Letters, 2000, 27(5): 334~339
    [32] O. Ramadan, Auxiliary differential equation formulation: An efficient imple- mentation of the perfectly Matched Layer, IEEE Microwave and Wireless Components Letters, 2003, 13(2): 69~71
    [33] O. Ramadan, A. Y. Oztoprak, An efficient implementation of the PML for truncating FDTD domains, Microwave and Optical Technology Letters, 2003, 36(1): 55~60
    [34] D. M. Sullivan, Frequency-dependent FDTD methods using Z transforms, IEEE Trans. Antennas and Propagation, 1992, 40(10): 1223~1230
    [35] D. M. Sullivan, Z-Transform theory and the FDTD Method, IEEE Trans. Antennas and Propagation, 1996, 44(1): 28~34
    [36] O. Ramadan, A. Y. Oztoprak, DSP techniques for implementation of perfectly matched layer for truncating FDTD domains, Electronics Letters, 2002, 38(5): 211~212
    [37] O. Ramadan, A. Y. Oztoprak, Z-transform implementation of the perfectly matched layer for truncating FDTD domains, IEEE Microwave and Wireless Components Letters, 2003, 13(9): 402~404
    [38] O. Ramadan, Generalized 3-D DSP-based FDTD algorithm for modelling the APML, Electrical Engineering, 2006, 88: 327~335
    [39] O. Ramadan, Digital Filtering Technique for the FDTD implementation of the anisotropic perfectly matched layer, IEEE Microwave and Wireless Components Letters, 2003, 13(8): 340~342
    [40] O. Ramadan, Z-transform-based FDTD algorithm for anisotropic perfectly matched layer, Electronics Letters, 2003, 39(22): 1570~1572
    [41] O. Ramadan, Unsplit-Field FDTD implementations of the PML using DSP algorithms, 2003 IEEE International Symposium on Electromagnetic Compatibility (EMC) (IEEE Cat. No.03EX666), 2003, 2: 856~858
    [42] C. M. Rappaport, Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space, medium from modified Maxwell’s equations with stretched coordinates, IEEE Microwave and Guided Wave Letters, 1995, 5(3): 90~92
    [43] M. Ozkar, G. Lazzi, A. Mortazawi, A Modified unsplit PML formulation for evanescent mode absorption in waveguides, IEEE Microwave and Wireless Component Letters, 2003, 13(6): 220~222
    [44] M. A. Gribbons, W. P. Pinello, A. C. Cangellaris, A stretched coordinate technique for numerical absorption of evanescent and propagating waves inplanar waveguiding structures, IEEE Trans. Microwave Theory and Techniques, 1995, 43(12): 2883~2889
    [45] J. Y. Fang, Z. H. Wu, Generalized perfectly matched layer for the absorption of propagating and evanescent waves in lossless and lossy media, IEEE Trans. Microwave Theory and Techniques, 1996, 44(12): 2216~2222
    [46] C. L. Li, C. W. Liu, S. H. Chen, Optimization of a PML absorber’s conductivity profile using FDTD, Microwave and Optical Technology Letters, 2003, 37(5): 380~383
    [47] S. Kim, J. Choi, Optimal design of PML absorbing boundary condition for improving wide-angle reflection performance, Electronics Letters, 2004, 40(2): 104~106
    [48] E. A. Marengo, C. M. Rappaport, E. L. Miller, Optimum PML ABC conductivity profile in FDTD, IEEE Trans. Magnetics, 1999, 35(3): 1506~1509
    [49] G. Lazzi, O. P. Gandhi, On the optimal design of the PML absorbing boundary condition for the FDTD code, IEEE Trans. Antennas and Propagation, 1997, 45(5): 914~916
    [50] G. Lazzi, O. P. Gandhi, Inversion theory as applied to the optimisation of conductivity profile for PML absorbing boundary condition for FDTD code, Electronics Letters, 1997, 33(6): 502~503
    [51] J. Y. Fang, Z. H. Wu, Closed-form expression of numerical reflection coefficient at PML interfaces and optimization of PML performance, IEEE Microwave and Guided Wave Letters, 1996, 6(9): 332~334
    [52] Z. H. Wu, J. Y. Fang, High-performance PML algorithm, IEEE Microwave and Guided Wave Letters, 1996, 6(9): 335~337
    [53] S. C. Winton, C. M. Rappaport, Specifying PML conductivities by considering numerical reflection dependencies, IEEE Trans. Antennas and Propagation, 2000, 48(7): 1055~1063
    [54] J. S. Juntunen, N. V. Kantartzis, T. D. Tsiboukis, Zero reflection coefficient in discretized PML, IEEE Microwave and Wireless Components Letters, 2001, 11(4): 155~157
    [55] Y. S. Rickard, N. K. Georgieva, Problem-independent enhancement of PML ABC for the FDTD method, IEEE Trans. Antennas and Propagation, 2003, 51(10): 3002~3006
