重点区台风风暴潮数值预报与灾害评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在中国沿海,风暴潮灾害位于所有海洋灾害之首,每年都因为风暴潮灾害造成重大经济损失和人员伤亡。因此,科学的风暴潮灾害评估和准确快速的风暴潮预报技术研究就非常地有必要。本文选择的两个重点研究区域分别是位于渤海湾的天津海域和东南沿海的福建北部海域,这两个海域都是风暴潮灾害多发区。针对这两个重点区,本文的主要研究内容和结论如下:
     首先针对天津海域建立了一个台风风暴潮模拟系统,并对该海域历史上发生的若干台风风暴潮过程进行了模拟,模拟结果和实测数据对比良好。利用该风暴潮模拟系统,评估了50年一遇强度的台风沿4条设计台风路径北上时对天津的风暴潮灾害的危险性大小,并对其形成机制进行了分析,最后找出了最容易造成天津台风风暴潮灾害的台风路径类型。研究结果还发现,风场的驱动作用和气压场的驱动作用对风暴潮增水的贡献不是线性叠加的,这两种作用之间存在着非线性相互作用,且这种作用倾向于使风暴潮强度减小。
     针对福建北部海域,建立了一个基于ROMS和SWAN的风暴潮-海浪耦合模式,利用该耦合模式研究了在“桑美”台风过程中,海浪通过表面应力、底应力和辐射应力对风暴潮的影响程度及机制。研究发现:(1)海浪通过对风应力的影响,使台风路径右侧的增水增加,左侧的减水增强;(2)海浪的存在,增加了底摩擦,使海流减弱,进而影响风暴潮水位;(3)辐射应力的辐散区域,水位降低;辐射应力方向向岸时,可驱动海水在近岸堆积,使风暴潮增强。总体来讲,海浪通过风应力对风暴潮的影响最大,通过辐射应力对风暴潮的影响最小。
     利用耦合器技术,开发了一个非结构网格的风暴潮-近岸浪-天文潮耦合模式,该耦合模式具有近岸高分辨率、运行效率高的特点。通过与已有耦合模式的计算效率对比发现,新开发的耦合模式,在计算网格,耦合机制等完全相同的条件下,计算效率最大可提高26.4%。
     本研究对于台风风暴潮灾害的评估研究以及风暴潮的业务化预报技术发展都具有很重要的意义。
In coastal areas of China, storm surge is the most serious marine disasters, whichcauses significant human life and property losses every year. So, scientific stormsurge disaster assessment and studies on accurate and fast storm surge predictiontechnique are quite necessary. This study focuses on the coastal area of Tianjin andnorth of Fujian province, where storm surge disaster is liable to occur.
     A storm surge simulation system was developed for Tianjin coast and foursevere hurricane storm surges in Tianjin history were simulated with this simulationsystem. The peak storm surge result of the simulation agreed well with that of theobservation. Based on the established strom surge simulation system, the storm surgedisaster risk was assessed when the hurricane moved along4designed paths, with anintensity of50year return period, and the mechanism of the strom surge formationwas analyzed. Finally, the easiest hurricane path type to cause storm surge disaster inTianjin was found. This study also shows that the effect of wind forcing and airpressure forcing on the storm surge is not linear, and the nonlinear interaction betweenthem tends to weaken the storm surge.
     A storm surge-wave coupled model based on ROMS (Regional Ocean ModelingSystem) ocean model and SWAN (Simulating Waves Nearshore) wave model wasestablished for the north of Fujian coast. Based on the coupled model, the influence ofwaves on the storm surge through wave-induced surface stress, bottom stress andradiation stress was studied in the process of hurricane “saomai”. It was demonstratedthat:(1) The storm surge set-up on the right side of the hurricane path and theset-down on the left side of the hurricane path were both strengthened;(2) The bottomroughness was enhanced by the wave effect, causing the current to be decreased, andthen the storm surge was influenced;(3) The shoreward radiation stress can causeset-up along the coast, and the divergence of the radiation stress can cause set-down.Generally, the wave influences on the strom surge mostly through the surface stress,and then the bottom stress, and the last is the radiation stress.
