危化品运输工况仿真与模拟器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了从技术上根本解决危化品在生产、运输、仓储、使用全寿命周期内的安全问题,我国开展了针对各种危化品在上述环节中的安全监测与跟踪系统的技术研究。而检验有关危化品监测用传感器及其集成系统的性能,是保障危化品监测传感器及系统研究、产业化及应用的基础。目前对危化品监测用传感器及其集成系统性能测试采用真实罐车陆路或船舶海上运输的方法,来验证有关传感器在不同工况下的真实准确性和可靠性,这种测试方法存在测试周期长、测试成本高、风险性大、测试的工况有限、出现性能问题难以重复实验造成分析困难等缺点。
     针对陆路或海上真实测试存在的缺点,本文研制了危化品运输半实物仿真与实验系统。实验系统的运动模拟器采用具有6个自由度的Hexaglide并联机构,来模拟车船的实际运行状态,对危化品监测与跟踪微系统的可靠性和安全性进行实验和验证。
     本文采取虚拟样机技术和半物理系统实验相结合的方法进行研究,采用ADAMS建立罐装车及半挂车的系统模型,形成功能性虚拟样车。对虚拟样车进行整车动态回转仿真实验、转向盘转角阶跃输入仿真实验、方向盘角脉冲输入仿真实验和转向轻便性仿真实验,仿真实验的数据正确遵循了汽车操作稳定性的规律和要求,验证了虚拟样车模型的合理性。截取环岛和换道两种工况,进行仿真实验和实车实验对比,结果表明仿真实验结果与实车道路实验对应的参数曲线吻合度高,数值误差在6%以内,验证了汽车虚拟样机模型与参考原型车之间动态响应的一致性,在基于双移线、变速直线、不平路面、凹凸路面等典型特殊工况仿真表明了虚拟样车仿真的有效性,为仿真平台设计奠定了良好基础。
     基于频谱分析方法,用方向谱代替海浪谱,实现了一种基于方向谱的船舶振荡运动计算方法并以之为基础建立了船舶振荡仿真系统。利用船舶振荡仿真系统,对不同船速、风速、船舶航向情况进行仿真,并将仿真结果和Seakeeper仿真软件在相同条件下的仿真结果进行对比,验证船舶振荡仿真系统的正确性。因此采用虚拟样机技术,并结合陆路和海上各种运输工况的仿真模型,生成危化品运输工况虚拟实验场景,得到相应工况下运动模拟器状态输入。
     根据模拟车船运行的需要,运动模拟器采用6自由度Hexaglide机构与控制模块组成,采用交流伺服电机驱动,由滚珠丝杠和导轨将电机的转动变换为滑块的直线运动。在结构上提供一个方向的纯移动,并且这个方向的移动量只受导轨长度的限制,移动工作空间容易得到扩展,使机构的移动方向和车船的前进方向相同,能够获得较长的加、减速时间,可以更好的模拟车船的真实运动情况。在确定运动模拟器的构型后,进行机构的运动学分析,研究机构位姿逆解求解算法,并建立速度和加速度的映射关系。在运动学分析的基础上,又进一步分析了机构的工作空间和灵巧度。为使分析结果更具有工程实用性,定义了工程上使用频率最高的核心工作空间,并对其灵巧度的分布进行了仿真。为完成仿真平台的机构综合,又深入分析了机构参数对位置工作空间、核心工作空间及机构灵巧度的影响,在此基础上,利用所提出的机构参数优化流程完成了机构参数的优化,并验证了优化结果的优异性。
     最后,搭建运输模拟器实验平台,对模拟器控制系统的软、硬件进行设计,在PC上的TwinCAT软件环境下的仿真实验,验证了所编写程序的正确性和可行性。通过电机控制实验验证了各电机跟踪输入位置信号的能力。实际工况输入信号的运动复现实验和虚拟输入信号的运动复现实验,验证了各种实际工况输入信号和虚拟输入信号的实际输出位移曲线与给定的输入位移曲线的吻合程度高,表明控制系统位置跟踪性能强,实验平台能够模拟车船的实际运行状态。
In order to technically find the fundamental solution to the security issues of hazardous chemicals in production, transportation, storage and the using of the full life cycle, China has carried out technological researches for a variety of hazardous chemicals in the areas of security monitoring and tracking system. And testing the performance of the sensor and its integrated system is the basis of protecting the research, industry and application of the sensors and systems monitoring. Nowadays people use real tank truck or freight transported by land or by sea to test the performance of the sensor system and verify the true accuracy and reliability of the sensors under different conditions. This kind of testing has the defects of a long test cycle, high test costs, high risk and limited test conditions. And it’s difficult to repeat the experiment and analyze as performance problems appear.