    [56] Y. S. Rickard, N. K. Georgieva, Enhancing the PML absorbing boundary conditions for the wave equation, IEEE Trans. Antennas and Propagation, 2005, 53(3): 1242~1246
    [57] K. P. Prokopidis, N. V. Kantartzis, T. D. Tsiboukis, Performance optimization of the PML absorber in lossy media via closed-form expressions of the reflectioncoefficient, IEEE Trans. Magnetics, 2003, 39(3): 1234~1237
    [58] L. Lu, R. L. Li, S. M. Xiong, G. Z. Ni, A New generalized perfectly matched layer for terminating 3-D lossy media, IEEE Trans. Magnetics, 2002, 38(2): 713~716
    [59] Q. H. Liu, An FDTD algorithm with perfectly matched layer for conductive media, Microwave and Optical Technology Letters, 1997, 14(2): 134~137
    [60] G. X. Fan, Q. H. Liu, A well-posed PML absorbing boundary condition for lossy media, 2001 IEEE Antennas and Propagation Society International Symposium, AP-S International Symposium (Digest), 2001, 3: 2~5
    [61] G. X. Fan, Q. H. Liu, A strongly well-posed PML in lossy media, IEEE Antennas and Wireless Propagation Letters, 2003, 2: 97~100
    [62] L. Cirio, A. Richardson, O. Picon, Accurate development of the UPML absorbing boundary conditions in a 3D-FDTD algorithm for CPW and microstrip line on silicon substrate, Microwave and Optical Technology Letters, 2005, 44 (4): 334~338
    [63] D. M. Sullivan, A simplified PML for use with the FDTD method, IEEE Microwave and Guided Wave Letters, 1996, 6(2): 97~99
    [64] T. Uno, Y. He, S. Adachi, Perfectly matched layer absorbing boundary condition for dispersive medium, IEEE Microwave and Guided Wave Letters, 1997, 7(9): 264~266
    [65] S. D. Gedney, An anisotropic PML absorbing media for the FDTD simulation of fields in lossy and dispersive media, Electromagnetics, 1996, 16(3): 399~415
    [66] D. M. Sullivan, An unsplit step 3-D PML for use with the FDTD method, IEEE Microwave and Guided Wave Letters, 1997, 7(7): 184~186
    [67] F. Rejiba, C. Camerlynck, P. Mechler, FDTD-SUML-ADE simulation for ground-penetrating radar modeling, Radio Science, 2003, 38(1): 5-1~5-13
    [68] X. T. Dong, W. B. Wang, An anisotropic PML absorbing boundary condition using for waves propagating in dispersive medium, 2000 5th International Symposium on Antennas, Propagation, and EM Theory. ISAPE 2000 (IEEE Cat. No.00EX417), 2000, 616~621
    [69] M. W. Chevalier, U. S. Inan, A PML using a convolutional curl operator and a numerical reflection coefficient for general linear media, IEEE Trans. Antennas and Propagation, 2004, 52(7): 1647~1657
    [70] A. P. Zhao, On the matching conditions of different PML schemes applied to multilayer isotropic dielectric media, Microwave and Optical Technology Letters, 2000, 27(2): 129~134
    [71] S. D. Gedney, Comment on “On the matching conditions of different PML schemes applied to multilayer isotropic dielectric media, Microwave and OpticalTechnology Letters”, Microwave and Optical Technology Letters, 2001, 30(4): 289~291
    [72] S. G. Garcia, I. V. Perez, R. G. Martin, B. G.. Olmedo, Applicability of the PML absorbing boundary condition to dielectric anisotropic media, Electronics Letters, 1996, 32(14): 1270~1271
    [73] I. V. Perez, S. G. Garcia, R. G. Martin, Extension of Berenger’s absorbing boundary conditions to match dielectric anisotropic media, IEEE Microwave and Guided Wave Letters, 1997, 7(9): 302~304
    [74] F. L. Teixeira, W. C. Chew, A general approach to extend Berenger’s absorbing boundary condition to anisotropic and dispersive media, IEEE Trans. Antennas and Propagation, 1998, 46(9): 1386~1387
    [75] A. P. Zhao, J. Juntunen, A. V. R?ìs?nen, Material independent PML absorbers for arbitrary anisotropic dielectric media, Electronics Letters, 1997, 33(18): 1535~1536
    [76] A. P. Zhao, J. Juntunen, A. V. R?ìs?nen, Extension of Berenger’s PML absorbing boundary conditions to arbitrary anisotropic magnetic media, IEEE Microwave and Guided Wave Letters, 1998, 8(1): 15~17
    [77] A. P. Zhao, J. Juntunen, A. V. R?ìs?nen, Generalized material-independent PML absorbers for the FDTD simulation of electromagnetic waves in arbitrary anisotropic dielectric and magnetic media, IEEE Microwave and Guided Wave Letters, 1998, 8(2): 52~54