     Based on the Model Coupling Toolkit (MCT), an unstructured stormsurge-waves-tide coupled model was developed. The developed coupled model hashigh resolution in the coast area and can be run efficiently. By comparing with theexisting coupled model, the newly developed one can increase the simulationefficiency by26.4percent, when the computational grid and coupling processes of thetwo coupled model were the same.
     This study is valuable to the study of hurricane storm surge disaster assessmentand the development of the operational storm surge prediction technique.
引文
曹永华,张庆河,闫澍旺,季则舟,杨华.黄骅港海域二维流场分析.中国港湾建设,2005,(3):1~4.
    陈华伟,葛建忠,丁平兴.波浪对台风风暴潮过程的影响分析.华东师范大学学报,2010,4:16-25.
    邓增安. Coriolis-Stokes力在海洋数值模拟中的影响研究.2011,中国海洋大学博士论文。
    董胜,于亚群,徐斌.日照地区风暴潮增水重现期值计算.中国海洋大学学报,2005,35(4):655~660.
    端义宏,秦曾灏.上海沿岸天文潮与风暴潮非线性相互作用的数值研究.海洋与湖沼,1997,28(1):80~87.
    段志华.再分析天津渤海沿岸风暴潮特性及防御减灾对策.海洋预报,2002,19(1):43~50.
    冯士筰.风暴潮导论.北京:科学出版社,1982.
    冯士筰.风暴潮的研究进展.世界科技研究与发展,1998,20(04):44~47.
    侯京明,于福江,原野,付翔.影响我国的重大台风风暴潮时空分布.海洋通报,2011,30(5):535~539.
    贾岩,尹宝树,杨德周.东中国海浪流相互作用对水位和波高影响的数值研究.海洋科学,2009,33(8):82-86.
    李阔,李国胜.风暴潮风险研究进展.自然灾害学报,2011,20(6):104~111.
    李未,王如云,卢长娜,张长宽.神经网络在珠江口风暴潮预报中的应用.热带海洋学报,2006,25(3):10~13.
    李燕,薄兆海. SWAN模式对黄渤海海域浪高的模拟能力试验.海洋预报,2005,22(3):75-82.
    林祥,尹宝树,侯一筠等.辐射应力在黄河三角洲近岸波浪和潮汐风暴潮相互作用中的影响.海洋与湖沼,2002,33(6):615-621.
    刘秋兴,于福江,王培涛,董剑希.辐射应力对台风风暴潮预报的影响和数值研究.海洋学报,2011,33(5):47-53.
    刘永玲,王秀芹,王淑娟.波浪对风暴潮影响的数值研究.海洋湖沼通报增刊,2007:1-7.
    乔方利,马建,夏长水,等.波浪和潮流混合对黄海、东海夏季温度垂直结构的影响研究.自然科学进展,2004,14(12):1434-1441.
    秦曾灏,冯士筰.浅海风暴潮动力机制的初步研究.中国科学,1975,1:64~78.
    莎日娜,尹宝树,杨德周,徐振华,程明华.天津近岸台风暴潮漫滩数值模式研究.海洋科学,2007,31(7):63~67.
    孙文心,秦曾灏,冯士筰.超浅海风暴潮的数值模拟(I).海洋学报,1979,1(2):193~211
    孙文心,秦曾灏,冯士筰.超浅海风暴潮的数值模拟(II).山东海洋学院学报,1980,10(2):7~19.
    孙文心,冯士筰,超浅海风暴潮的数值模拟(III).风暴潮,1983,47~520
    王兰化,张士金.地面沉降、海平面上升对天津市海岸带的影响.海岸带地质环境与城市发展论文集,北京:中国大地出版社,2005,184~189.
    王培涛,于福江,刘秋兴,董剑希.福建沿海精细化台风风暴潮集合数值预报技术研究及应用.海洋预报,2010,27(5):7~15.
    王喜年,陈祥福.我国部分测站台风潮重现期的计算.海洋预报,1984,1(1).
    王喜年.风暴潮预报知识讲座.海洋预报,2002,19(2),64~70.
