股指期货交易中操纵行为识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国证券市场已经初具规模,证券市场的国际化进程也大大加快。然而对一个成熟的证券市场而言,不仅要有成熟的市场参与者,良好的市场运作机制,也应该有多样化的投资工具,以满足投资者不同的投资需求。因此,股指期货就成为中国金融市场必不可缺的金融工具。股指期货不仅是市场的迫切需要,也是培育壮大机构投资者,稳定金融市场,促进中国金融市场国际化的需求。但同时也要意识到金融衍生工具是一把“双刃剑”,在发挥规避金融市场风险、增加金融体系风险应对能力的同时,也可能出现利用新的金融衍生工具进行违法违规的活动。因此,需要在发展股指期货的同时,加强股指期货监控,完善制度建设,丰富分析手段,确保其规范运作。
     目前国内外各大交易所对操纵行为的识别方法是基于经验和统计的简单划分,这些方法虽然得到广泛应用,但是实际起到的效果却十分有限,也无法适应日益复杂的监控需求。而基于数据挖掘技术的方法,不仅为股指期货操纵行为识别提供了新的实现手段,而且提高了股指期货操纵行为识别的能力,增强了监控的效率,使以前无法识别的操纵行为无处遁形。
     本文将从股指期货操纵行为问题的特点出发,探索基于数据挖掘的股指期货操纵行为发现的方法,为股指期货操纵行为识别提供新的支撑技术与应用方法。
     本文首先对股指期货操纵问题的识别进行了框架性研究,并针对股指期货交易数据特点,提出了股指期货操纵行为识别的数据-方法-指标体系模型。
     其次,本文从股指期货操纵行为识别的主要指标出发(即价格、成交、委托及资金),分析了其数据特点,指出由于交易数据具有噪声性、非稳定性、多粒度性、二重性和实体差异性,将现有的数据挖掘方法直接运用于股指期货操纵行为发现中时,存在很多不足。为适应交易数据的这些特点,本文在对原有数据挖掘技术改造的基础上,提出了针对股指期货交易主要指标的三种分析方法,即基于小波-BP神经网络-ARMAX/GARCH的股指期货合约价格的时间序列分析模型、成交数据的支持向量机分类模型和委托行为的多分类融合分类模型。这些新的方法分析的内容涵盖了股指期货交易数据的核心部分,同时弥补了现有方法存在的不足,提高了分析的准确性及识别的及时性。
     为适应股指期货时间序列的噪声性和非稳定性,并克服现有分析方法存在的缺点,本文在对股指期货时间序列分析方法改进的基础上,提出了一种基于小波-BP神经网络的分析构架。基于该模型的分析方法,采用了小波分解,并在分解后的各个尺度进行建模,最后通过小波重构对指数序列进行短期预测,提高了股指期货合约价格序列预测的准确性。
     针对股指期货成交数据的多粒度性以及成交数据分析的需求,本文提出在解决噪声、多粒度数据分类问题方面有突出优越性的支持向量机分类方法,引入几何求解方式,提出了支持向量机的切平面解法,根据成交数据直观地对投资者进行分类。
     为了能够客观描述股指期货委托行为所具有的二重性与实体差异性,本文探索建立了多分类器融合分类模型。一方面,该模型采用了具有良好二分类性能的决策树作为分类器,使得该方法能够反映委托行为的二重性特点;另一方面,该模型可以在委托数据空间中使用多个基本分类器,通过分类融合器对这些基本分类器的分类结果进行融合,得出综合的分类结果,从而提高了对投资者属性空间的覆盖能力。考虑到数据中存在的实体差异性,本文采用遗传算法对分类融合器进行优化,数据实验结果极好地反映了该方法的有效性。
     本文的研究成果解决了现有股指期货操纵行为发现中存在的一些问题和不足,同时也为数据挖掘方法在股指期货操纵行为识别的应用上开辟了更广阔的空间。
China stock market has already begun to take shape and its internationalization advancement also is greatly accelerating. However, a mature stock market must not only have mature participants and good operation mechanism, but also must have diverse investment tools to meet investor’s different need. Stock index futures has become an indispensable investment tool in China financial market. It not only satisfies China capital market urgent need, simultaneously also cultivates organization investors, stabilizes financial market, and promotes China financial market towards internationalization. However, stock index futures, as an investment derivative product, is a“double-edged sword”. It can reduce market risk and increase finance system ability to cope with risk, also possibly aggravates destruct capability from financial risk. Therefore, during development of stock index futures, it is necessary to establish monitoring and managing system, to control risk management, and to standardize its operation. At the present, all large stock exchanges are commonly using monitoring methods based on experience and simple statistical division. Although these methods are widely utilized and obtain good effect, they cannot adapt to manipulation behavior and meet the complex analysis demand. A new method based on the data mining technique can carry out more thorough monitoring of stock index futures.