     For the shortcomings of the real test in land or sea, the paper develops loop simulation and experimental systems for the transportation of hazardous chemicals. The motion simulator in the system using Hexaglide parallel mechanism with 6DOF simulates the actual operation state of the travel to experiment and verify the reliability and safety of hazardous chemicals monitoring and micro-system tracking
     The system model of tank truck and trailers was established by using ADAMS software to form a functional virtual prototyping. The virtual prototype was conducted for rotary vehicle dynamic simulation experiments, the steering wheel angle step input simulation, Steering wheel angle pulse input simulation experiments and steering light simulation experiments. Simulation data correctly followed the rules and requirements of the stability of vehicle operation and evidenced that the virtual prototype model is reasonable. Take the Interception of both island and lane conditions to make simulation and real car experiment. It turns out that simulation experiment result showed High goodness of fit corresponding to the parametric curves of the real vehicle road test .The numerical error was less than 6%. It validates the virtual prototype model of the vehicle and the reference prototype, the consistency of the dynamic response. Based on double lane, up and down the ramp, rough road, uneven pavement, under special conditions typical simulation shows the effectiveness of virtual prototyping simulation lay a good foundation for simulation platform design.
     On the basis of spectral analysis method, directional spectrum is used instead of the wave spectrum to achieve the calculation of oscillating movement of the ship and establish a simulation system of a marine-based oscillations. To simulate different boat speed, wind speed, ship heading by using a ship vibration simulation system and compare the simulation results and those of the Seakeeper simulation software under the same conditions to verify the correctness of the simulation system of ship oscillations.
     At this point the virtual prototype technology, combined with the simulation model under a variety of land and sea transportation conditions generated virtual laboratory conditions for hazardous chemicals’transportation and obtain the input of motion simulator in the corresponding state.
     According to the need of simulating travel, motion simulator formed by a 6 DOF Hexaglide institutions and the control module use AC servo motor drive, ball screw and guide rails transformed the motor rotation into linear motion of the slider. It provides pure movement of one direction in the structure, and the amount of movement in this direction is only limited by the length of the rail, the moving space can be easily expanded, if the moving direction and the direction of the travel are the same, then it’s possible to get a longer deceleration time, and better simulate the real movement of travel. After having determined the configuration of motion simulator the kinematics analysis, as well as the research institutions pose inverse algorithm, was conducted, and the mapping of speed and acceleration was established. Based on the kinematic analysis, further analysis of the workspace and dexterity was made to make the results more practical engineering. The definition of the core work space used most frequently in engineering was given, and its distribution on the dexterity was simulated. For the completion of the synthesis of the simulation platform, in-depth effect analysis of body parameters was also made on the location of the work space, core work space and the institution dexterity. On this basis, the proposed optimization process completed the institutions optimization and verified the excellent results of the optimization.
     Finally, the proposed prototype is fabirated, on which the software and hardware of the control system are designed. The correctness and feasibility of programming is validated based on the simulation experiments in the TwinCAT environment. Motor control experiments verified the capability of motor position tracking input reference signals. The motion regeneration experiments of the actual input signal and virtual input signal verify that the actual output displacement curve of various input signals and the virtual input signal under actual conditions matched the given input displacement curve very well.The proposed system features a high performance of position tracking, which can be used for simulating various vehicles working conditions.