    王秀芹,钱成春,王伟.计算区域的选取对风暴潮数值模拟的影响.青岛海洋大学学报,2001,31(3):319~324.
    吴伦宇.基于FVCOM的浪、流、泥沙模型耦合及应用.2009,中国海洋大学博士论文。
    吴少华,王喜年,戴明瑞,宋珊,马毓倩.渤海风暴潮概况及温带风暴潮数值模拟.海洋学报,2002,24(3):28~34.
    吴少华,王喜年,宋珊,马毓倩.天津沿海风暴潮灾害概述及统计分析.海洋预报,2002,19(1):29~35.
    吴相忠,张庆河,张娜,杨华.黄骅港海域三维流场数值模拟.水利水运工程学报,2005,(3):1~4.
    许富祥.天津沿海三次特大风暴潮灾成因分析及预防对策.海洋预报,2002,19(1):36~42.
    殷杰.中国沿海台风风暴潮灾害风险评估研究.2011,华东师范大学博士论文.
    尹宝树.渤海波浪和风暴潮潮汐运动相互作用的理论和数值研究.1996,中国科学院海洋研究所博士论文.
    尹宝树,徐艳青,任鲁川,杨德周,程明华.黄河三角洲沿岸海浪风暴潮耦合作用漫堤风险评估研究.海洋与湖沼,2006,37(5):457~463.
    尹庆江.台风参数对渤海台风潮的效应.海洋预报,1984,1(2):49~55.
    尹庆江,吴少华,王喜年.美国SLOSH模式在我国的应用——杭州湾台风风暴潮的数值模拟[J].海洋预报,1997,14(1):70~74.
    尹庆江,王喜年,吴少华.镇海可能最大台风增水的计算.海洋学报,1995,17(6):21~27.
    于福江,王喜年.渤海“9216”特大风暴潮过程的数值模拟.海洋学报,2000,17(4):9~15.
    于福江,张占海,林一骅.一个稳态Kalman滤波风暴潮数值预报模式.海洋学报,2002,24(5),26-35.
    袁业立,黄海冷水团.海洋与湖沼,1979,10(3):187-199.
    张军,陈延盛,葛勇.台风“泰利”过境兴化湾波浪模拟.台湾海峡,2008,27(4):533-541.
    张雪莹,邵荣敏,高孟川.天津沿海风暴潮的成因与防灾减灾措施研究.天津理工大学学报,2005,21(2):60~63.
    郑立松.风暴潮-天文潮-波浪耦合模型及其在杭州湾的应用.2010,清华大学博士学位论文.
    赵鹏.渤海寒潮风暴潮增水风险的数值研究.2011,中国海洋大学博士论文.
    赵庆良,许世远,王军,胡蓓蓓,叶明武,刘耀龙.沿海城市风暴潮灾害风险评估研究进展.地球科学进展,2007,26(5):32~40.
    Alexander S. Averkiev, Konstantin A. Klevannyy. A case study of the impact ofcyclonic trajectories on sea-level extemes in the Gulf of Finland. ContinentalShelf Research,2010,30,707-714.
    Battjes, J.A. and J.P.F.M. Janssen. Energy loss and set-up due to breaking of randomwaves. Proc.16th Int. Conf. Coastal Engineering, ASCE,1978,569-587
    Bernier, N. B. and K. R. Thompson. Predicting the frequency of storm surges andextreme sea levels in the Northwest Atlantic. J. Geophys. Res.,2006,111,C10009, doi:10.1029/2005JC003168.
    Beno t, M., Marcos, F., Becq, F. Development of a third generation shallow-waterwave model with unstructured spatial meshing. Proc.25th Int. Conf. CoastalEngng. ASCE,1996, pp.465-478.
    Bissett, W.P., J.J. Walsh, D.A. Dieterle, K.L. Carder. Carbon cycling in the upperwaters of the Sargasso Sea: I. Numerical simulation of differential carbon andnitrogen fluxes. Deep-Sea Res.,1999,46,205-269.
    Blain, C.A., Westerink, J.J., Luettich Jr., R.A. Grid convergence studies for theprediction of hurricane storm surge. International Journal of Numerical Methodsin Fluids,1998,26,369-401.
