伤害避免人格维度的多模态MRI研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     伤害避免(harm avoidance, HA)人格主要是指对有害刺激强烈反应的天生倾向。其神经机制仍不清楚。本研究采用多模态磁共振成像(magnetic resonance imaging, MRI)技术,联合运用基于体素的形态学(voxel-based morphometry analysis, VBM)、独立成分分析(independent component analysis, ICA)和感兴趣区静息态功能连接(resting-state functional connectivity, rsFC)方法,研究健康青年脑灰质体积(gray matter volume, GMV)、静息态功能网络(resting-state network, RSN)及rsFC与HA评分的关系。
     材料与方法:
     选择符合入组标准的健康青年志愿者291例,年龄:18~29岁;男性138例,平均年龄:22.1±2.5岁;女性153例,平均年龄:23.2±2.2岁。每名受试者完成三维人格问卷及Beck抑郁问卷。利用GE3.0T Signa HDX磁共振扫描仪对所有受试者进行静息态及结构像数据的采集。静息态扫描时嘱受试者闭眼、保持身体静止不动,均匀呼吸,精神放松,尽量不思考任何事情。
     1.采用基于Matlab平台的SPM8软件及其插件包VBM8对高分辨率结构像进行预处理,预处理过程包括:灰、白质分割、空间标准化及空间平滑。采用基于Matlab平台的REST软件对静息态功能数据进行预处理,预处理过程包括:时间校正、头动校正、空间标准化、重采样到2mm×2mm×2mm的立方体素、带通滤波(带宽:0.01-0.08Hz,以去掉高频噪声和低频漂移)及空间平滑。
     2.采用预处理后的结构像数据,利用多重回归的方法,在控制年龄、BDI评分、性别影响后,研究GMV与HA评分的相互关系。
     3.采用预处理后的静息态功能数据,利用基于Matlab平台的GIFT软件进行组ICA分析,得到20个独立成分,选择与文献报道相一致的11个独立成分作为感兴趣RSNs,获得11个RSNs群组水平模板。运用多重回归分析,以感兴趣RSNs作为掩模(mask),在控制年龄、BDI评分、性别影响后,探讨网络内功能连接与HA评分的相关性。
     4.用最大概率模板提取双侧杏仁核亚区,将其作为感兴趣区并运用REST软件与全脑进行功能连接分析,得到功能连接模式图。运用多重回归分析,以各杏仁核亚区功能连接模式图作为mask,在控制年龄、BDI评分影响后,研究杏仁核亚区功能连接与HA评分的相关性并分析性别差异。
     5.统计分析采用AlphaS im多重比较校正方法对结果进行校正,最后将校正后的统计参数映射到MNI标准空间进行显示、观察。描述并记录有统计学意义脑区的团块大小、Brodmann分区、MNI坐标及相关强度。
     结果:
     1.GMV与HA评分负相关的脑区包括:右侧颞下回、右侧岛叶、双侧楔前叶及右侧顶上小叶。没有正相关的脑区。
     2.发现四个RSNs与HA评分存在相关性。背侧注意网络内呈负相关脑区包括右侧缘上回、左侧顶下小叶;没有正相关脑区。腹侧注意网络内呈正相关的脑区是右腹侧额叶皮层;而呈负相关的脑区包括右侧颞上回、双侧缘上回。右侧额顶网络内呈负相关的脑区包括双侧角回、右侧顶下小叶;而呈正相关的脑区是右内侧前额叶。感觉运动网络内呈负的相脑区包括双侧中扣带皮层、右侧辅助运动区、双侧中央后回、左侧中央前回,没有呈正相关的脑区。
     3.杏仁核三个亚区为:基底外侧核(laterobasal, LB)、中央内侧核(centromedial, CM)和浅表核(superficial, SF)。每个亚区具有不同的rsFC模式。没有发现LB正rsFC与HA评分相关的脑区。LB负rsFC与HA评分的相关的脑区如下:左侧颞顶交界区(temporoparietal junction, TPJ)和双侧LB间负rsFCs与HA评分呈正相关的脑区;左枕叶和左侧LB间的负rsFC与HA评分呈正相关;双侧颞下回和右侧LB间的负rsFCs与HA评分呈负相关。与CM呈正rsFC的脑区如下:右侧CM和右侧前运动皮层间的正rsFCs与HA评分呈正相关。在与CM呈负rsFC的脑区如下:双侧腹内侧前额叶皮层(ventromedial prefrontal cortex, vmPFC)和左侧CM间的负rsFCs与HA评分呈负相关;右侧额极和右侧CM间的负rsFCs与HA评分呈负相关。在与CM呈负rsFC的脑区中,我们没有发现与HA评分呈正相关的脑区。与SF呈正rsFC的脑区中,右侧腹侧纹状体和右侧SF间的正rsFCs与HA评分呈负相关。在与SF呈负功能连接的脑区如下:双侧vmPFC和左侧SF间的负rsFCs与HA评分呈负相关;左侧颞下回、左侧vmPFC和右侧SF间的负rsFCs与HA评分呈负相关;左侧TPJ和右侧SF间的负rsFCs与HA评分呈正相关。LB rsFC和HA评分的相关性女性受试者较男性强。CMrsFC与HA评分的相关性男性受试者较女性强。SF rsFC与HA评分的相关性没有性别差异。
     结论:
     1.健康青年局部脑区灰质体积与HA评分呈负相关。
     2.健康青年的HA评分与背侧注意网络、腹侧注意网络、右侧额顶网络、感觉运动网络存在相关性。
     3.杏仁核亚区的rsFC与HA评分存在相关性,而且这种相关存在性别差异。
Objective:
     Harm avoidance (HA) is a personality dimension involving the tendency to respond intensely to signals of aversive stimuli. While its neural substrates remain elusive. We combined voxel-based morphometry (VBM) analysis, independent component analysis (ICA) and resting-state functional connectivity (rsFC) based on ROI analysis of fMRI data to investigate neural correlates of HA scores in a large sample of healthy young adults.
     Subjects and Methods:
     A total of291right-handed healthy young adults were recruited in this study. After completing the tests of the temperament of the Tridimensional Personality Questionnaire (TPQ) and the Beck Depression Inventory (BDI), the subjects' resting-state fMRI and sagittal structural images were collected using a GE3.0T Signa HDX scanner. During the resting-state scanning, all subjects were explicitly instructed to keep their eyes closed, relax, as motionless as possible and think of nothing.