    [78] A. P. Zhao, Generalized-material-independent PML absorbers used for the FDTD simulation of electromagnetic waves in 3-D arbitrary anisotropic dielectric and magnetic media, IEEE Trans. Microwave Theory and Techniques, 1998, 46(10): 1511~1513
    [79] A. P. Zhao, Unsplit-field formulations for generalized material independent PML absorbers, 1998 IEEE MTT-S Microwave Symp. Dig. 1998: 469~472
    [80] A. P. Zhao, J. Juntunen, A. V. R?ìs?nen, An efficient FDTD algorithm for the analysis of microstrip patch antennas printed on a general anisotropic dielectric substrate, IEEE Trans. Microwave Theory and Techniques, 1999, 47(7): 1142~1146
    [81] Z. Z. Chen, Comments on “Generalized material-independent PML absorbers for the FDTD simulation of electromagnetic waves in arbitrary anisotropic dielectric and magnetic media”, IEEE Microwave and Guided Wave Letters, 1999, 9(5): 201~202
    [82] A. P. Zhao, J. Juntunen, A. V. R?ìs?nen, Authors’ Reply to Comments on “Generalized material-independent PML absorbers for the FDTD simulation of electromagnetic waves in arbitrary anisotropic dielectric and magnetic media”, IEEE Microwave and Guided Wave Letters, 1999, 9(5): 203~204
    [83] S. G. Garcia, J. Juntunen, R. G. Martin, A. P. Zhao, B. G.. Olmedo, A. Raisanen, A unified look at Berenger’s PML for general anisotropic media, Microwave and Optical Technology Letters, 2001, 28(6): 414~416
    [84] J. Xu, J-G Ma, Z. Z. Chen, Nonlinear PML for absorption of nonlinear electromagnetic waves, Proc. IEEE MTT-S Digest, Denver, CO,1997: 1381~1384
    [85] J. Xu, J-G Ma, Z. Z. Chen, Numerical validations of a nonlinear PML scheme for absorption of nonlinear electromagnetic waves, IEEE Trans. Microwave Theory and Techniques, 1998, 46(11): 1752~1758
    [86] An Ping Zhao, Application of the material-independent PML absorbers to the FDTD analysis of electromagnetic waves in nonlinear media, Microwave and Optical Technology Letters, 1998, 17(3): 164~168
    [87] Z. Z. Chen, J. Xu, J-G Ma, FDTD validations of a nonlinear PML scheme, IEEE Microwave and Guided Wave Letters, 1999, 9(3): 93~95
    [88] M. Fujii, P. Russer, A nonlinear and dispersive APML ABC for FD-TD methods, IEEE Microwave and Wireless Component Letters, 2002, 12(11): 444~446
    [89] M. Fujii, M. Tentzeris, P. Russer, Performance of nonlinear dispersive APML in high-order FDTD schemes, IEEE MTT-S Int. Microwave Symp. ig., Philadelphia, PA., 2003, WE3D-3
    [90] M. Fujii, M. Tahara, I. Sakagami, W. Freude, P. Russer, High-order FDTD and auxiliary differential equation formulation of optical pulse propagation in 2-D Kerr and Raman nonlinear dispersive media, IEEE Journal of Quantum Electronics, 2004, 40(2): 175~182
    [91] M. Fujii, N. Omaki, M. Tahara, I. Sakagami, C. Poulton, W. Freude, P. Russer, Optimization of nonlinear dispersive APML ABC for the FDTD analysis of optical solitons, IEEE Journal of Quantum Electronics, 2005, 41(3): 448~454
    [92] E. P. Kosmidou, T. I. Kosmanis, T. D. Tisboukis, A comparative FDTD study of various PML configurations for the termination of nonlinear photonic bandgap waveguide structures, IEEE Trans. Magnetics, 2003, 39(3): 1191~1194
    [93] E. P. Kosmidou, T. D. Tisboukis, An FDTD analysis of photonic crystal waveguides comprising third-order nonlinear materials, Optical and Quantum Electronics, 2003, 35: 931~946
    [94] O. Ramadan, Unsplit-field PML algorithm for truncating nonlinear FDTD domains, International Journal of Infrared and Millimeter Waves, 2005, 26(8): 1151~1161
    [95] O. Ramadan, Efficient PML formulations for truncating nonlinear FDTD domains, 2005 Workshop on Computational Electromagnetics in Time-Domain, CEM-TD 2005: 100~102
    [96] O. Ramadan, On the accuracy of the nearly PML for nonlinear FDTD domains,IEEE Microwave and Wireless Components Letters, 2006, 16(3): 101~103
    [97] F. L. Teixeira, C. D. Moss, W. C. Chew, J. A. Kong, Split-field and anisotropic- media PML-FDTD implementations for Inhomogeneous media, IEEE Trans. Microwave theory and techniques, 2002, 50(1): 30~35
    [98] F. L. Teixeira, W. C. Chew, General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media, IEEE Microwave and Guided Wave Letters, 1998, 8(6): 223~225