     Embarking from characteristics of manipulation problems of stock index futures, this article explores a method based on data mining to uncover manipulation behavior with stock index futures, and thus, provides a new support technology and application method to monitor stock index futures.
     This article first conducted frame research of manipulation recognition of stock index futures, proposed a data - method - index system model for recognition of stock index futures manipulation behavior.
     Next, starting from major criteria (price, deal, order and fund) for recognition of stock index futures manipulation behavior and analyzing data characteristic of stock index futures, this article has found that, because transaction data has noise, instability, multi-granularity, duality and entity difference, many shortcomings exist when the original data mining method is directly utilized to uncover manipulation behavior during stock index futures transaction. In order to adapt to these characteristics of transaction data, this article modifies the existing data mining technique and proposes three analysis methods when dealing with different transactions: namely (1) stock index futures time series analysis model based on wavelet - BP neural network - ARMAX/GARCH, (2) deal data support vector classification model and (3) order behavior multi-classifier fusion classification model. These new methods have made up the weakness of original method and hence, enhanced the analysis accuracy.
     In order to adapt to the noise and instability of stock index futures time series, and to overcome the shortcomings of the existing analysis method model, this article modified analysis method for stock index futures time series and put forward an analysis framework based on the wavelet - BP neural network. Based on this model, the analysis method has used the wavelet decomposition, and created a model for different wavelength and finally restructured all wavelet in order to carry out short-term forecast and therefore, to enhance series forecast accuracy.
     Regarding to the multi-granularity of and analysis demand of stock index futures transaction data, this article proposed a classification method based on support vector machines. Tangent plane solution of support vector machines is established by introducing geometrical solution. Therefore, investors can be classified based on straightforward transaction data.
     In order to objectively describe duality and entity difference of commission behavior of stock index futures, this article explored and established the multi-classifiers fusion classification model. On one hand, this model utilized decision tree with good performanceas classification method and hence, enabled this method to reflect the dual characteristics of order behavior. On the other hand, this model can use many basic classifiers in the commission data space, fuse their results through the classifier fusions, obtain comprehensive classification result, and therefore, enhance the capability to cover investor attribute space. Considering that entity difference exists in customer data, this article optimized classification fusion using the genetic algorithm. The experiment result has demonstrated that this method is extremely effective.
     Research results in the article solved some existing problems and the insufficiencies in uncovering manipulation behavior with stock index futures and therefore, opened a broader space for application of the data mining method in manipulation behavior recognition of stock index futures.
引文
1 Contracts Traded. Futures Industry. 2006 March/April:16-27
    2国务院证券委员会.《禁止证券欺诈行为暂行办法》.1993年9月2日发布
    3 Allen Franklin and Douglas Gale. Stock-Price Manipulation. the Review of Financial Studies, 1992,5,503-29