引文
[1]闫利勇,陈永光.危险化学品公路运输事故新特点及对策研究.中国安全生产科学技术. 2010, 6(4): 65-70
    [2]事故案例.中国化学品安全协会网. http://www.chemicalsafe-ty.org.cn
    [3]李国学.飞行训练模拟器的发展.国际航空. 1989, (4): 45~47
    [4] D. stewart. A Platform with Six Degrees of Freedom. Proceeding of the Institute of Mechanical Engineerds. 1965, 180(5): 371~386
    [5] Hunt. Kiematic Geometry of Mechanis. Oxford Clarendon Press. 1978: 49~58
    [6] Lapiska C. Flight simulation Overview. Aerospace America. 1993, (8): 12~16
    [7]熊海国.飞行模拟器发动机系统建模与面向对象的仿真研究.哈尔滨工业大学博士学位论文. 2010: 6~8
    [8] Grant Peter R, Haycock Bruce. Effect of jerk and acceleration on the perception of motion strength. Journal of Aircraft, 2008, 45(4): 1190-1197
    [9] RAF medium helicopter simulator center offers potential for wider synthetic training. Jane's International Defense Review. 2004
    [10] Brett Beasley, D.; Saylor, Daniel A.; Buford, Jim. BRITE II Characterization and Application to a New Advanced Flight Motion Simulator. Proceedings of SPIE - The International Society for Optical Engineering. 2003 , 5092: 24-34
    [11] Lansdaal Michael, Lewis Leroy, Bezdek William J. The history of commercial simulators and the Boeing 777 systems integration lab. Collection of Technical Papers - AIAA Modeling and Simulation Technologies Conference. 2004, 2: 594-607
    [12] Sjirk Koekebakker. Model Based Control of a Flight Simulator Motion System. PhD thesis, Delft University of Technology. 2001: 13~17
    [13] B. Ferrier, J. Duncan, J. Nelson, D. Carico, D. Ludwig. Further Validation of Simulated Dynamic Interface Testing Techniques as a Tool in the Forecasting of Air Vehicle Deck Limits. Naval Research Arlington VA. 2010,12: 21~25
    [14] Weber, S. Computational simulation of dynamic stall on the NLR7301 airfoil. Academic Press. 2000,14(6):779~798
    [15] Salaani, M. Karnel. Transport delay compensation for the image generator used in the national advanced driving simulator. ASME InternationalMechanical Engineering Congress. 2003, 116(1): 99~111
    [16]韩俊伟,姜洪洲.用于航海模拟的六自由度并联机器人的研究.高技术通讯.2001, (3): 88~90
    [17]温奇咏,马广程.一种基于六自由度并联结构的动基座模拟器.航天控制. 2004, 10(5):63~67
    [18] Weinan Xie, Guangcheng Ma. A ground semi-physical simulator for satellite Autonomous rendezvous and space robot capture. The 1st International Symposium on Systemsand Control in Aerospaceand Astronautics. 2006, 1: 614~617
    [19]王知中.浅谈飞行模拟器的发展及作用.航空科学技术.1994,2:18~20
    [20] http://www.basc.com.cn/product/images/pic/MA60.htm
    [21] Wang Zhijian , Shang Xiaofeng , Wang Xiaoyan . Research of the virtual prototyping technology based on laser processing. Applied Mechanics and Materials. 2009, 16: 871-875
    [22] Thomond , P. , Jacobs , J. Does Virtual Prototyping Kill the Potential for Disruptive Innovation. Proceedings Fourth AGSE International Entrepreneurship Research Exchange,Brisbane,Australia.2007:1~15
    [23] John R.Wilison, Mirable D.Cruz. Virtual and Interactive Environments for Work of the Future. Human-Computer Studies. 2006, 64: 158~169
    [24] Qing Shen, Jorgen Gausemeier, Jochen Bauch,et al..A Cooperative Virtual Prototyping System for Mechatronic Solution Elements Based Assembly. Advanced Engineering Informations. 2005, 19: 169~177
    [25] M. Takahiko, Y. Takashi, A. Masami, N. Sueharu. Development of high-performance driving simulator. SAE International Journal of Passenger Cars Mechanical Systems. 2009, 2 (1): 661-669
    [26] Zheng Shutao, Ye Zhengmao, Jin Jun, Han Junwei. 6-DOF motion system of amphibious vehicle driving simulator motion parameter design research. Key Engineering Materials. 2011, 460: 704-709
    [27] Pfeiffer Andreas T, Lee Jun-Seong, Han Jae-Hung, Baier Horst. Ornithopter Flight Simulation Based on Flexible Multi-Body Dynamics. Journal of Bionic Engineering, 2010, 7 (1): 102-111