    [99] S. G. Garcia, I. V. Perez, R. G. Martin, B. G. Olmedo, Extension of Berenger’s PML for Bi-isotropic media, IEEE Microwave and Guided Wave Letters, 1998, 8(9): 297~299
    [100] X. T. Dong, X. S. Rao, Y. B. Gan, B. Guo, W. Y. Yin, Perfectly matched layer- absorbing boundary condition for left-handed materials, IEEE Microwave and Wireless Components Letters, 2004, 14(6): 301~303
    [101] 孔繁敏,李康,刘新,郭毅锋,波动方程 FDTD 算法的 PML 吸收边界条件的实现与验证,微波学报,2004,20(1):1~5
    [102] Y. Rickard, N. Georgieva, W. P. Huang, A perfectly matched layer for the 3-D wave equation in the time domain, IEEE Microwave and Wireless Components Letters, 2002, 12(5): 181~183
    [103] G. Liu, S. D. Gedney, Perfectly matched layer media for an unconditionally stable three-dimensional ADI-FDTD method, IEEE Microwave and Guided Wave Letters, 2000, 10(7): 261~263
    [104] G. Lazzi, Unconditionally stable D-H FDTD formulation with anisotropic PML boundary conditions, IEEE Microwave and Wireless Components Letters, 2001, 11(4): 149~151
    [105] A. P. Zhao, Uniaxial perfectly matched layer media for an unconditionally stable 3-D ADI-FD-TD method, IEEE Microwave and Wireless Components Letters, 2002, 12(12): 497~499
    [106] S. Wang and F. L. Teixeira, An efficient PML implementation for the ADI-FDTD Method, IEEE Microwave and Wireless Components Letters, 2003, 13(2): 72~73
    [107] A. P. Zhao, Comments on “An efficient PML implementation for the ADI-FDTD Method,” IEEE Microwave and Wireless Components Letters, 2004, 14(5): 248~249
    [108] S. Wang and F. L. Teixeira, Author’s reply by S. Wang and F. L. Teixeira, IEEE Microwave and Wireless Components Letters, 2004, 14(5): 249~250
    [109] S. Schmidt, G. Lazzi, Extension and validation of a perfectly matched layer formulation for the unconditionally stable D-H FDTD method, IEEE Microwave and Wireless Components Letters, 2003, 13(8): 345~347
    [110] O. Ramadan, Unconditionally stable ADI-FDTD implementation of PML for frequency dispersive Debye media, Electronics Letters, 2004, 40(4): 230~232
    [111] O. Ramadan, Unconditionally stable ADI-FDTD Formulations of the APML for frequency-dependent media, IEEE Microwave and Wireless Components Letters, 2004, 14(11): 537~539
    [112] O. Ramadan, Unconditionally stable Nearly PML algorithm for linear dispersive media, IEEE Microwave and Wireless Components Letters, 2005, 15(7): 490~492
    [113] 刘波,高本庆,金林,一种适用于 ADI-FDTD 法的非分裂式完全匹配层,微波学报,2005,21(3):1~4
    [114] J. A. Roden, S. Gedney, An efficient FDTD implementation of the PML with CFS in general media, IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.00CH37118), 2000, 3, pt. 3: 1362-1365,
    [115] S. Gedney, Scaled CFS-PML: It is more robust, more accurate, more efficient, and simple to implement. Why aren’t you using it?, 2005 IEEE Antennas and Propagation Society International Symposium, 2005, 4B: 364~367
    [116] X. T, Dong, W. Y. Yin, Y. B. Gan, Perfectly Matched Layer implementation using bilinear transform for microwave device applications, IEEE Trans. Microwave Theory and Techniques, 2005, 53(10): 3098~3105
    [117] J. P. Berenger, Numerical reflection from FDTD-PMLS: A comparison of the split PML with the unsplit and CFS PMLS, IEEE Trans. Antennas and Propagation, 2002, 50(3): 258~265
    [118] J. P. Berenger, Application of the CFS PML to the absorption of evanescent waves in waveguides, IEEE Microwave and Wireless Components Letters, 2002, 12(6): 218~220
    [119] J. P. Berenger, Application of the CFS PML to the FDTD solution of wave-structure interaction problems, IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450), 2003, 2(2): 984~987
    [120] D. Correia, J. M. Jin, A simple and efficient implementation of CFS-PML in the FDTD analysis of periodic structures, IEEE Microwave and Wireless Components Letters, 2005, 15(7): 487~489
    [121] T. W. Kang, C. Christopoulos, J. Paul, Implementation of the stretched co-ordinate-based PML for waveguide structures in TLM, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2005, 18(2): 107~118
    [122] M. S. Tong, Y. C Chen, M. Kuzuoglu, R. Mittra, An enhanced 2D-FDTD solver for analyzing guided wave structures, 1997 IEEE Antennas and Propagation Society International Symposium, 1997 Digest, 1997, 2: 1002~1005