    4 Fishel,D.R, Ross, D.T. Should the Law Prohibit“Manipulation”in Financial Market? Harvard Law Review, 1991,105,503-553
    5 John Kose and Ranga Narayanan. Market Manipulation and the Role of Insider Trading Regulations. Journal of Business, 1997,70,217-47
    6 Mahoney Paul G.. The Stock Pools and the Securities Exchange Act. Journal of Financial Economics, 1999,51,343-369
    7 Vila J. L. Simple Games of Market Manipulation. Economics Letters, 1989,29,212-26
    8 Jarrow Robert A.. Market Manipulation. Bubbles, Corners, and Short Squeezes. Journal of Financial and Quantitative Analysis, 1992, 27, 311-36
    9 Bagnoli Mark and Barton L. Lipman, Stock Price Manipulation through Takeover Bids. Rand Journal of Economics, 1996, 27,124–47
    10 Aggarwal, K. Rajesh and Guojun Wu. Stock Market Manipulation-Theory and Evidence. 2002,SSRN Working Paper
    11 Felixson Karl and Anders Pelli. Day end Returns—Stock Price Manipulation. Journal of Multinational Financial Management, 1999,9, 95-127
    12李学.投资者收益、风险和行为研究.深圳证券交易所综合研究所研究报告第46号,2001
    13何基报.证券交易中违法违规行为的类型、特征及其监控研究.深圳证券交易所综合研究所研究报告第58号,2002
    14史永东,蒋贤锋.政府在防范市场操纵中的作用.中国金融学,2003(3):210-234
    15唐洪敏.欧盟对市场操纵的监管及启示.证券市场导报,2004(6): 56-60
    16周春生,杨云红,王亚平.中国股票市场交易型的价格操纵研究.经济研究,2005(10): 70-78
    17刘胜军.股价操纵与反操纵监管.证券市场导报,2001(7):13-17
    18 Praveen Kumar, Duane J. Seppi. Futures Manipulation with“Cash Settlement”. The Journal of Finance, 1992, 47(4):1485-1502
    19 Craig Pirrong. Manipulation of Cash-Settled Futures Contracts. The Journal of Business, 2001,74(2):221-244
    20郎咸平.操纵.东方出版社,2004
    21 Stoll, H. R., & Whaley, R. E. Expiration-day effects of the All Ordinaries Share Price Index Futures: Empirical Evidence and Alternative Settlement Procedures. Australian Journal of Management, 1997,22, 39–174
    22 Chamberlain, T. W., Cheung, S. C., & Kwan, C. C. Y. Expiration day effects of index futures and options: Some Canadian evidence. Financial Analysts Journal, 1989,45 (5): 67–71
    23 Schlag, C.Expiration day effects of stock index derivatives in Germany. European Financial Management,1996, 1: 69–95
    24 Karolyi, A. G. Stock market volatility around expiration days in Japan. Journal of Derivatives,1996, 4 (2):23–43
    25邢精平,张鹏,宋福铁.股指期货市场操纵风险及其防范.中国金融期货交易所研究报告,2006
    26臧玉卫,王萍,吴育华.贝叶斯网络在股指期货风险预警中的应用.科学学与科学技术管理,2003, 10:122-125
    27郑尊信,吴冲锋.防范操纵下的股指期货现金结算价设计,管理科学,2006,19(5): 92-96
    28 Praveen Kumar, Duane J. Seppi. Futures Manipulation with“Cash Settlement”. The Journal of Finance, 1992, 47(4).,1485-1502
    29 Markhanm. J. Manipulation of commodity futures price-The unprosecutable crime. Yale Journal on Regulation,1996,8:281-389
    30 Avanidhar Subrahmanyam. A theory of Trading in Stock Index Futures. Review of Financial Studies, 1991, 4(1):1991:17-51
    31 Branford Cornell, Kenneth R. French. The Pricing of Stock Index futures.The Journal of Futures Markets, 1983, 3(1):1-14
    32 Hans R. Stoll and Robert E. Whaley. The dynamics of Stock Index and Stock Index Futures Returns. Journal of Financial and Quantitative, 1990,25 :441-468
    33 Kawaller, I. G., Koch, P.D & Peterson, J. E.. Volume and volatility surrounding quarterly redesignation of the lead S&P 500 futures contract. Journal of Futures Market, 2001, 12:1119-1149
    34 Stephen Figlewski. Hedging Performance and Basis Risk in Stock Index Futures. The Journal of Finance, 1979(34): 157-170
    35 John J. Merrick. Portfolio Insurance with Stock Index Futures. The Journal of Futures Markets, 1988, 8(4): 441-455
    36 Bookstaber R. and Langsam J. A. Portfolio Insurance Trading Rules. The Journal of Futures Markets, 1988, 8(2):15-31
    37 A. Cralg Mackinlay and Krishna Ramaswamy. Index-Futures Arbitrage and The Behavior of Stock Index Futures Prices. The Review of Financial Studies, 1988,1(2):137-158
    38 Pradeep K. Yadav and Peter F. Pope. Stock Index Arbitrage: International Evidence. The Journal of Futures Markets, 1990,10(6):573-603