    [28] N. Miyajima, A. Matsumoto, Y. Sato, et al Multi-body dynamics simulation and bogie structure evaluation for active-bogie steering truck. Proceedings ofInternational Mechanical Engineering Congress and Exposition. ASME. 2008, 16: 459-465
    [29] Smet Geert, Yorck Michael, Baldesi Gianluigi, Palladino Massimo. Multi-body dynamics software tool: Two case studies. European Space Agency, 13th European Space Mechanics and Tribology Symposium 2009, 670:1623~1629
    [30]张海岑.汽车列车操纵稳定性和制动性模拟计算研究.清华大学博士学位论文. 1992: 4~10
    [31]罗伯森, R. E.多体系统动力学.祁延爽,苏乙译.南京航空学院出版社, 1984: 76~82
    [32]袁士杰,吕哲勤.多刚体系统动力学.北京理工大学出版社,1992: 177~179
    [33]洪嘉振.计算多体系统动力学.高等教育出版社,1999(7):98~100
    [34]贾书惠.刚体动力学.高等教育出版社,1987(9):221~224
    [35]范成建.虚拟样机软件MSC.ADAMS应用与提高.机械工业出版社,2006: 47~50
    [36]尤瑞金. ADAMS软件在汽车前悬架转向系统运动学分析中的应用.美国MDI公司2001年中国用户论文集. 2001: 229~238
    [37]任卫群.车路系统动力学中的虚拟样机MSC. ADAMS软件应用实践.电子工业出版社, 2005: 76~81
    [38]秦民.整车动力学控制仿真分析.吉林大学博士学位论文,2003: 62~65
    [39] Nobuo Sugitani &Yukihiro. Electric Power Steering with H-infinity Control Designed to Obtain Road Information. Proceedings of the American Control Conference Albuquerque, New Mexico , 1997: 233~238
    [40] Andy R, W.Huang, Chihsiuh Chen. A Low-Cost Driving Simulator for Full Vehicle Dynamics Simulation. IEEE Transactions on Vehicular Technology. VOL.52, Jan 2003:162~172
    [41]日本VMC公司网站,http://www.virtualmechanics.co.jp. 2010
    [42]动力学与控制技术网,http://www.dytrol.com. 2009
    [43] Dominke Peter and Gerhard Ruck, Electric Power Steering-The First Step on the Way to Steering by wire , SAE paper No.1999-01-0401
    [44] Nakayama T, Suda E. The present and future of electric power steering. Int. J.of vehicle Design, 1994, 15(3): 243~254
    [45]王树凤,余群.车辆虚拟试验系统的实现.农业机械学报. 2002,33(3):4~7
    [46] Froude, W. On the rolling of ships, Transactions of the Institution of Naval Architects 2, 1861, 180~229
    [47] F. Ursell. On the heaving of a circular cylinder on the surface of a fluid, Quarterly J. of Mech. And Applied Math. 1949, 2(5):15~17
    [48] M. D. Haskind. The hydrodynamic theory of ship oscillations in rolling and pitching. Prikl. Mat. Mekh. 1946 (10): 33~66
    [49] M. D. Haskind. The oscillation of a ship in still water. Izv. Akad Nauk, SSSR,Oct. Tekhn Nauk,1946: 23~34
    [50] S. Denis, W. J. Pierson. On the motion of ships in confused seas. Trans SNAME.1953,61:71~77
    [51] B. V. Korvin-Kroukovsky. Investigation of ship motions in regular waves.Trans SNAME. 1955,63:91~96
    [52] B. V. Korvin-Kroukovsky, W. R. Jacobs. Pitching and heaving motions of a ship in regular waves. Trans SNAME. 1957, 65: 113~120
    [53] F. M. Lewis. The inertia of water surrounding a vibrating ship. Trans SNAME. 1929,37:33~36
    [54] G. Vossers. Some applications of the Slenderbody in ship hydrodynamics. Thesis Delft Univ.of Technology. 1962:51~55
    [55]田才福造,高木又男.规则波中解答理论及计算方法.日本造船学会. 1969,1: 36
    [56] T. F. Ogilvie, E. O. Tuck. A rational strip theory of ship motions. The Univ.of Michigan. 1969, 13:33~39
    [57] N. Salvesen, E. O. Tuck and O. Faltinsen. Ship Motions and sea loads.Trans SNAME. 1970, 78:259~287
    [58] Korvin-Kroukovsky,B.V.and Jacobs,W.R.pitching and heaving motions of a ship in regular waves, Trans.SNAME, 1957, Vol.65: 211~215
    [59] Borodai,I.K.and Netsvetayev,Y.A.,shipmotions in ocean waves, Russian, Sudostorenie: Leningrad, 1969
    [60] Ogilvie,T.F.and Tuck,E.O. A rational strip theory of ship motions, The Univ.of Michigan, Report No.013, 1969
    [61] Salvesen, N.,Tuck, E. O. and Faltinsen, O. Ship motions and sea loads, Trans.SNAME, 1970 vol.78: 250~287