    [123] M. S. Tong, Y. C Chen, M. Kuzuoglu, R. Mittra, A new anisotropic perfectly matched layer medium for mesh truncation in finite difference time domain analysis, International Journal of Electronics, 1999, 86(9): 1085~1091
    [124] E. Becache, P. G. Petropoulos, S. D. Gedney, On the long-time behavior of unsplit perfectly matched layers, IEEE Trans. Antennas and Propagation, 2004, 52(5): 1335~1342
    [125] D. Correia, J. M. Jin, On the development of a high-order PML, IEEE Trans. Antennas and Propagation, 2005, 53(12): 4157~4163
    [126] D. Correia, J. M. Jin, Performance of regular PML, CFS-PML, and second-order PML for waveguide problems, Microwave and Optical Technology Letters, 2006, 48(10): 2121~2126
    [127] G. R. Zhou, N. N. Feng, X. Li, A digital Filter approach for complex frequency-shifted perfectly matched layer in semivectorial FDTD, IEEE Photonics Technology Letters, 2003, 15(11): 1552~1554
    [128] A. Thiry, F. Costen, Efficient absorbing boundary condition for UWB simulation in frequency dependent ADI-FDTD, 2005 IEEE Antennas and Propagation Society International Symposium, 2005, 1B: 162~165
    [129] S. D. Gedney, G. Liu, J. A. Roden, A. Zhu, Perfectly matched layer media with CFS for an unconditionally stable ADI-FDTD method, IEEE Trans. Antennas and Propagation, 2001, 49(11): 1554~1559
    [130] G. Wang, B. Huang, X. L. Liu, PML implementation in the ADI-FDTD method using bilinear approximation, Microwave and Optical Technology Letters, 2006, 48(5): 957~960
    [131] L. N. Wang, C. H. Liang, L. Li, Unconditionally stable FDTD formulation with CFS-PML boundary condition, 2005 Asia-Pacific Microwave Conference, 2005, 2: 3
    [132] L. N. Wang, C. H. Liang, A new implementation of CFS-PML for ADI-FDTD method, Microwave and Optical Technology Letters, 2006, 48(10): 1924~1928
    [133] 康利鸿,刘克成,周期结构 FDTD 算法的各向异性 PML 边界条件,电子学报,2000,28(12):111~114
    [134] 李清亮,一种新的 PML 构造及其在 FDTD 方法中的应用,电子学报,2002,30(9):1396~1399
    [135] 黄斌科,蒋延生,汪文秉,关于完全匹配层吸收边界条件中差分格式的讨论,微波学报,2003,19(4):1~4
    [136] 刘其凤,吴先良,Z 变换在 PML 中的应用,合肥工业大学学报,2006,29(1):122~125
    [137] 宋铮,沈爱国,邢军,PML 吸收边界条件在微带天线计算中的应用,微波学报,2002,18(3):43~48
    [138] 姚广锋,王积勤,刘刚,采用 PML 的 FDTD 方法对矩形微带天线的研究,现代雷达,2003,11:36~38
    [139] 崔俊海,钟顺时,采用 PML 吸收边界条件的 FDTD 法在分析平面微带结构中的应用,微波学报,2000,16(5):537~541
    [140] 周平,徐善驾,三维 PML 吸收边界条件在微带线不连续性问题分析中的应用,红外与毫米波学报,2001,20(6):451~454
    [141] 文舸一,徐金平,漆一宏,电磁场数值计算的现代方法,河南科学技术出版社,1994
    [142] XiaoLei Zhang, Jiayuan Fang, K. K. Mei, and Yaowu Liu, Calculations of the dispersive characteristics of microstrips by the time-domain finite difference method, IEEE Trans. Microwave theory and techniques, 1988, 36(2): 263~267
    [143] Christopher L. Wagner, and John B. Schneider, Divergent fields, charge, and capacitance in FDTD simulations, IEEE Trans. Microwave theory and techniques, 1998, 46(12): 2131~2136
    [144] R. J. Luebbers, and H. S. Langdon, A simple feed model that reduces time steps needed for FDTD antenna and microstrip calculations, IEEE Trans. Antennas and Propagation, 1996, 44(7): 1000~1005
    [145] David M. Sheen, Sami M. Ali, Mohamed D. Abouzahra, and Jin Au Kong, Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits, IEEE Trans. Microwave theory and techniques, 1990, 38(7): 849~857
    [146] An Ping Zhao, Anti V. Raisanen, and Srba R. Cvetkovic, A fast and efficient FDTD algorithm for the analysis of planar microstrip discontinuities by using a simple source excitation scheme, IEEE Microwave and Guided Wave Letters, 1995, 5(10): 341~343
    [147] An Ping Zhao, Anti V. Raisanen, Application of a simple and efficient source excitation technique to the FDTD analysis of waveguide and microstrip circuits, IEEE Trans. Microwave Theory and Techniques, 1996, 44(9): 1535~1538
    [148] Mikko K. Karkkanen, Efficient excitation of microstrip lines by a virtual transmission line in FDTD, IEEE Trans. Microwave Theory and Techniques, 2005, 53(6): 1899~1903
    [149] 李蓉,张林昌,FDTD 法建模中激励源的选择与设置,铁道学报,2001,23(4):44~47
    [150] 尹家贤,谭怀英,刘克成,毛钧杰,FDTD 中微带线激励源分析,国防科技大学学学报,2000,22(5):60~63