     1. All preprocessing steps were carried out using the statistical parametric mapping (SPM8) based on Matlab.
     2. Voxel-based partial correlation analyses were carried out to test correlations between the HA scores and the GMV while controlling age, gender and BDI scores.
     3. After ICA by the GIFT software based on Matlab, we chooseed eleven RSNs from the results of ICA. The partial correlation analyses were carried out to test correlations between the HA scores and rsFCs within the eleven RSNs while age, gender and BDI scores were entered as covariates.
     4. The amygdala subregions were extracted using the maximum probabilistic map (MPM). The relationships between HA scores and amygdala subregion rsFCs were analyzed using a multiple regression model within the significant mask of each amygdala subregion while controlling for age and BDI scores.
     5. The multiple comparisons were statistically corrected by Monte Carlo simulation. Finally the corrected statistical parameter mapping was overlapped onto MNI standard template and the coordinate, size and peak t values of each significant cluster were recorded.
     Results:
     1. The HA scores were negatively correlated with the GMVs in the right inferior temporal gyrus, right insular cortex, the bilateral precuneus and right superior parietal lobule.
     2. The relationships between HA scores and RSNs were found in dorsal attention network, the ventral attention network, the right frontoparietal network, the sensorimotor network.
     3. The rsFC patterns of the amygdalar subregions showed different. HA scores were correlated with rsFCs between the LB and temporal and occipital cortices related to emotional information input, between the CM and the frontal cortices associated with emotional output control, and between the SF and the frontal and temporal areas involved in both functions.
     Conclusion:
     1. HA scores were related to gray matter volumes of several brain areas.
     2. HA scores were also related to resting-state functional networks.
     3. These findings not only confirmed associations between HA score and the rsFCs of amygdalar subregions, but also found sex differences in these correlations.
引文
[1]Eysenck HJ. Biological Basis of Personality. Nature[J],1963,199:1031-1034.
    [2]Eysenck HJ. The biological basis of personality(M):Transaction Pub.1967.
    [3]Gray JA, McNaughton N. The neuropsychology of anxiety(M):Cambridge Univ Press.1987.
    [4]Cloninger CR. A systematic method for clinical description and classification of personality variants. A proposal. Arch Gen Psychiatry[J],1987,44(6):573-588.
    [5]Cloninger CR, Svrakic DM, Przybeck TR. A psychobiological model of temperament and character. Archives of general psychiatry[J],1993,50(12):975-990.
    [6]Celikel FC, Kose S, Cumurcu BE, Erkorkmaz U, Sayar K, et al. Cloninger's temperament and character dimensions of personality in patients with major depressive disorder. Compr Psychiatry[J],2009,50(6):556-561.
    [7]Farmer A, Mahmood A, Redman K, Harris T, Sadler S, et al. A sib-pair study of the Temperament and Character Inventory scales in major depression. Arch Gen Psychiatry[J],2003,60(5):490-496.
    [8]Nyman E, Miettunen J, Freimer N, Joukamaa M, Maki P, et al. Impact of temperament on depression and anxiety symptoms and depressive disorder in a population-based birth cohort. J Affect Disord[J],2011,131(1-3):393-397.
    [9]Svrakic DM, Draganic S, Hill K, Bayon C, Przybeck TR, et al. Temperament, character, and personality disorders:etiologic, diagnostic, treatment issues. Acta Psychiatrica Scandinavica[J],2002,106(3):189-195.
    [10]Jylha P, Isometsa E. Temperament, character and symptoms of anxiety and depression in the general population. Eur Psychiatry[J],2006,21(6):389-395.
    [11]Lochner C, Hemmings S, Seedat S, Kinnear C, Schoeman R, et al. Genetics and personality traits in patients with social anxiety disorder:a case-control study in South Africa. Eur Neuropsychopharmacol[J],2007,17(5):321-327.
    [12]Starcevic V, Uhlenhuth EH, Fallon S, Pathak D. Personality dimensions in panic disorder and generalized anxiety disorder. J Affect Disord[J],1996,37(2-3):75-79.
    [13]Kim SJ, Kim YS, Lee HS, Kim SY, Kim CH. An interaction between the serotonin transporter promoter region and dopamine transporter polymorphisms contributes to harm avoidance and reward dependence traits in normal healthy subjects. Journal of neural transmission[J],2006,113(7):877-886.
    [14]Comings DE, Gade-Andavolu R, Gonzalez N, Wu S, Muhleman D, et al. A multivariate analysis of 59 candidate genes in personality traits:the temperament and character inventory. Clin Genet[J],2000,58(5):375-385.
    [15]Lesch KP. Gene-environment interaction and the genetics of depression. J Psychiatry Neurosci[J],2004,29(3):174-184.
    [16]Sen S, Burmeister M, Ghosh D. Meta-analysis of the association between a serotonin transporter promoter polymorphism (5-HTTLPR) and anxiety-related personality traits. Am J Med Genet B Neuropsychiatr Genet[J],2004,127B(1):85-89.
    [17]Sugiura M, Kawashima R, Nakagawa M, Okada K, Sato T, et al. Correlation between human personality and neural activity in cerebral cortex. Neuroimage[J], 2000,11(5 Pt 1):541-546.
    [18]Youn T, Lyoo IK, Kim J-K, Park H-J, Ha K-S, et al. Relationship between personality trait and regional cerebral glucose metabolism assessed with positron emission tomography. Biological Psychology[J],2002,60(2-3):109-120.
    [19]Yamasue H, Abe O, Suga M, Yamada H, Inoue H, et al. Gender-common and-specific neuroanatomical basis of human anxiety-related personality traits. Cereb Cortex[J],2008,18(1):46-52.
    [20]Omura K, Todd Constable R, Canli T. Amygdala gray matter concentration is associated with extraversion and neuroticism. Neuroreport[J],2005,16(17): 1905-1908.
    [21]Paulus MP, Rogalsky C, Simmons A, Feinstein JS, Stein MB. Increased activation in the right insula during risk-taking decision making is related to harm avoidance and neuroticism. Neuroimage[J],2003,19(4):1439-1448.
    [22]Baeken C, Van Schuerbeek P, De Raedt R, Bossuyt A, Vanderhasselt MA, et al. Passively viewing negatively valenced baby faces attenuates left amygdala activity in healthy females scoring high on 'Harm Avoidance'. Neurosci Lett[J],2010,478(2): 97-101.