    Booij, N., R.C. Ris and L.H. Holthuijsen. A third-generation wave model for coastalregions, Part I, Model description and validation. J.Geoph.Research,1999,104,C4,7649-7666.
    Bouws, E. and G.J. Komen. On the balance between growth and dissipation in anextreme, depth-limited wind-sea in the southern North Sea. J. Phys. Oceanogr.,1983,13,1653-1658.
    Budgell, W.P. Numerical simulation of ice-ocean variability in the Barents Sea region.Ocean Dynamics,2005, DOI10.1007/s10236-005-0008-3.
    Byung Ho Choi, Hyun Min Eum, Seung Buhm Woo. A synchronously coupledtide–wave–surge model of the Yellow Sea. Coastal Engineering.,2003,381-398.
    Cavaleri, L. and P. Malanotte-Rizzoli. Wind wave prediction in shallow water: Theoryand applications. J. Geophys. Res.,1981,86, No. C11,10,961-10,973.
    Changlong Guan and Lian Xie. A Note on the linear Parameterization of DragCoefficient over Sea Surface, J. Phys. Oceanogr.,2004,34,2847-2851.
    Chapman, D. C. Numerical treatment of cross-shelf open boundaries in a barotropiccoastal ocean model, J. Phys. Oceanogr.,1985,15,1060--1075.
    Collins, J.I. Prediction of shallow water spectra, J. Geophys. Res.,1972,77, No.15,2693-2707.
    Craik, A.D.D., S. Leibovich. A rational model for Langmuir circulation. J. FluidMech.,1976.73:401-426.
    Deborah J Wood, Markus Muttray, Hocine Oumeraci. The Swan model used to studywave evolution in a flume. Ocean Engineering,2001,28(7):805-823.
    Dietrich, J.C., M. Zijlema, J.J. Westerink, L.H. Holthuijsen, C. Dawson, R.A. LuettichJr., R.E. Jensen, J.M. Smith, G.S. Stelling, G.W. Stone. Modeling hurricanewaves and storm surge using integrally-coupled, scalable computations. CoastalEngineering,2011,58,45-65.
    Donelan, M.A., F.W. Dobson, S.D. Smith and R.J. Anderson. On the dependence ofsea surface roughness on wave development. J. Phys. Oceanogr.,1993.23:2143-2149.
    Eldeberky, Y. and J.A. Battjes. Parameterization of triad interactions in wave energymodels. Proc. Coastal Dynamics Conf.'95, Gdansk, Poland,1995,140-148.
    Eldeberky, Y. Nonlinear transformation of wave spectra in the nearshore zone.1996,Ph.D. thesis, Delft University of Technology, Department of Civil Engineering,The Netherlands.
    Ezer, T., H. Arangoand, and A.F. Shchepetkin. Developments in terrain-followingocean models: intercomparisons of numerical aspects. Ocean Modelling,2002,4(3-4):249~267.
    Fairall, C.W., E.F. Bradley, D.P. Rogers, J.B. Edson and G.S. Young. Bulkparameterization of air-sea fluxes for tropical ocean-global atmosphereCoupled-Ocean Atmosphere Response Experiment, JGR,1996,101,3747-3764.
    Fennel, K., J. Wilkin, J. Levin, J. Moisan, J. O'Reilly, and D. Haidvogel. Nitrogencycling in the Middle Atlantic Bight: Results from a three-dimensional modeland implications for the North Atlantic nitrogen budget, Global Biogeochem.2006, Cycles,20, GB3007, doi:10.1029/2005GB002456.
    Flather, R. A. A tidal model of the northwest European continental shelf."Memoiresde la Societe Royale de Sciences de Liege,1976,6,141-164.
    Fujita T. Pressure distribution in typhoon, Geophys. Mag.,1952,23:437.
    Garratt, J.R. Review of drag coefficients over oceans and continents, MonthlyWeather Review,1977,105,915-929.
    Gary D. Atkinsion and Charles R. Holliday. Tropical cyclone minimum sea levelpressure/maximum sustained wind relationship for the western North Pacific,Monthly Weather Review,1977,105:421-427.