    [151] Deane T. Prescott, Nicholas V. Shuley, Reflection analysis of FDTD boundary condition-Part II: Berenger’s PML absorbing layers, IEEE Trans. Microwave Theory and Techniques, 1997, 45(8): 1171~1178
    [152] D. S. Katz, E. T. Thiele, A. Taflove, Validation and extension to three dimension of the Berenger PML absorbing boundary condition for FD-TD meshes, Microwave and Guided Wave Letters, 1994, 4(8): 268~270
    [153] J. P. Berenger, Perfectly matched layer for the FDTD solution of wave-structure interaction problems, IEEE Trans. Antennas and Propagation, 1996, 44(1): 110~117
    [154] J. C. Veihl, R. Mittra, An efficient implementation of Berenger’s Perfectly matched layer (PML) for Finite-Difference Time-Domain mesh truncation, IEEE Microwave and Guided Wave Letters, 1996, 6(2): 94~96
    [155] J. P. Berenger, Improved PML for the FDTD solution of wave-structure interaction problems, IEEE Trans. Antennas and Propagation, 1997, 45(3): 466~473
    [156] J. Y. Fang, Z. H. Wu, Generalized perfectly matched layer-an extension of Berenger’s perfectly matched layer boundary condition A simplified PML for use with the FDTD method, IEEE Microwave and Guided Wave Letters, 1995, 5(12): 451~453
    [157] B. Chen, D. G. Fang, B. H. Zhou, Modified Berenger PML absorbing boundary condition for FD-TD meshes, IEEE Microwave and Guided Wave Letters, 1995, 5(11): 399~401
    [158] R. Mittra and U. Pekel, A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves, IEEE Microwave and Guided Wave Letters, 1995, 5(3): 84~86
    [159] Christopher E. Reuter, Rose M. Joseph, Eric T. Thiele, Daniel S. Katz, A. Taflove, Ultrawideband absorbing boundary condition for termination of waveguiding structures in FD-TD simulations, IEEE Microwave and Guided Wave Letters, 1994, 4(10): 344~346
    [160] Carey M. Rappaport, Interpreting and improving the PML absorbing boundary condition using anisotropic lossy mapping of space, IEEE Trans. Magnetics, 1996, 32(3): 968~974
    [161] M. Cai and H. Zhou, Proof of perfectly matched layer conditions in three dimensions, Electronics Letters, 1995, 31(19): 1675~1676
    [162] J. Zhang, Y. Luo, L. Z. Xiong, The improvement of PML approach for the calculation of microwave and millimeter waves circuit, International Journal of Infrared and Millimeter Waves, 2003, 24(3): 367~375
    [163] Z. H. Wu, J. Y. Fang, Numerical implementation and performance of perfectlymatched layer boundary condition for waveguide structures, IEEE Trans. Microwave Theory and Techniques, 1995, 43(12): 2676~2683
    [164] S. Abarbanel, D. Gottlieb, A mathematical analysis of the PML method, Journal of Computational Physics, 1997, 134: 357~363
    [165] T. Li, W. Q. Sui, M. C. Zhou, Extending PML absorbing boundary condition to truncate microstrip line in nonuniform 3-D FDTD grid, IEEE Trans. Microwave Theory and Techniques, 1999, 47(9): 1771~1776
    [166] Nikolaos V. Kantartzis and Theodoros D. Tsiboukis, A comparative study of the Berenger perfectly matched layer, the superabsorption technique and several higher-order ABC's for the FDTD algorithm in two and three dimensional problems, IEEE Trans. Magnetics. 1997, 33(2): 1460~1463
    [167] F. L. Teixeira, W. C. Chew, Complex space approach to perfectly matched layers: a review and some new developments, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2000, 13: 441~455
    [168] W. C. Chew, J. M. Jin, E. Michielssen, Complex coordinate stretching as a generalized absorbing boundary condition, Microwave and Optical Technology Letters, 1997, 15(6): 363~369
    [169] Steven A. Cummer, A simple, nearly perfectly matched layer for general electromagnetic media, IEEE Microwave and Wireless Components Letters, 2003, 13(3): 128~130
    [170] J. P. Berenger, On the reflection from Cummer’s nearly perfectly matched layer, IEEE Microwave and Wireless Components Letters, 2003, 14(7): 334~336
    [171] W. Y. Hu, Steven A. Cummer, The nearly perfectly matched layer is a perfectly matched layer, IEEE Antennas and Wireless Propagation Letters, 2004, 3: 137~140
    [172] F. L. Teixeira, W. C. Chew, M. L. Oristaglio, T. Wang, Perfectly Matched layer and piecewise-linear recursive convolution for the FDTD solution of the 3D dispersive half-space problem, IEEE Trans. Magnetics, 34(5): 2747~2750