    [62] Fang,M.C.,Lee,M.L.and Lee,C.K.time simulating of water shipping for a ship advancing I large longitudinal waves,Journal of Ship Research,1993, 37(2): 126~137
    [63] Anderson P and He Wuzhou,on the calculation of two-dimensional added mass and damping coefficients by simple green's function technique, Ocean Eng., 1985, 12(5): 425~451
    [64] G. P. Miao. On the comutation of ship motions in regular waves. Division of Ship Hydromechanics, Chalmers Univ. of Technology, Sweden. 1980, 58:178~190
    [65] W. Frank. Oscillation of cylinders in or below the free surface of deep fluids. Naval Ship Research and Development Center. 1967, 23:57
    [66] P. Anderson, H. Wuzhou. On the calculation of two-dimensional added mass and damping coefficients by simple green's function technique.Ocean Eng.1985, 12(5):425~451
    [67] T. Sawaragi. Coastal engineering-wave, beaches, wave-structure interactions. USA ELSEVIER. 1995: 359~428
    [68] C. R. Chou, W. K. Weng and J. Z. Yim. Ship motions near harbor caused by wave actions. Computer Modelling in Ocean Eng. 1991: 443~453
    [69] K. Takagi, S. Naito. Hydrodynamic forces acting on a floating body in a harbor of arbitrary geometry. International J. of Offshore and Polar Eng. 1994, 4(1): 97~104
    [70] W. E. Cummins. The impulse response function and ship motions. Schiffstechnik. 1962, 9: 101~109
    [71] T. F. Ogilvie. Recent progress toward the understanding and prediction of ship motions. 5th Symp.on Naval Hydrodynamics. 1964: 3~80
    [72] J. Kotik, J. Lurye. Some topics in the theory of coupled motions. 5th symp.on Naval Hydrodynamics. 1964: 407~424
    [73] J. V. Wehausen. Initial value problem for the motion in an undulating sea of a body with fixed equilibrium position. The Journal of Engineering Mathematics. 1967,1(1):1~17
    [74] R. B. Chapman. Large amplitude transient motion of two-dimensional loating bodies. Journal of Ship Research. 1979, 29(1):20~3
    [75] R. B. Chapman. Time-domain method for computing forces and momentsacting on three-dimensional surface-piercing hull with forward speed. 3rd Int’l, Conf. on Numerical Ship Hydrodynamics, Paris. 1981:237~248
    [76] Formation Design Systems. Seakeeper Windows Version 11.0 User Manual. 2004
    [77]陶伟,应文烨,赵远征.虚拟现实中的船舶运动仿真.中国船舶研究. 2006, 1(2): 77~79
    [78] W. D. Van Drier, R. A. Real, D. G. Yang, et al. Combined virtual prototyping and reliability testing based design rules for stacked die system in packages. International Conference on Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems. Thermal. 2007: 1259~126
    [79] Choi, S.H. Cheung, H.H. A versatile virtual prototyping system for rapid product development. Computers in Industry, 2008, 59, (5): 477~488
    [80] Yuan, Qing Ke, Zhang, Ming-Tian, Jiang, Ling-Lian. A virtual prototype design methodology for product new development . International Conference on Information Engineering. WASE. 2009, 1:114-118
    [81] Huang, Ting Kong, C. W., Guo, H. L. et al. A virtual prototyping system for simulating construction processes. Automation in Construction, 2007, 16 (5): 576~585
    [82] Shu, Bin Xu, Changsheng; Cheng, Dingfang. Design of the lifting mechanism with virtual prototyping technology. 9th International Conference on Computer-Aided Industrial Design and Conceptual Design 2008: 384-387
    [83] Shi Guanglin, Chen Shuxun, Liang Guangmin. Analysis with ADAMS/ANSYS on dynamic properties of rotating hook-lift garbage truck. International Conference on Measuring Technology and Mechatronics Automation. 2009, 2: 746-749
    [84] PADDAN G S,GRUFFIN M J.Evaluation of Whole-body Vibration in Vehicles. Journal of Sound and Vibration 2002,253(1):195~213.