    George L. Mellor. Users guide for a three-dimensional, primitive equation, numericalocean model.2004.
    Gonzalez, F.I. A case study of wave-current-bathymetry interactions at the Columbiariver entrance. J. Phs. Oceanogr.,1984,14,1065-1078.
    Grant, W.D., and O.S. Madsen. Combined wave and current interaction with a roughbottom. J. Geophys. Oceanogr.,1979.84:1797-1808.
    Gumbel, E.J. Statistics of Extremes, Columbia University Press, New York,1958.
    Günther, H., S. Hasselmann and P.A.E.M. Janssen,1992: The WAM model Cycle4(revised version), Deutsch. Klim. Rechenzentrum, Techn. Rep. No.4, Hamburg,Germany.
    Haidvogel, D. B., H. G. Arango, K. Hedstrom, A. Beckmann, P. Malanotte-Rizzoli,and A. F. Shchepetkin. Model evaluation experiments in the North Atlantic Basin:Simulations in nonlinear terrain-following coordinates. Dyn. Atmos. Oceans,2000,32,239-281.
    Hasselmann, K. On the spectral dissipation of ocean waves due to whitecapping,Bound.-layer Meteor.,1974,6,1-2,107-127.
    Hasselmann, K. and J.I. Collins. Spectral dissipation of finite-depth gravity waves dueto turbulent bottom friction, J. Mar. Res.,1968,26,1-12.
    Hasselmann, K., T.P. Barnett, E. Bouws, H. Carlson, D.E. Cartwright, K. Enke, J.A.Ewing, H. Gienapp, D.E. Hasselmann, P. Kruseman, A. Meerburg, P. Müller, D.J.Olbers, K. Richter, W. Sell and H. Walden. Measurements of wind-wave growthand swell decay during the Joint North Sea Wave Project (JONSWAP), Dtsch.Hydrogr. Z. Suppl.,1973,12, A8.
    Hasselmann, S., K. Hasselmann, J.H. Allender and T.P. Barnett. Computations andparameterizations of the nonlinear energy transfer in a gravity wave spectrum.Part II: Parameterizations of the nonlinear transfer for application in wavemodels. J. Phys. Oceanogr.,1985,15,11,1378-1391.
    Heaps, N.S.. Storm surges1967-1982. Geophysical Journal of the Royal AstronomicalSociety,1983.74:331-376.
    Holland, G. J. An analytic model of the wind and pressure profiles in hurricanes, Mon.Wea. Rev.,1980,108,1212-1218.
    Hsu, T.-W., Ou, S.-H., Liau, J.-M. Hindcasting nearshore wind waves using a FEMcode for SWAN. Coast. Eng.2005,52,177–195.
    Huang, Y., R. H. Weisberg, and L. Zheng. Coupling of surge and waves for anIvan-like hurricane impacting the Tampa Bay, Florida region, J. Geophys. Res.,2010,115, C12009, doi:10.1029/2009JC006090.
    Jacob, Larson, Ong "MxN Communication and Parallel Interpolation in CCSM3Using the Model Coupling Toolkit."2005: Int. J. High Perf. Comp. App.,19(3),293-307.
    Janssen, P.A.E.M. Wave induced stress and the drag of air flow over sea waves. J.Phys. Oceanogr.,1989,19,745-754.
    Janssen, P.A.E.M. Quasi-linear theory of wind-wave generation applied to waveforecasting. J. Phys. Oceanogr.,1991,21,1631-1642.
    Jelesnianski, C.P. A numerical computation of storm tides induced by a tropical stormimpinging on a continental shelf, Mon. Wea. Rev.,1965,93(16),343-358.
    Jelesnianski, C. P. SPLASH I, langdfall storm. NOAA, Tech. Mem. NWSTDL-46,Washington,1972,1~52.
    Johnson, J.W. The refraction of surface waves by currents, Eos. Trans. AGU,1947,28(6),867-874.
    Jonsson, I.G Wave boundary layers and friction factors.1966, Proc.10th Int. Conf.Coastal Engineering, ASCE,127-148.
    Jonsson, I.G. and N.A. Carlsen. Experimental and theoretical investigations in anoscillatory turbulent boundary layer. J. Hydraulic Research,1976,14,45-60.