    39 Edwards, F. R.. Does Futures Trading Increase Stock Market volatility, Financial Analysts Journal, 1988, 44:63-69
    40 Antonios, Phil Holmes, Richard Priestley, The Effects of Stock Index Futures Trading on Stock Index Volatility: An Analysis of the Asymmetric Response of Volatility to News, Journal of Futures Markets, 1998,18(2): 151-166
    41 Antoniou,A., Holmes,P. Futures trading, information and spot price volatility: evidence for the FTSE-100 Stock Index Futures contract using GARCH, Journal of Banking and Finance, 1995,19:117-129
    42 Charles M. S., Stock Index Futures: Theories and International Evidence (Second Edition), International Thomson Business Press, 1997
    43 Bob Kero, Lucian Russell, Shalom Tsur, Wei-Min Shen. An Overview of Database Mining Techniques. The KDD Workshop in the 4th International Conference on Deductive and Object-Oriented Databases, Singapore, 1995:1-8
    44 Michael J. A. Berry, Gordon Linoff. Data Mining Techniques: For Marketing, Sales, and Customer Support. John Wiley & Sons, 1997: 126-148
    45 Chris Clifton, Bhavani Thuraisingham. Emerging standards for data mining. Computer Standards & Interfaces, 2001, 23(3):187-193
    46 Claudia Imhoff, Lisa Loftis, Jonathan G. Geiger. Building the Customer-Centric Enterprise: Data Warehousing Techniques for Supporting Customer Relationship Management. John Wiley & Sons, 2001:28-46
    47 Lynette Ryals. Are your customers worth more than money? Journal of Retailing and Consumer Services,2002, 9(5): 241-251
    48 Berger P.D., Nasr N.I. Customer lifetime value: marketing models and applications. Interact Market, 1998,12(1):17-30
    49 Simon Knox. Loyalty-based segmentation and the customer development process. European Management Journal, 1998,16(6):729-737
    50 Albrecht S?llner, Mario Rese. Market segmentation and the structure of competition: applicability of the strategic group concept for improved market segmentation on industrial markets. Journal of Business Research, 2001, 51(1):25-36
    51 Jeff Sweat. Oracle Rolls Out Business-Intelligence Products. Information week online, 2000, 1:46-52
    52 John D. Wells. Managing information technology for one-to-one customer interaction. Information And Management, 1999, 35(1):53-62
    53 Verhoef P.C., Spring P.N., Hoekstra J.C..The commercial use of segmentation and predictive modeling techniques for database marketing in the Netherlands. Decision Support Systems, 2003, 34(4):471-481
    54 Jiawei Han, Micheline Kambr. Data Mining: Concept and Techniques. Morgan Kaufmann Publishers, 2001:225-330
    55 Lim T, Loh W, Shih Y. A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty three Old and New Classification Algorithms. Machine Learning, 2000, 40:203-228
    56 Per Vagn Freytag, et al. Business to Business Market Segmentation. Industrial Marketing Management, 2001, 30(6): 473-486
    57 Lei-da Chen, Khalid S. Soliman, En Mao, Mark N. Frolick. Measuring user satisfaction with data warehouse: an exploratory study. Information & Management, 2000, 37(3):103-110
    58 E.H. Suh, K.C. Noh, C.K. Suh. Customer list segmentation using the combined response model. Expert Systems with Applications, 1999, 17(2):89-97
    59 J.J.Hopfield. Artificial Neural Network. IEEE Transaction on Circuit and Devices. 1988,(9):3-10
    60洪家荣.归纳学习—算法、理论、应用.科学出版社,1997:1-33
    61 Kate A. Smith, Jatinder N.D. Gupta. Neural networks in business: techniques and applications for the operations researcher. Computers & Operations Research, 2000, 27(11-12):1023-1044
    62 Rauber, A. LabelSOM: on the labeling of self-organizing maps. IJCNN '99. International Joint Conference on Neural Networks, 1999: 3527-3532
    63 Shtub A, Zimerman Y. A neural-network-based approach for estimating the cost of assembly. International Journal of Production Economics, 1993, 32(2):189-207