    [23]Most SB, Chun MM, Johnson MR, Kiehl KA. Attentional modulation of the amygdala varies with personality. Neuroimage[J],2006,31(2):934-944.
    [24]Kim HJ, Kim JE, Cho G, Song IC, Bae S, et al. Associations between anterior cingulate cortex glutamate and gamma-aminobutyric acid concentrations and the harm avoidance temperament. Neurosci Lett[J],2009,464(2):103-107.
    [25]O'Gorman RL, Kumari V, Williams SCR, Zelaya FO, Connor SEJ, et al. Personality factors correlate with regional cerebral perfusion. Neuroimage[J],2006, 31(2):489-495.
    [26]Cloninger CR. A unified biosocial theory of personality and its role in the development of anxiety states. Psychiatr Dev[J],1986,4(3):167-226.
    [27]Ebstein RP. The molecular genetic architecture of human personality:beyond self-report questionnaires. Mol Psychiatry[J],2006,11(5):427-445.
    [28]Ashburner J, Friston KJ. Voxel-based morphometry--the methods. Neuroimage[J], 2000,11(6):805-821.
    [29]Pujol J, Lopez A, Deus J, Cardoner N, Vallejo J, et al. Anatomical variability of the anterior cingulate gyrus and basic dimensions of human personality. Neuroimage[J],2002,15(4):847-855.
    [30]Oldfield RC. The assessment and analysis of handedness:the Edinburgh inventory. Neuropsychologia[J],1971,9(1):97-113.
    [31]Beck AT, Steer RA. BDI:Beck depression inventory manual. New York[J],1993.
    [32]Friston KJ, Buchel C. Attentional modulation of effective connectivity from V2 to V5/MT in humans. Proc Natl Acad Sci U S A[J],2000,97(13):7591-7596.
    [33]Mechelli A, Price CJ, Friston KJ, Ashburner J. Voxel-based morphometry of the human brain:methods and applications. Current Medical Imaging Reviews[J],2005, 1(2):105-113.
    [34]Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage[J], 2007,38(1):95-113.
    [35]Iacoboni M. Neural mechanisms of imitation. Current opinion in neurobiology[J], 2005,15(6):632-637.
    [36]Cavanna AE, Trimble MR. The precuneus:a review of its functional anatomy and behavioural correlates. Brain[J],2006,129(Pt 3):564-583.
    [37]Den Ouden HEM, Frith U, Frith C, Blakemore SJ. Thinking about intentions. Neuroimage[J],2005,28(4):787-796.
    [38]Gardini S, Cloninger CR, Venneri A. Individual differences in personality traits reflect structural variance in specific brain regions. Brain Res Bull[J],2009,79(5): 265-270.
    [39]Sawamoto N, Honda M, Okada T, Hanakawa T, Kanda M, et al. Expectation of pain enhances responses to nonpainful somatosensory stimulation in the anterior cingulate cortex and parietal operculum/posterior insula:an event-related functional magnetic resonance imaging study. The Journal of Neuroscience[J],2000,20(19): 7438-7445.
    [40]Selemon LD, Goldman-Rakic PS. Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey:evidence for a distributed neural network subserving spatially guided behavior. The Journal of Neuroscience[J],1988,8(11):4049-4068.
    [41]Deen B, Pitskel NB, Pelphrey KA. Three systems of insular functional connectivity identified with cluster analysis. Cereb Cortex[J],2011,21(7): 1498-1506.
    [42]Critchley HD, Mathias CJ, Dolan RJ. Fear conditioning in humans:the influence of awareness and autonomic arousal on functional neuroanatomy. Neuron[J],2002, 33(4):653-663.
    [43]Elliott R, Friston KJ, Dolan RJ. Dissociable neural responses in human reward systems. J Neurosci[J],2000,20(16):6159-6165.
    [44]Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magnetic resonance in medicine[J],1995,34(4):537-541.
    [45]Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC. Detection of functional connectivity using temporal correlations in MR images. Human brain mapping[J],2002,15(4):247-262.
    [46]Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, et al. Mapping functionally related regions of brain with functional connectivity MR imaging. American Journal of Neuroradiology[J],2000,21(9):1636-1644.
    [47]Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nature reviews neuroscience[J],2002,3(3):215-229.
    [48]De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM. fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage[J],2006,29(4):1359-1367.
    [49]Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M. Electrophysiological signatures of resting state networks in the human brain. Proceedings of the national Academy of Sciences[J],2007,104(32):13170.
    [50]Sokoloff L, Wechsler RL, Mangold R, Balls K, Kety SS. Cerebral blood flow and oxygen consumption in hyperthyroidism before and after treatment. Journal of Clinical Investigation[J],1953,32(3):202.
    [51]Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci[J],2009, 29(26):8586-8594.
    [52]Allen G, McColl R, Barnard H, Ringe WK, Fleckenstein J, et al. Magnetic resonance imaging of cerebellar-prefrontal and cerebellar-parietal functional connectivity. Neuroimage[J],2005,28(1):39-48.
    [53]Friston KJ, Frith CD, Frackowiak RSJ. Time-dependent changes in effective connectivity measured with PET. Human brain mapping[J],1993,1(1):69-79.
    [54]McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, et al. (1997) Analysis of fMRI data by blind separation into independent spatial components. DTIC Document.
    [55]Damoiseaux JS, Rombouts S, Barkhof F, Scheltens P, Stam CJ, et al. Consistent resting-state networks across healthy subjects. Proceedings of the national Academy of Sciences[J],2006,103(37):13848-13853.
    [56]Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging:evidence from functional MRI. Proc Natl Acad Sci U S A[J],2004,101(13):4637-4642.
    [57]Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ, Bruno MA, Boveroux P, et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain[J],2010,133(Pt 1):161-171.
    [58]Posner MI, Petersen SE. The attention system of the human brain. Annu Rev Neurosci[J],1990,13:25-42.
    [59]Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI. The activation of attentional networks. Neuroimage[J],2005,26(2):471-479.
    [60]Posner MI, Dehaene S. Attentional networks. Trends in Neurosciences[J],1994, 17(2):75-79.
    [61]Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences[J],2006,103(26):10046-10051.
    [62]Clark L, Cools R, Robbins TW. The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning. Brain and Cognition[J],2004,55(1):41-53.