    Jonsson, I.G.. A new approach to rough turbulent boundary layers. Ocean Engineering,1980,7,109-152.
    Kenyon, K.E. Wave refraction in ocean currents, Deep Sea Res.,1971,18,1023-1034.
    Komen, G.J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S. andP.A.E.M. Janssen,1994: Dynamics and Modelling of Ocean Waves, CambridgeUniversity Press,532p.
    Komen, G.J., S. Hasselmann, and K. Hasselmann. On the existence of a fullydeveloped wind-sea spectrum, J. Phys. Oceanogr.,1984,14,1271-1285.
    Kathleen L. McInnes and Graeme D. Hubbert. A numerical modeling study of stormsurges in Bass Strait, Aust. Met. Mag.,2003,52:143-156.
    Larson, Jacob, Ong "The Model Coupling Toolkit: A New Fortran90Toolkit forBuilding Multiphysics Parallel Coupled Models."2005: Int. J. High Perf. Comp.App.,19(3),277-292.
    Longuet-Higgins, M.S., Stewart, R.W. Changes in the form of short gravity waves onsteady non-uniform currents. J. Fluid Mech.,1960,10,565-549.
    Longuet-Higgins, M.S., Stewart, R.W. The changes in amplitude of short gravitywaves on steady non-uniform currents. J. Fluid Mech.,1961,529-549.
    Longuet-Higgins, M.S., Stewart, R.W. Radiation stress and mass transport in gravitywaves, with application to “surf-beats”. Journal of Fluid Mechanics,1962,13,481-504.
    Longuet-Higgins, M.S., Stewart, R.W. Radiation stress in water waves: a physicaldiscussion with applications. Deep Sea Research,1964,11,529-562.
    Luettich, R.A., Jr. and J.J. Westerink. Implementation of Bridge Pilings in theADCIRC Hydrodynamic Model: Upgrade and Documentation for ADCIRCVersion34.19, Contractors Report, department of the Army, US Army Corps ofEngineers, Waterways Experiment Station, Vicksburg, MS, November19,1999,8p.
    Luettich RA, Westerrink JJ. A (PARALLEL) ADVANCED CIRCULATION MODELFOR OCANIC, COASTAL AND ESTUARINE WATERS [R].2010(http://www.unc.edu/ims/adcirc/documentv49/ADCIRC_title_page.html).
    Madsen, O.S., Y.-K. Poon and H.C. Graber. Spectral wave attenuation by bottomfriction. Theory, Proc.21th Int. Conf. Coastal Engineering, ASCE,1988,492-504.
    Madsen, O.S. Spectral wave-current bottom boundary layer flows. CoastalEngineering1994. In: Proceeding of the24thInternational Conference, CoastalEngineering Research Council/ASCE,1994, pp.384-398.
    Madsen, P.A. and O.R. S rensen. Bound waves and triad interactions in shallow water.Ocean Engineering,1993,20,4,359-388.
    Marchesiello, P., J. C. McWilliams, A. F. Shchepetkin. Open boundary conditions forlong-term integration of regional ocean models, Ocean Modelling,2001,3,1-20.
    Mastenbroek, C.et al. The dynamical coupling of a wave model and a storm surgemodel through the atmospheric boundary layer. J. Phys. Oceanogr.,1993,23:1856-1866.
    Matsumoto, K., T. Takanezawa and M. Ooe. Ocean tide Models Developed byAssimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model:A Global Model and a Regional Model around Janpan. Journal of Oceanography,2000,56:567-581.
    Maurice Danard, Adam Munro and Tad Murty. Storm surge hazard in Canada. NaturalHazards,2003,28:407-431.
    Mellor, G.L. The three-dimensional current and surface wave equations. Journal ofPhysical Oceanography,2003,33,1978-1989.
    Mellor, G.L. Some consequences of the three-dimensional currents and surface waveequations. Journal of Physical Oceanography,2005,35,2291-2298.
    Orlanski, I. A simple boundary condition for unbounded hyperbolic flows. J. Comp.Sci.,1976,21(3),251-269.