    [85] MSC公司. ADAMS/CAR Student Guide. Version 2005
    [86] MSC公司. Using ADAMS/CAR. Version 2005
    [87] Terada Daisuke, Iseki, Toshio. Estimate of the parameters in the equation of ship's oscillation based on a self-organizing state-space modeling. Proceedings of the International Offshore and Polar Engineering Conference. 2007: 3802-3806
    [88] Peric Milovan, Zorn Tobias El Moctar Ould, et al. Simulation of sloshing in LNG-tanks. Journal of Offshore Mechanics and Arctic Engineering. 2009, 131(3): 1-11
    [89] Pierson W J, Moskowitz L. A proposed spectral form for fully developed wind seas Based on the Similarity Theory of S. A.Kitaigorodskii. Journal of geophysical research, 1964, 69(24): 5181~5203
    [90]顾文锦,叶显武.导弹仿真中海浪的数字仿真及其动画生成.系统仿真学报.1998, 10(1): 33~38
    [91]刘洁,邹北骥,周洁琼,朱岳.基于海浪谱的Gerstner波浪模拟.计算机工程与科学. 2006, 28(2): 41~44
    [92] Ngoc Pham, Kim Joon-Ho, Kim Han-Sung. Development of a new 6-DOF parallel-kinematic motion simulator. International Conference on Control Automation and Systems. 2008: 2370-2373
    [93] Abtahi Mansour, Pendar, Hodjat, Alasty Aria. Kinematics and singularity analysis of the Hexaglide parallel robot. ASME International Mechanical Engineering Congress and Exposition. 2009, 11: 37~43
    [94] Abtahi Mansour, Pendar Hodjat, Alasty Aria, Vossoughi Gholamreza. Kinematic calibration of the Hexaglide parallel robot using a simple measurement system. ASME International Mechanical Engineering Congress and Exposition. 2009, 11:853-859
    [95] J. A. Raymond, E. R. William, M. S. Robert. LNG ship motion simulator and platform. Transactions - Society of Naval Architects and Marine Engineers. 2007, 114: 128-139
    [96] Sung-Soo Kim, Oskar Wallrapp,Jeong Joo Kwon,et al. Development of a motion simulator for testing a mobile surveillance robot. Journal of Mechanical Science and Technology. 2009, (23): 1065~1070
    [97]黄真,赵永生,赵铁石.高等空间机构学.高等教育出版社, 2006: 11~22
    [98]于凌涛,孙立宁,杜志江.并联机器人胡克铰工作空间的研究与应用.机械工程学报.2006,8(42):120~124
    [99]刘玉斌,赵杰,杨永刚,蔡鹤皋.一种新型6-PRRS并联机器人工作空间分析,机械与电子,2007,(2): 53~56
    [100]刘玉斌,赵杰,杨永刚,蔡鹤皋.一种6-PRRS并联机器人机构参数对工作空间影响的研究.机械设计,2007,24(3): 7~9
    [101] Ether CAT Technology Group. ETG_Flyer. 2005 : 12~ 19
    [102] White R. EtherCAT drivers for real-time control systems. Automotive Industries. 2005, 185(12): 35~39
    [103]李元科.工程最优化设计.清华大学出版社,2006:121~132
    [104] R.Q.Sardinas, M.R.Sntana, and E.A.Brindis. Genetic algorithm-based multi-objective optimization of cutting parameters in turning processes. Engineering Applications of Artificial Intelligence. 2006, (19): 127~133
    [105] P. N. Poulos, G .G. Rigatos, S. G. Tzafestas, A.K. Koukos. A Pareto-optmal genetic Algorithm for warehouse multi-objective optimization, Engineering Applications of Artificial Intelligence. 2001,(14): 737~749
    [106] A.R. Conn, N.I. Gould, Ph.L.Toint. A Globally Convergent Augmented Lagrangian Barrier Algorithm for Optimization with General Inequality Constraints and SimpleBounds. Mathematics of Computation. 1997, 66(217): 261~288