    64 Paul Cristea, et al. Time Series Prediction with Wavelet Neural Networks.
    5th Seminar on Neural Applications in Electrical Engineering, 2000:5-10
    65 Avraham Shtub, Ronen Versano. Estimating the cost of steel pipe bending, a comparison between neural networks and regression analysis. Int. J. Production Economics, 1999,62 (3): 201-207
    66 G. Guimaraes. Temporal Knowledge Discovery for Multivariate Time Series with Enhanced Self-Organizing Maps. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, 2000: 165-170
    67胥悦红,顾培亮.基于BP神经网络的产品成本预测.管理工程学报,2000, (4):61-64
    68阎平凡,张长水.人工神经网络与模拟进化计算.清华大学出版社,2000:1-7,10-32,396-415
    69 Niculescu, Stefan P. Artificial neural networks and genetic algorithms in QSAR. Journal of Molecular Structure,2003, 622(1-2):71-83
    70 Eunju Kim a, Wooju Kim b, Yillbyung Lee. Combination of multipleclassifiers for the customer’s purchase behavior prediction. Decision Support Systems,2002, 34(2):167-175
    71 D. Heckerman. Bayesian networks for knowledge discovery. Advances in Knowledge Discovery and Data Mining. Cambrige, MA: MIT Press,1996: 273-305
    72 D. Heckerman, MiChael P. Wellman D. Bayesian networks:Communications of the ACM, 1995, 38(3):27-30
    73 R.Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In Proc1993 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’93), Washington, DC, May, 1993: 207-216
    74 J.S. Park, M.S. Chen and P.S.Yu. An Effective Hash-based Algorithm for Mining Association Rules. Proceeding of ACM SIGMOD. San Jose,1995: 175-185
    75 J.Han Y.Fu Discovery of Multiple-Level Association Rules. From Large Databases. Proceeding of 21th Intenational Conference on very Large Databases. Zurich, 1995: 420-431
    76 M.Houtsma, A.Swami. Set-Oriented Mining for Association Rules in Relational Databases. Proceeding of IEEE 11th International Conference Data Engineering. Taipei,1995:25-33
    77 R. Sirkant, R.Agrawal. Mining Quantitative Association Rules in Large Relational Tables. Proceeding of ACM SIGMOD International Conference on Data Management. Tucson, 1996:1-12
    78 Eliseo Clementini, Paolino Di Felice, Krzysztof Koperski. Mining Multiple-level Spatial Association Rules for Objects with a Broad Boundary. Data & Knowledge Engineering, 2000,34(3): 251-270
    79 Wei Wang, et al. Tar: Temporal Association Rules on Evolving Numerical Attributes. Proceedings of 17th International Conference on Data Engineering, 2001: 283-292
    80 Bing Liu, Wynne Hsu, Yiming Ma. Integrating Classification and Association Rule Mining. Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, New York, 1998:1-7
    81 J. Han, J. Pei, Y. Yin. Mining frequent patterns without candidate generation. In Proc. 2000 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD’00), Dallas, TX, May, 2000: 1-12
    82 Yee Leung. Some thoughts on spatial data and structure analysis. Journal of Geographical Systems, 2000, (2):107-110
    83 G. Grahne, L. Lakshmanan, and X. Wang. Efficient mining of constrained correlated sets. In Proc. 2000 Int. Conf. Data Engineering (ICDE’00), San Diego, CA, February, 2000: 512-521
    84陈文伟.决策支持系统及其开发.清华大学出版社,2000: 279-309
    85铁治欣等.关联规则采掘综述.计算机应用研究,2000,(1):1-5
    86 H.Harld, N.Martin. Computing Performance of Feedforward Neural Nets and K-Means for cluster-based market segmentation. Operational Research, 1999, 114(2): 346-353
    87 Schohn G, Cohn D. Less: Active learning with support vector machines. In :Proc. 17th Int Conf .Machine Learning , Stanford , CA , 2000
    88 Tong S, Koller D. Support vector machine active learning wit happlications to text classification. In: Proc. 17th Int Conf. Machine Learning, Stanford, CA, 2000
    89 Balczar O W J L, Dai Y. A random sampling technique for t raining support vector machines. In: The 2001 IEEE Int Conf. Data Mining, San Jose, CA, 2001
    90 Lee YJ, Mangasarian O L. RSVM: Reduced support vector machines. First SIAM Int Conf Data Mining,Chicago, IL , 2001
    91 Yu Hwanjo, Yang Jiong, Han Jiawei. Classifying Large DataSets Using SVMs with Hierarchical Clusters. SIGKDD’03, Washington, DC, USA, Aug. 2003
    92 Fung G, Mangasarian OL. Incremental support vector machine classification. In: Grossman R, Mannila H, Motwani R, eds. Proceedings of the Second SIAM International Conference on Data Mining, SIAM, 2002: 247-260