    Peliz, A., J. Dubert, D. B. Haidvogel. Subinertial Response of a Density-DrivenEastern Boundary Poleward Current to Wind Forcing, J. Phys. Oceanogr.,2003,33,1633-1650.
    Phillips, N.A. A coordinate system having some special advantages for numericalforecasting. Journal of Meteorology,1957,14:184-185.
    Pierson, W.J. and L. Moskowitz. A proposed spectral form for fully developed windseas based on the similarity theory of S.A. Kitaigorodskii, J. Geophys. Res.,1964,69,24,5181-5190.
    Qi, J., Chen, C., Beardsley, R.C., Perrie, W., Cowles, G.W., Lai, Z. Anunstructuredgrid finite-volume surface wave model (FVCOM-SWAVE):implementation, validations and applications. Ocean Model.2009,28,153–166.
    Raymond, W. H. and H. L. Kuo. A radiation boundary condition formulti-dimensional flows, Quart. J. R. Met. Soc.,1984,110,535-551.
    Roland, A., Zanke, U., Hsu, T.-W., Ou, S.-H., Liau, J.-M.,2006. Spectral wavemodelling on unstructured gridswith theWWM(WindWave Model) II: the deepwater case. Third Chinese–German Joint Symposiumon Coastal and OceanEngineering. Taiwan,2006.
    Shchepetkin, A. F., and J.C. McWilliams. The regional oceanic modeling system(ROMS): a split-explicit, free-surface, topography-following-coordinate oceanicmodel. Ocean Model,2005,9(4),347-404.
    Shchepetkin, A. F., and J.C. Mcwilliams. Ocean forecasting in terrain-followingsystem. J Comput Phys,2009,228(24),8985-9000.
    Sheng, Y. Peter, Yanfeng Zhang, Vladimir A. Paramygin. Simulation of strom surge,wave, and coastal inundation in the Northeastern Gulf of Mexico region duringHurricane Ivan in2004. Ocean Modelling,2010,35,314-331.
    Siddons, L.A., L.R. Wyatt, J. Wolf. Assimilation of HF radar into the SWAN wavemodel, Journal of Marine Systems,2009,77(3):312-324.
    Signell, R.P., Beardsley, R.C., Graber, H.C., Capotondi, A. Effecf of wave-currentinteraction on wind-driven circulation in narrow, shallow embayments. Journalof Geophysical Research,1990,95,9671-9678.
    Svendsen, I.A. Wave heights and set-up in a surf zone. Coastal Engineering,1984,8,303-329.
    Svendsen, I.A., Haas, K., Zhao, Q.,2002. Quasi-3D nearshore circulation modelSHORECIRC, User’s Manual, Draft Report, Center for Applied CoastalResearch, Department of Civil Engineering, University of Delaware, Newark.
    Song, Y. and D. B. Haidvogel. A semi-implicit ocean circulation model using ageneralized topography-following coordinate system, J. Comp. Phys.,1994,115(1),228-244.
    Soo Youl Kim, Tomohiro Yasuda, Hajime Mase. Wave set-up in the storm surge alongopen casts during Typhoon Anita. Coastal Engineering,2010,57,631-642.
    S rensen, O.R., Kofoed-Hansen, H., Rugbjerg, M., S rensen, L.S.,2004. A thirdgeneration spectral wave model using an unstructured finite volume technique.Proc.29th Int. Conf. Coastal Engng. ASCE, pp.894–906.
    Tad S. Murty and Venkata R. Neralla. On the recurvature of tropical cyclones and thestorm surge problem in Bangladesh. Natural Hazards,1992,6:275-279.
    Tolman,. H.L. Effects of tides and storm surges of North Sea wind Waves. J. Phys.Oceanogr.,1991,21,766-781.
    Tolman, H.J. Effects of numerics on the physics in a third-generation wind-wavemodel. J. Phys. Oceanogr.,1992,22,10,1095-1111.
    Van Vledder, G. Ph. The WRT method for the computation of non-linear four-waveinteractions in discrete spectral wave models. Coast. Engng.,2006,53,223-242
    WAMDI group. The WAM model-a third generation ocean wave prediction model. J.Phys. Oceanogr.,1988,18,1775-1810.