    [63]Schienle A, Schafer A, Stark R, Walter B, Vaitl D. Relationship between disgust sensitivity, trait anxiety and brain activity during disgust induction. Neuropsychobiology[J],2005,51(2):86-92.
    [64]Frith CD, Frith U. The neural basis of mentalizing. Neuron[J],2006,50(4): 531-534.
    [65]Schnell K, Bluschke S, Konradt B, Walter H. Functional relations of empathy and mentalizing:an fMRI study on the neural basis of cognitive empathy. Neuroimage[J], 2011,54(2):1743-1754.
    [66]Adolphs R. What does the amygdala contribute to social cognition? Annals of the New York Academy of Sciences[J],2010,1191(1):42-61.
    [67]Van Overwalle F. Social cognition and the brain:a meta-analysis. Hum Brain Mapp[J],2009,30(3):829-858.
    [68]Paus T. Mapping brain maturation and cognitive development during adolescence. Trends in cognitive sciences[J],2005,9(2):60-68.
    [69]Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience[J],2007,27(9):2349-2356.
    [70]Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL. Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol[J],2008,100(6):3328-3342.
    [71]Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, et al. Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci U S A[J],2007,104(26):11073-11078.
    [72]Reuter M, Kuepper Y, Hennig J. Association between a polymorphism in the promoter region of the TPH2 gene and the personality trait of harm avoidance. The International Journal of Neuropsychopharmacology[J],2007,10(3):401.
    [73]Reuter M, Ott U, Vaitl D, Hennig J. Impaired executive control is associated with a variation in the promoter region of the tryptophan hydroxylase 2 gene. Journal of Cognitive Neuroscience[J],2007,19(3):401-408.
    [74]Reuter M, Esslinger C, Montag C, Lis S, Gallhofer B, et al. A functional variant of the tryptophan hydroxylase 2 gene impacts working memory:A genetic imaging study. Biological psychology[J],2008,79(1):111-117.
    [75]Northoff G, Heinzel A, de Greck M, Bermpohl F, Dobrowolny H, et al. Self-referential processing in our brain--a meta-analysis of imaging studies on the self. Neuroimage[J],2006,31(1):440-457.
    [76]Lemogne C, Gorwood P, Bergouignan L, Pelissolo A, Lehericy S, et al. Negative affectivity, self-referential processing and the cortical midline structures. Social Cognitive and Affective Neuroscience[J],2011,6(4):426-433.
    [77]Yu C, Zhou Y, Liu Y, Jiang T, Dong H, et al. Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation. Neuroimage[J],2011,54(4):2571-2581.
    [78]Vogt BA. Pain and emotion interactions in subregions of the cingulate gyrus. Nature reviews neuroscience[J],2005,6(7):533-544.
    [79]Canli T, Omura K, Haas BW, Fallgatter A, Constable RT, et al. Beyond affect:a role for genetic variation of the serotonin transporter in neural activation during a cognitive attention task. Proceedings of the National Academy of Sciences of the United States of America[J],2005,102(34):12224.
    [80]LeDoux J. The amygdala. Curr Biol[J],2007,17(20):R868-874.
    [81]Phelps EA, LeDoux JE. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron[J],2005,48(2):175-187.
    [82]Iidaka T, Matsumoto A, Ozaki N, Suzuki T, Iwata N, et al. Volume of left amygdala subregion predicted temperamental trait of harm avoidance in female young subjects. A voxel-based morphometry study. Brain research[J],2006,1125(1): 85-93.
    [83]Zuckerman M, Cloninger CR. Relationships between Cloninger's, Zuckerman's, and Eyesenck's dimensions of personality. Personality and Individual Differences[J], 1996.
    [84]Boyce P, Parker G, Barnett B, Cooney M, Smith F. Personality as a vulnerability factor to depression. The British Journal of Psychiatry[J],1991,159(1):106-114.
    [85]Buckholtz JW, Callicott JH, Kolachana B, Hariri AR, Goldberg TE, et al. Genetic variation in MAOA modulates ventromedial prefrontal circuitry mediating individual differences in human personality. Mol Psychiatry[J],2008,13(3):313-324.
    [86]Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, et al. Hippocampal volume reduction in major depression. Am J Psychiatry [J],2000,157(1):115-118.
    [87]Frodl T, Meisenzahl E, Zetzsche T, Bottlender R, Born C, et al. Enlargement of the amygdala in patients with a first episode of major depression. Biol Psychiatry[J], 2002,51(9):708-714.
    [88]Lange C, Irle E. Enlarged amygdala volume and reduced hippocampal volume in young women with major depression. Psychol Med[J],2004,34(6):1059-1064.
    [89]Sheline YI, Gado MH, Price JL. Amygdala core nuclei volumes are decreased in recurrent major depression. Neuroreport[J],1998,9(9):2023-2028.
    [90]Bowley MP, Drevets WC, Ongur D, Price JL. Low glial numbers in the amygdala in major depressive disorder. Biol Psychiatry[J],2002,52(5):404-412.
    [91]Blair K, Shaywitz J, Smith BW, Rhodes R, Geraci M, et al. Response to emotional expressions in generalized social phobia and generalized anxiety disorder: evidence for separate disorders. American Journal of Psychiatry[J],2008,165(9): 1193.
    [92]Etkin A, Wager TD. Functional neuroimaging of anxiety:a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry[J],2007,164(10):1476-1488.
    [93]Etkin A, Prater KE, Schatzberg AF, Menon V, Greicius MD. Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Arch Gen Psychiatry[J],2009,66(12):1361-1372.
    [94]McClure EB, Monk CS, Nelson EE, Parrish JM, Adler A, et al. Abnormal attention modulation of fear circuit function in pediatric generalized anxiety disorder. Archives of General Psychiatry[J],2007,64(1):97.
    [95]Davey CG, Allen NB, Harrison BJ, Yucel M. Increased amygdala response to positive social feedback in young people with major depressive disorder. Biol Psychiatry[J],2011,69(8):734-741.
    [96]Sah P, Faber ES, Lopez De Armentia M, Power J. The amygdaloid complex: anatomy and physiology. Physiol Rev[J],2003,83(3):803-834.
    [97]Amunts K, Kedo O, Kindler M, Pieperhoff P, Mohlberg H, et al. Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex:intersubject variability and probability maps. Anat Embryol (Berl)[J],2005,210(5-6):343-352.