    93 Tveit A, Hetland M L. Multicategory Incremental Proximal Support Vector Classifiers. In: Palade V, Howlett R J, J ain L C, eds. KES 2003, LNAI 2773, 2003:86-392
    94 Mitchell, M.An Introduction to Genetic Algorithms. MIT Press,1996:1-8
    95 A.E. Eiben, A.E. Koudijs, F. Slisser. Genetic Modeling of Customer Retention. Proceedings of First European Workshop on Genetic Programming, Lecture Notes in Computer Science, 1998:178-186
    96 Goldberg, D. E.Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley.1989:1-21
    97浦保兴.遗传算法运用技巧探索.微机发展,2001,(3):3-5
    98 Vivian Salim, Cai Xiaoqiang. Theory of genetic algorithms. Theoretical Computer Science, 2001,259(1-2):1-61
    99席裕庚,柴天佑,恽为民.遗传算法综述.控制理论与应用.1996,13(6):697-708
    100 Boris Kovalerchuk, Evgenii Vityaev. Data Mining in Finance——Advance in Relational and Hybrid Methods. Kluwer Academic publishers, 2000: 40-69
    101 Breiman L. Bagging predictors. Machine Learning, 1996, 24:123-140
    102 Schapire F, Freund Y, Schapire R E. Experiments with a newboosting algorithm. In: Machine Learning: Proceedings of the thirteenth International Conference, Morgan Kaufmann, 1996.148-156
    103 Buhlmann P, Yu B. Analyzing bagging. The Annals of Statistics, 2002, 30:927-961
    104 Hot horn T, Lausen B. Building classifiers by bagging trees. Preprint, Friedrich-Alexander-University Erlangen-Nuremberg, URL. Http://www. Mathpreprints. com/
    105 Hot horn T, Lausen B, Benner A. et al. Bagging survival trees, Statistics in Medicine, 2004,23:77-91
    106 Hot horn T, Lausen B. Double-bagging: Combining classifiers by boot strap aggregation, Pattern Recognition, 2003, 36:1303-1309
    107 Schwenk H, Bengio Y. Boosting neural networks. Neural Computation, 2000, 12 (8):1869-1887
    108 Buhlmann P, Yu Bin. Boosting with the L2-Loss:Regression and Classification. Journal of the American Statistical Association, 2003, 98: 324-338
    109 Huang Y S, Suen C Y. A Met hod of Combining Multiple Experts for the Recognition of Unconst rained Handwritten Numerals. IEEE Trans on Pattern Analysis and Machine Intelligence,1995,17(1):90-94
    110 Bi Yaxin, Bell D A, Wang Hui, et al. Combining Multiple Classifiers Using Dempster’s Rule of Combination for Text Categorization. In:MDAI2004, 2004:127-138
    111 Xu L, Krzyzak A, Suen C Y. Several Methods for Combining Multiple Classifiers and Their Applications in Handwritten Character Recognition. IEEE Trans on System, Man and Cybernetics,1992, 22 (3):418-435
    112 Kang H J , Kim K, Kim J H. Optimal Approximation of Discrete Probability Distribution with kth-order Dependency and Its Applications to Combining Multiple Classifiers. PRL, 1997, 18 ( 6) :515-523
    113 Kang Hee-Joong, Doermann D. Combining Multiple Classifiers Based on Third-Order Dependency. Pattern Recognition Letters. 2003, 24(16): 3027-3036
    114 Langdon W B, Buxton B F. Genetic programming for combining classifiers. In: Spector L, et al., eds. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001). San-Francisco, California, USA, 2001:66-73
    115 Langdon WB, Barrett S J , Buxton B F. Genetic programming for combining neural networks for drug discovery. In: Roy R, et al. eds. Soft Computing and Indust ry Recent Applications. Springer-Verlag, 2001: 597-608
    116 Langdon W B, Barrett S J, Buxton B F. Comparison of AdaBoost and Genetic Programming for combining Neural Networks for Drug Discovery. Applications of Evolutionary Computing. In: Raidl G R, et al., eds. LNCS 2611, Essex, U K: Springer-Verlag, 2003. 87-98
    117 Langdon W B, Buxton B F. Genetic programming for improved receiver operating characteristics. In: Kittler J, Roli F, Eds. Second International Conference on Multiple Classier System, vol2096 of LNCS. Cambridge, Springer Verlag, 2001: 68-77
    118 Langdon W B, Barrett S J, Buxton B F. Combining decision trees and neural networks for drug discovery. In: Foster J A, et al., eds. Genetic Programming.Proceedings of the 5th European Conference, Euro GP 2002, vol 2278 of LNCS. Kinsale, Ireland :Springer-Verlag, 2002:60-70
    119叶强,卢涛,李一军等.客户关系管理中的动态客户细分方法研究.管理科学学报,2006(2): 44-52