    [173] F. L. Teixeira, W. C. Chew, M. Straka, M. L. Oristaglio, T. Wang, Finite-Difference Time-Domain simulation of ground Penetrating radar on dispersive, inhomogeneous, and conductive soils, IEEE Trans. Geoscience and Remote Sensing, 1998, 36(6): 1928~1937
    [174] G. X. Fan, Q. H. Liu, A PML-FDTD algorithm for general dispersive media in GPR and plasma applications, Intl. IEEE/AP-S Symposium Digest, Atlanta, GA, June 1998
    [175] G.. X. Fan, Q. H. Liu, An FDTD algorithm with perfectly matched layers forgeneral dispersive media, IEEE Trans. Antennas and Propagation, 2000, 48(5): 637~646
    [176] L. Zhao, A. C. Cangellaris, A general approach for the development of unsplit-field time-domain implementations of perfectly matched layers for FDTD grid truncation, IEEE Microwave and Guided Wave Letters, 1996, 6(5): 209~211
    [177] L. Zhao, A. C. Cangellaris, GT-PML: generalized theory of perfectly matched layers and its application to the reflectionless truncation of Finite-Difference Time-Domain grids, IEEE Trans. Microwave Theory and Techniques, 1996, 44(12): 2555~2563
    [178] J. R. Wait, On the PML concept: a view from the outside, IEEE Antennas and Propagation Magazine, 1996, 38 (2): 48~51
    [179] G. Ogucu, T. Ege, A new update algorithm in FDTD implementation of anisotropic PML as an absorbing boundary condition, 2000 IEEE Antennas and Propagation Society International Symposium, 2000, 3: 1366~1369
    [180] O.Ramadan, State-space FDTD implementation of anisotropic perfectly matched layer, Electronics Letters, 2003, 39(13): 969~970
    [181] D. M. Sullivan, Digital filtering techniques for use with the FDTD method, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 1999, 12: 93~106
    [182] D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method,IEEE Press, 2000
    [183] D. M. Sullivan, Nonlinear FDTD formulations using Z-transforms, IEEE Trans. Microwave Theory and Techniques, 1995, 43(3): 676~682
    [184] D. M. Sullivan, J. Liu, M Kuzyk, Three-dimensional optical pulse simulation using the FDTD method, IEEE Trans. Microwave Theory and Techniques, 2000, 48(7): 1127~1133
    [185] T. Wang, W. J. Zhang, W. L. Liu, The frequency-dependent FDTD and the digital signal processing, 1999 International Conference on Computational Electromagnetics and Its Applications, 1999. Proceedings. (ICCEA '99), 1999: 48~51
    [186] T. Hruskover, Z. Z. Chen, FD-TD Modeling of magnetized ferrites using Z transforms, IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), 1999, 2: 1324~1327
    [187] W. H. Weedon, C. M. Rappaport, A general method for FDTD modeling of wave propagation in arbitrary frequency-dispersive media, IEEE Trans. Antennas and Propagation, 1997, 45(3): 401~410
    [188] C. M. Rappaport, S. Wu, S. C. Winton, FDTD wave propagation in dispersivesoil using a single pole conductivity model, IEEE Trans. Magnetics, 1999, 35(3): 1542~1545
    [189] K. Abdijalilov, H. Grebel, Z-transform theory and FDTD stability, IEEE Trans. Antennas and Propagation, 2004, 52(11): 2950~2954
    [190] P. Kosmas, C. M. Rappaport, E. Bishop, Modeling with the FDTD method for microwave breast cancer detection, IEEE Trans. Microwave Theory and Techniques, 2004, 52(8): 1890~1897
    [191] J. G. Proakis, D.G. Manolakis, Digital signal processing: principles, algorithms and applications, 3rd ed. Prentice Hall International Editions, 1996
    [192] 郑君里,应启珩,杨为理,信号与系统,北京:高等教育出版社,2000
    [193] 丁玉美,高西全,数字信号处理,西安:西安电子科技大学出版社,2001
    [194] P. A. Tirkas, C. A. Balanis, R. A. Renaut, High order absorbing boundary conditions for the finite-difference time-domain method, IEEE Trans. Antennas and Propagation, 1992, 40 (10): 1215~1222
    [195] P. M. Goorjian, A. Taflove, R. M. Joseph, S. C. Hagness, Computational modeling of Femtosecond optical solitons from Maxwell’s equations, IEEE Journal of Quantum Electronics, 1992, 28(10): 2416~2422
    [196] R. M. Joseph, A. Taflove, FDTD Maxwell’s equations models for nonlinear electrodynamics and optics, IEEE Trans. Antennas and Propagation, 1997, 45(3): 364~374