    [98]Ball T, Rahm B, Eickhoff SB, Schulze-Bonhage A, Speck O, et al. Response properties of human amygdala subregions:evidence based on functional MRI combined with probabilistic anatomical maps. PLoS One[J],2007,2(3):e307.
    [99]Roy AK, Shehzad Z, Margulies DS, Kelly AM, Uddin LQ, et al. Functional connectivity of the human amygdala using resting state fMRI. Neuroimage[J],2009, 45(2):614-626.
    [100]Brown SL, Svrakic DM, Przybeck TR, Cloninger CR. The relationship of personality to mood and anxiety states:a dimensional approach. J Psychiatr Res[J], 1992,26(3):197-211.
    [101]Miettunen J, Kantojarvi L, Ekelund J, Veijola J, Karvonen JT, et al. A large population cohort provides normative data for investigation of temperament. Acta Psychiatr Scand[J],2004,110(2):150-157.
    [102]Gundel H, Lopez-Sala A, Ceballos-Baumann AO, Deus J, Cardoner N, et al. Alexithymia correlates with the size of the right anterior cingulate. Psychosomatic Medicine[J],2004,66(1):132-140.
    [103]Van Schuerbeek P, Baeken C, De Raedt R, De Mey J, Luypaert R. Individual differences in local gray and white matter volumes reflect differences in temperament and character:a voxel-based morphometry study in healthy young females. Brain Res[J],2011,1371(6):32-42.
    [104]Hakamata Y, Iwase M, Iwata H, Kobayashi T, Tamaki T, et al. Gender difference in relationship between anxiety-related personality traits and cerebral brain glucose metabolism. Psychiatry research[J],2009,173(3):206-211.
    [105]Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage[J],2005,25(4):1325-1335.
    [106]Eickhoff SB, Heim S, Zilles K, Amunts K. Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps. Neuroimage[J],2006, 32(2):570-582.
    [107]Hurlemann R, Rehme AK, Diessel M, Kukolja J, Maier W, et al. Segregating intra-amygdalar responses to dynamic facial emotion with cytoarchitectonic maximum probability maps. J Neurosci Methods[J],2008,172(1):13-20.
    [108]Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA. The impact of global signal regression on resting state correlations:are anti-correlated networks introduced? Neuroimage[J],2009,44(3):893-905.
    [109]Weissenbacher A, Kasess C, Gerstl F, Lanzenberger R, Moser E, et al. Correlations and anticorrelations in resting-state functional connectivity MRI:a quantitative comparison of preprocessing strategies. Neuroimage[J],2009,47(4): 1408-1416.
    [110]Hampson M, Driesen N, Roth JK, Gore JC, Constable RT. Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance. Magnetic resonance imaging[J],2010,28(8): 1051-1057.
    [111]Price JL. Comparative aspects of amygdala connectivity. Ann N Y Acad Sci[J], 2003,985(6):50-58.
    [112]LeDoux J. The emotional brain, fear, and the amygdala. Cell Mol Neurobiol[J], 2003,23(4-5):727-738.
    [113]Ionta S, Heydrich L, Lenggenhager B, Mouthon M, Fornari E, et al. Multisensory mechanisms in temporo-parietal cortex support self-location and first-person perspective. Neuron[J],2011,70(2):363-374.
    [114]Baylis GC, Rolls ET. Responses of neurons in the inferior temporal cortex in short term and serial recognition memory tasks. Experimental brain research Experimentelle Hirnforschung Experimentation cerebrale[J],1987,65(3):614-622.
    [115]Chouinard PA, Goodale MA. Category-specific neural processing for naming pictures of animals and naming pictures of tools:an ALE meta-analysis. Neuropsychologia[J],2010,48(2):409-418.
    [116]Heim S, Eickhoff SB, Ischebeck AK, Friederici AD, Stephan KE, et al. Effective connectivity of the left BA 44, BA 45, and inferior temporal gyrus during lexical and phonological decisions identified with DCM. Hum Brain Mapp[J],2009,30(2): 392-402.
    [117]Scheff SW, Price DA, Schmitt FA, Scheff MA, Mufson EJ. Synaptic loss in the inferior temporal gyrus in mild cognitive impairment and Alzheimer's disease. J Alzheimers Dis[J],2011,24(3):547-557.
    [118]Habel U, Klein M, Kellermann T, Shah NJ, Schneider F. Same or different? Neural correlates of happy and sad mood in healthy males. Neuroimage[J],2005, 26(1):206-214.
    [119]Surguladze SA, El-Hage W, Dalgleish T, Radua J, Gohier B, et al. Depression is associated with increased sensitivity to signals of disgust:a functional magnetic resonance imaging study. Journal of psychiatric research[J],2010,44(14):894-902.
    [120]van Heeringen K, Van den Abbeele D, Vervaet M, Soenen L, Audenaert K. The functional neuroanatomy of mental pain in depression. Psychiatry Res[J],2010, 181(2):141-144.
    [121]Liao W, Qiu C, Gentili C, Walter M, Pan Z, et al. Altered effective connectivity network of the amygdala in social anxiety disorder:a resting-state FMRI study. PLoS One[J],2010,5(12):e15238.
    [122]Liao W, Xu Q, Mantini D, Ding J, Machado-de-Sousa JP, et al. Altered gray matter morphometry and resting-state functional and structural connectivity in social anxiety disorder. Brain Res[J],2011,1388:167-177.
    [123]Davis M. Neurobiology of fear responses:the role of the amygdala. J Neuropsychiatry Clin Neurosci[J],1997,9(3):382-402.
    [124]Deiber MP, Passingham RE, Colebatch JG, Friston KJ, Nixon PD, et al. Cortical areas and the selection of movement:a study with positron emission tomography. Experimental brain research Experimentelle Hirnforschung Experimentation cerebrale[J],1991,84(2):393-402.
    [125]Ochsner KN, Gross JJ. The cognitive control of emotion. Trends in cognitive sciences[J],2005,9(5):242-249.
    [126]Amodio DM, Frith CD. Meeting of minds:the medial frontal cortex and social cognition. Nat Rev Neurosci[J],2006,7(4):268-277.
    [127]Carmichael ST, Price JL. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol[J],1995,363(4):615-641.
    [128]Hakamata Y, Iwase M, Iwata H, Kobayashi T, Tamaki T, et al. Regional brain cerebral glucose metabolism and temperament:a positron emission tomography study. Neuroscience letters[J],2006,396(1):33-37.