    Wang Xinian. Numerical Calculation of Storm Surge in the Open Seas of China,Storm Surges Observation and Modeling, Proceedings of the InternationalSymposium on Storm Surge. China Ocean Press,1990,211~225.
    Wang Xiuqin, Qian chengchun, Wang Wei, and Yan Tong. An elliptical wind fieldmodel of typhoons. Journal of Ocean University of China,2004,3(1),33-39.
    Warner, J. C., C. R. Sherwood, R. P. Signell, C. K. Harris, and H. G. Arango.Development of a three-dimensional, regional, coupled wave, current, andsediment-transport model. Computers&Geosciences,2008,34,1284-1306.
    Weisberg, R.H., and L. Zheng. Hurricane storm surge simulations comparingthree-dimensional with two-dimensional formulations based on an Ivan-likestorm over the Tampa Bay, Florida region. J. Geophys. Res.,2008,113, C12001,doi:10.1029/2008JC005115.
    Westerink, J.J., Luettich, R.A., Baptista, A.M., Scheffner, N.W., Farrar, P. Tide andstorm surge predictions using finite element model, Journal of HydraulicEngineering,1991,118,1373-1390.
    Wilkin, J. L., H. G. Arango, D. B. Haidvogel, C. S. Lichtenwalner, S. M. Durski, andK. S. Hedstrom,2005: A regional Ocean Modeling System for the Long-termEcosystem Observatory, J. Geophys. Res.,110, C06S91,doi:10.1029/2003JC002218.
    Willoughby, H. E. and M. E. Rahn. Parametric representation of the primary hurricanevortex. PartⅠ: Observations and Evaluation of the Holland (1980) model,Monthly Weather Review,2004,132:3033-3048.
    Wolf, J., Hubbert, K.P. and Flather, R.A.. A feasibility study for the development of ajoint surge and wave model. Proundman Oceanographic Laboratory,1988. Rep.No.1,109pp.
    Wu, J. Wind-stress coefficients over sea surface from breeze to hurricane, J. Geophys.Res.,1982,87, C12,9704-9706.
    Xavier Bertin, Nicolas Bruneau, Jean-Francois Breilh, Andre B. Fortunato, MikhailKarpytchev. Importance of wave age and resonance in storm surges: The caseXynthia, Bay of Biscay. Ocean Modelling,2012,42,16-30.
    Xie, L., K. Wu, L.J. Pietrafesa, and C. Zhang. A numerical study of wave-currentinteraction through surface and bottom stresses: Wind-driven circulation in theSouth Atlantic Bight under uniform winds. J. Grophys. Res.,2001.106(C8):16841-16855.
    Xie, L., Liu, H., Peng, M The effect of wave-current interactions on the storm surgeand inundation in Charleston Harbor during Typhoon Hugo. Ocean Modelling,2008,20,252-269.
    Yin Baoshu, Sha Rina. Numerical Study of Wave-Tide-Surge Coupling Processes.Studia Marina Sinica,2006,4(47):1~15.
    Zanke, U., Roland, A., Hsu, T.-W., Ou, S.-H., Liau, J.-M.,2006. Spectral wavemodelling on unstructured grids with the WWM (Wind Wave Model) II: theshallow water case. Third Chinese–German Joint Symposium on Coastal andOcean Engineering. Taiwan,2006.
    Zhang, M.Y., Y.S. Li. The synchronous coupling of a third-generation wave modeland a two-dimensional storm model. Ocean Engineering,1996.6:533-543.
    Zhang, M.Y, Y.S. Li. The dynamic coupling of a third-generation wave model and a3D hydrodynamic model through boundary layers. Continental shelf Research,1997.10:1141-1170.
    Zhong Liejun, Li Ming, Zhang Da-Lin. How do uncertainties in hurricane modelforecasts affect storm surge predictions in a semi-enclosed bay?. Estuarine,Coastal and Shelf Science,2010,90,61-72.
    Zijlema, M. Computation of wind-wave spectra in coastal waters with SWAN onunstructured grids. Coastal Engineering,2010,57,267-277.