    [197] P. M. Goorjian, A. Taflove, Direct time integration of Maxwell’s equations in nonlinear dispersive media for propagation and scattering of femtosecond electromagnetic solitons, Optics Letters, 1992, 17(3): 180~182
    [198] H. A. Jamid, S. J. Al-Bader, Finite-Difference Time-Domain approach to nonlinear guided waves, Electronics Letters, 1993, 29(1): 83~84
    [199] D. M. Sullivan, The use of Z transform theory for numerical simulation of dispersive and non-linear materials with the FDTD method, IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), 1994, 3: 1450~1453
    [200] H. Maeda, H. Hamada, K. Yasumoto, Finite Difference Time Domain analysis of nonlinear optical waveguide, IEEE Nonlinear Optics: Materials, Fundamentals and Applications - Conference Proceedings, Materials, Fundamentals and Applications, 1998: 104~106
    [201] R. M. Joseph, S. C. Hagness, A. Taflove, Direct time integration of Maxwell’s equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses, Optics Letters, 1991, 16(18): 1412~1414
    [202] O. P. Gandhi, B. Q. Gao, J. Y. Chen, A frequency-dependent Finite-DifferenceTime-Domain formulation for general dispersive media, 1993, IEEE Trans. Microwave Theory and Techniques, 1993, 41(4): 658~664
    [203] J. A. Pereda, L. A. Vielva, A. Vegas, A. Prieto, State-space approach to the FDTD formulation for dispersive media, IEEE Trans. Magnetics, 1995, 31(3): 1602~1605
    [204] J. L. Young, R. O. Nelson, A summary and systematic analysis of FDTD algorithms for linearly dispersive media, IEEE Antennas and Propagation Magazine, 2001, 43(1): 61~77
    [205] K. P. Prokopidis, E. P. Kosmidou, T. D. Tsiboukis, An FDTD algorithm for wave propagation in dispersive media using higher-order schemes, Journal of Electromagnetic waves and application, 2004, 18(9): 1171~1194
    [206] D. M. Sullivan, A frequency-dependent FDTD method for biological applications, IEEE Transactions on Microwave Theory and Techniques, 1992, 40(3): 532~539
    [207] F. L. Teixeira, W. C. Chew, On causality and dynamic stability of perfectly matched layers for FDTD simulations, IEEE Trans. Microwave Theory and Techniques, 1999, 47(6): 775~785
    [208] R. Luebbers, F. P. Hunsberger, K. S. Kunz, R. B. Standler, M. Schneider, A frequency-dependent Finite-Difference Time-Domain formulation for dispersive Materials, IEEE Trans. Electromagnetic Compatibility, 1990, 32(3): 222~227
    [209] R. J. Luebbers, F. Hunsberger, K. S. Kunz, A frequency-dependent Finite-Difference Time-Domain formulation for transient propagation in plasma, IEEE Trans. Antennas and Propagation, 1991, 39(1): 29~34
    [210] R. J. Luebbers, F. Hunsberger, FDTD for Nth-order dispersive media, IEEE Trans. Antennas and Propagation, 1992, 40(11): 1297~1301
    [211] D. F. Kelley, R. J. Luebbers, Piecewise linear recursive convolution for dispersive media using FDTD, IEEE Trans. Antennas and Propagation, 1996, 44(6): 792~797
    [212] J. W. Schuster, R. J. Luebbers, An accurate FDTD algorithm for dispersive media using a piecewise constant recursive convolution technique, IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), 1998, 4: 2018~2021
    [213] J. L. Young, Propagation in linear dispersive media: Finite Difference Time-Domain methodologies, IEEE Trans. Antennas and Propagation, 1995, 43(4): 422~426
    [214] M. Okoniewski, M. Mrozowski, M. A. Stuchly, Simple treatment of multi-term dispersion in FDTD, IEEE Microwave and Guided Wave Letters, 1997, 7(5):121~123
    [215] Y. Takayama, Werner Klaus, Reinterpretation of the auxiliary differential equation method for FDTD, IEEE Microwave and Wireless Components Letters, 2002, 12(3): 102~104
    [216] Q. Chen, M. Katsurai, P. H. Aoyagi, An FDTD formulation for dispersive media using a current density, IEEE Trans. Antennas and Propagation, 1998, 46(10): 1739~1746
    [217] S. B. Liu, N. C. Yuan, J. J. Mo, A novel FDTD formulation for dispersive media, IEEE Microwave and Wireless Components Letters, 2003, 13(5): 187~189
    [218] S. A. Cummer, Another new FDTD method for linear dispersive media - but this one’s the best yet, IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), 1995, 1: 208~211
    [219] S. A. Cummer, An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy, IEEE Trans. Antennas and Propagation, 1997, 45(3): 392~400