    [129]Moreno N, Gonzalez A. Evolution of the amygdaloid complex in vertebrates, with special reference to the anamnio-amniotic transition. J Anat[J],2007,211(2): 151-163.
    [130]Goossens L, Kukolja J, Onur OA, Fink GR, Maier W, et al. Selective processing of social stimuli in the superficial amygdala. Hum Brain Mapp[J],2009,30(10): 3332-3338.
    [131]Stephan H, Andy OJ. Quantitative comparison of the amygdala in insectivores and primates. Acta Anat (Basel)[J],1977,98(2):130-153.
    [132]Postuma RB, Dagher A. Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cereb Cortex[J],2006,16(10):1508-1521.
    [133]Matthews SC, Simmons AN, Lane SD, Paulus MP. Selective activation of the nucleus accumbens during risk-taking decision making. Neuroreport[J],2004,15(13): 2123-2127.
    [134]Wrase J, Klein S, Gruesser SM, Hermann D, Flor H, et al. Gender differences in the processing of standardized emotional visual stimuli in humans:a functional magnetic resonance imaging study. Neuroscience letters[J],2003,348(1):41-45.
    [135]Hamann S, Herman RA, Nolan CL, Wallen K. Men and women differ in amygdala response to visual sexual stimuli. Nature Neuroscience [J],2004,7(4): 411-416.
    [136]Fischer H, Sandblom J, Herlitz A, Fransson P, Wright CI, et al. Sex-differential brain activation during exposure to female and male faces. Neuroreport[J],2004, 15(2):235-238.
    [137]Schienle A, Schafer A, Stark R, Walter B, Vaitl D. Gender differences in the processing of disgust- and fear-inducing pictures:an fMRI study. Neuroreport[J], 2005,16(3):277-280.
    [138]Hamann S. Sex differences in the responses of the human amygdala. The Neuroscientist[J],2005,11(4):288-293.
    [139]Domes G, Schulze L, Bottger M, Grossmann A, Hauenstein K, et al. The neural correlates of sex differences in emotional reactivity and emotion regulation. Human brain mapping[J],2010,31(5):758-769.
    [140]Gur RC, Mozley LH, Mozley PD, Resnick SM, Karp JS, et al. Sex differences in regional cerebral glucose metabolism during a resting state. Science[J],1995, 267(5197):528-531.
    [141]Kilpatrick LA, Zald DH, Pardo JV, Cahill LF. Sex-related differences in amygdala functional connectivity during resting conditions. Neuroimage[J],2006, 30(2):452-461.
    [142]Kudielka BM, Kirschbaum C. Sex differences in HPA axis responses to stress:a review. Biological Psychology[J],2005,69(1):113-132.
    [143]Neufang S, Specht K, Hausmann M, Gunturkun O, Herpertz-Dahlmann B, et al. Sex differences and the impact of steroid hormones on the developing human brain. Cerebral Cortex (New York, N Y:1991)[J],2009,19(2):464-473.
    [144]Schneider S, Peters J, Bromberg U, Brassen S, Menz MM, et al. Boys do it the right way:sex-dependent amygdala lateralization during face processing in adolescents. Neuroimage[J],2011,56(3):1847-1853.
    [145]Fang WS, Wiggins RH,3rd, Illner A, Hamilton BE, Hedlund GL, et al. Primary lesions of the root of the tongue. Radiographics[J],2011,31(7):1907-1922.
    [1]LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci[J],2000,23(5): 155-184.
    [2]Maren S, Yap SA, Goosens KA. The amygdala is essential for the development of neuronal plasticity in the medial geniculate nucleus during auditory fear conditioning in rats. J Neurosci[J],2001,21(6):RC135.
    [3]Davis M, Whalen PJ. The amygdala:vigilance and emotion. Mol Psychiatry[J], 2001,6(1):13-34.
    [4]Rodrigues SM, Schafe GE, LeDoux JE. Molecular mechanisms underlying emotional learning and memory in the lateral amygdala. Neuron[J],2004,44(1): 75-91.
    [5]Morris JS, Friston KJ, Buchel C, Frith CD, Young AW, et al. A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain[J], 1998,121 (Pt 1):47-57.
    [6]Morris JS, Ohman A, Dolan RJ. Conscious and unconscious emotional learning in the human amygdala. Nature[J],1998,393(6684):467-470.
    [7]Phelps EA, O'Connor KJ, Cunningham WA, Funayama ES, Gatenby JC, et al. Performance on indirect measures of race evaluation predicts amygdala activation. J Cogn Neurosci[J],2000,12(5):729-738.
    [8]Adolphs R, Gosselin F, Buchanan TW, Tranel D, Schyns P, et al. A mechanism for impaired fear recognition after amygdala damage. Nature[J],2005,433(7021): 68-72.
    [9]Schacter DL, Coyle JT. Memory distortion:How minds, brains, and societies reconstruct the past(M):Harvard Univ Pr.1997.
    [10]Eichenbaum H. The cognitive neuroscience of memory:an introduction(M): Oxford Univ Pr.2011.
    [11]LeDoux J. The amygdala. Curr Biol[J],2007,17(20):R868-874.
    [12]LeDoux J. The emotional brain, fear, and the amygdala. Cell Mol Neurobiol[J], 2003,23(4-5):727-738.
    [13]Walker DL, Davis M. The role of amygdala glutamate receptors in fear learning, fear-potentiated startle, and extinction. Pharmacol Biochem Behav[J],2002,71(3): 379-392.
    [14]Fanselow MS, LeDoux JE. Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron[J],1999,23(2):229-232.
    [15]Medina JF, Repa JC, Mauk MD, LeDoux JE. Parallels between cerebellum-and amygdala-dependent conditioning. Nat Rev Neurosci[J],2002,3(2):122-131.
    [16]Pare D, Quirk GJ, Ledoux JE. New vistas on amygdala networks in conditioned fear. Journal of neurophysiology[J],2004,92(1):1-9.
    [17]Pitkanen A, Savander V, LeDoux JE. Organization of intra-amygdaloid circuitries in the rat:an emerging framework for understanding functions of the amygdala. Trends in neurosciences[J],1997,20(11):517-523.
    [18]Amorapanth P, LeDoux JE, Nader K. Different lateral amygdala outputs mediate reactions and actions elicited by a fear-arousing stimulus. Nature neuroscience[J], 2000,3(2):74-79.
    [19]Nader K, Majidishad P, Amorapanth P, LeDoux JE. Damage to the lateral and central, but not other, amygdaloid nuclei prevents the acquisition of auditory fear conditioning. Learning & Memory[J],2001,8(3):156-163.
    [20]Sullivan GM, Apergis J, Bush DEA, Johnson LR, Hou M, et al. Lesions in the bed nucleus of the stria terminalis disrupt corticosterone and freezing responses elicited by a contextual but not by a specific cue-conditioned fear stimulus. Neuroscience[J],2004,128(1):7-14.
    [21]Walker DL, Toufexis DJ, Davis M. Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. European Journal of Pharmacology[J],2003,463(1-3):199-216.
    [22]Kalin NH, Shelton SE, Davidson RJ. The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate. The Journal of Neuroscience[J],2004,24(24):5506-5515.
    [23]Repa JC, Muller J, Apergis J, Desrochers TM, Zhou Y, et al. Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nature Neuroscience[J],2001,4(7):724-731.
    [24]Medina JF, Repa JC, Mauk MD, LeDoux JE. Parallels between cerebellum-and amygdala-dependent conditioning. Nature reviews neuroscience[J],2002,3(2): 122-131.
    [25]Radwanska K, Nikolaev E, Knapska E, Kaczmarek L. Differential response of two subdivisions of lateral amygdala to aversive conditioning as revealed by c-Fos and P-ERK mapping. Neuroreport[J],2002,13(17):2241.
    [26]Sah P, Faber ES, Lopez De Armentia M, Power J. The amygdaloid complex: anatomy and physiology. Physiol Rev[J],2003,83(3):803-834.
    [27]Rosen JB. The neurobiology of conditioned and unconditioned fear:a neurobehavioral system analysis of the amygdala. Behavioral and cognitive neuroscience reviews[J],2004,3(1):23-41.
    [28]Fanselow MS, Poulos AM. The neuroscience of mammalian associative learning. Annu Rev Psychol[J],2005,56:207-234.
    [29]LeDoux J. Emotion, memory and the brain. Special Editions[J],2002.
    [30]LaBar KS, Gatenby JC, Gore JC, LeDoux JE, Phelps EA. Human amygdala activation during conditioned fear acquisition and extinction:a mixed-trial fMRI study. Neuron[J],1998,20(5):937-945.
    [31]Buchel C, Morris J, Dolan RJ, Friston KJ. Brain systems mediating aversive conditioning:an event-related fMRI study. Neuron[J],1998,20(5):947-957.
    [32]Phelps EA, Delgado MR, Nearing KI, LeDoux JE. Extinction learning in humans: role of the amygdala and vmPFC. Neuron[J],2004,43(6):897-905.
    [33]Bechara A, Tranel D, Damasio H, Adolphs R, Rockland C, et al. Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science[J],1995,269(5227):1115-1118.
    [34]LaBar KS, LeDoux JE, Spencer DD, Phelps EA. Impaired fear conditioning following unilateral temporal lobectomy in humans. The Journal of Neuroscience[J], 1995,15(10):6846-6855.
    [35]Holland PC, Gallagher M. Amygdala circuitry in attentional and representational processes. Trends in Cognitive Sciences[J],1999,3(2):65-73.
    [36]Everitt BJ, Parkinson JA, Olmstead MC, Arroyo M, Robledo P, et al. Associative Processes in Addiction and Reward The Role of Amygdala-Ventral Striatal Subsystems. Annals of the New York Academy of Sciences[J],1999,877(1): 412-438.
    [37]Rippon G, Rolls E, Davidson RD. The Brain and Emotion. Journal of Psychophysiology[J],2001,15(3):208-210.
    [38]Baxter MG, Murray EA. The amygdala and reward. Nature reviews neuroscience[J],2002,3(7):563-573.
    [39]Anderson AK, Christoff K, Panitz D, De Rosa E, Gabrieli JDE. Neural correlates of the automatic processing of threat facial signals. The Journal of Neuroscience[J], 2003,23(13):5627-5633.
    [40]Canli T, Sivers H, Whitfield SL, Gotlib IH, Gabrieli JDE. Amygdala response to happy faces as a function of extraversion. Science[J],2002,296(5576):2191-2191.
    [41]Somerville LH, Kim H, Johnstone T, Alexander AL, Whalen PJ. Human amygdala responses during presentation of happy and neutral faces:correlations with state anxiety. Biological Psychiatry[J],2004,55(9):897-903.
    [42]Johnsrude IS, Owen AM, White NM, Zhao WV, Bohbot V. Impaired preference conditioning after anterior temporal lobe resection in humans. The Journal of Neuroscience[J],2000,20(7):2649-2656.
    [43]McGaugh JL. Memory--a century of consolidation. Science[J],2000,287(5451): 248-251.
    [44]Packard MG, Cahill L. Affective modulation of multiple memory systems. Current Opinion in Neurobiology[J],2001,11(6):752-756.
    [45]Martin SJ, Morris RGM. New life in an old idea:the synaptic plasticity and memory hypothesis revisited. Hippocampus[J],2002,12(5):609-636.
    [46]Eisenberg M, Kobilo T, Berman DE, Dudai Y. Stability of retrieved memory: inverse correlation with trace dominance. Science[J],2003,301(5636):1102-1104.
    [47]Roozendaal B. Stress and memory:opposing effects of glucocorticoids on memory consolidation and memory retrieval. Neurobiology of Learning and Memory[J],2002,78(3):578-595.
    [48]Berlyne DE, Carey ST. Incidental learning and the timing of arousal. Psychonomic Science [J],1968.
    [49]Adolphs R, Tranel D, Denburg N. Impaired emotional declarative memory following unilateral amygdala damage. Learning & Memory[J],2000,7(3):180-186.
    [50]Cahill L, Babinsky R, Markowitsch HJ, McGaugh JL. The amygdala and emotional memory. Nature[J],1995,377(6547):295-296.
    [51]Cahill L, Haier RJ, Fallon J, Alkire MT, Tang C, et al. Amygdala activity at encoding correlated with long-term, free recall of emotional information. Proceedings of the National Academy of Sciences[J],1996,93(15):8016.
    [52]Canli T, Zhao Z, Brewer J, Gabrieli JDE, Cahill L. Event-related activation in the human amygdala associates with later memory for individual emotional experience. Journal of Neuroscience[J],2000,20(19):RC99.
    [53]Dolcos F, LaBar KS, Cabeza R. Interaction between the amygdala and the medial temporal lobe memory system predicts better memory for emotional events. Neuron[J],2004,42(5):855-863.
    [54]Hamann SB, Ely TD, Grafton ST, Kilts CD. Amygdala activity related to enhanced memory for pleasant and aversive stimuli. Nature Neuroscience[J],1999, 2(3):289-293.
    [55]Cahill L, Alkire MT. Epinephrine enhancement of human memory consolidation: Interaction with arousal at encoding. Neurobiology of learning and memory[J],2003, 79(2):194-198.
    [56]Cahill L, Gorski L, Le K. Enhanced human memory consolidation with post-learning stress:Interaction with the degree of arousal at encoding. Learning & Memory[J],2003,10(4):270-274.
    [57]Weinberger NM. Retuning the brain by fear conditioning(M). Cambridge, MA, US:The MIT Press.1995.
    [58]Edeline JM. Learning-induced physiological plasticity in the thalamo-cortical sensory systems:a critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Progress in Neurobiology[J],1998,57(2):165-224.
    [59]Poremba A, Gabriel M. Amygdalar efferents initiate auditory thalamic discriminative training-induced neuronal activity. The Journal of Neuroscience[J], 2001,21(1):270-278.
    [60]Morris JS, Buchel C, Dolan RJ. Parallel neural responses in amygdala subregions and sensory cortex during implicit fear conditioning. Neuroimage[J],2001,13(6): 1044-1052.
    [61]Booth JR, Burman DD, Meyer JR, Gitelman DR, Parrish TB, et al. Modality independence of word comprehension. Human Brain Mapping[J],2002,16(4): 251-261.
    [62]Armony JL, Ledoux JE. How danger is encoded:towards a systems, cellular, and computational understanding of cognitive-emotional interactions(M). Cambridge, MA, US:The MIT Press.1999.
    [63]Whalen PJ, Rauch SL, Etcoff NL, McInerney SC, Lee MB, et al. Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. The Journal of Neuroscience[J],1998,18(1):411-418.
    [64]Amaral DG, Behniea H, Kelly JL. Topographic organization of projections from the amygdala to the visual cortex in the macaque monkey. Neuroscience[J],2003, 118(4):1099-1120.
    [65]Everitt BJ, Robbins TW. Central cholinergic systems and cognition. Annual Review of Psychology[J],1997,48(1):649-684.
    [66]Armony JL, Servan-Schreiber D, Cohen JD, LeDoux JE. Computational modeling of emotion:Explorations through the anatomy and physiology of fear conditioning. Trends in Cognitive Sciences[J],1997,1(1):28-34.
    [67]Vuilleumier P, Armony JL, Driver J, Dolan RJ. Effects of Attention and Emotion on Face Processing in the Human Brain:An Event-Related fMRI Study. Neuron[J], 2001,30(3):829-841.
    [68]Williams MA, Morris AP, McGlone F, Abbott DF, Mattingley JB. Amygdala responses to fearful and happy facial expressions under conditions of binocular suppression. The Journal of Neuroscience[J],2004,24(12):2898-2904.
    [69]Anderson AK, Phelps EA. Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature[J],2001,411(6835):305-309.
    [70]Vuilleumier P, Richardson MP, Armony JL, Driver J, Dolan RJ. Distant influences of amygdala lesion on visual cortical activation during emotional face processing. Nature Neuroscience[J],2004,7(11):1271-1278.
    [71]Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience[J],2002,3(3):215-229.
    [72]Carrasco M, Penpeci-Talgar C, Eckstein M. Spatial covert attention increases contrast sensitivity across the CSF:support for signal enhancement. Vision Research[J],2000,40(10-12):1203-1215.
    [73]Phelps EA, Ling S, Carrasco M. Emotion facilitates perception and potentiates the perceptual benefits of attention. Psychological Science[J],2006,17(4):292.
    [74]Pasley BN, Mayes LC, Schultz RT. Subcortical discrimination of unperceived objects during binocular rivalry. Neuron[J],2004,42(1):163-172.
    [75]Pegna AJ, Khateb A, Lazeyras F, Seghier ML. Discriminating emotional faces without primary visual cortices involves the right amygdala. Nature Neuroscience[J], 2004,8(1):24-25.
    [76]Pessoa L, Ungerleider LG. Neuroimaging studies of attention and the processing of emotion-laden stimuli. Progress in Brain Research[J],2004,144:171-182.
    [77]LeDoux JE, Romanski L, Xagoraris A. Indelibility of subcortical emotional memories. Journal of Cognitive Neuroscience[J],1989,1(3):238-243.
    [78]Romanski LM, LeDoux JE. Equipotentiality of thalamo-amygdala and thalamo-cortico-amygdala circuits in auditory fear conditioning. The Journal of Neuroscience[J],1992,12(11):4501-4509.
    [79]Ono T, Nishijo H. Neurophysiological basis of the Kluver-Bucy syndrome: Responses of monkey amygdaloid neurons to biologically significant objects(M). New York, NY, US:Wiley-Liss Press.1992.
    [80]Zola-Morgan S, Squire LR, Clower RP, Alvarez-Royo P. Independence of memory functions and emotional behavior:separate contributions of the hippocampal formation and the amygdala. Hippocampus[J],1991,1(2):207-220.
    [81]Meunier M, Bachevalier J, Murray EA, Malkova L, Mishkin M. Effects of aspiration versus neurotoxic lesions of the amygdala on emotional responses in monkeys. European Journal of Neuroscience[J],1999,11(12):4403-4418.
    [82]Meunier M, Bachevalier J. Comparison of emotional responses in monkeys with rhinal cortex or amygdala lesions. Emotion[J],2002,2(2):147-161.
    [83]Kling AS, Brothers LA. The amygdala and social behavior(M). New York, NY, US:Wiley-Liss Press.1992.
    [84]Kemper TL, Bauman ML. The contribution of neuropathologic studies to the understanding of autism. Neurologic clinics[J],1993.
    [85]Bachevalier J. Medial temporal lobe structures and autism:a review of clinical and experimental findings. Neuropsychologia[J],1994,32(6):627-648.
    [86]Baron-Cohen S, Ring HA, Bullmore ET, Wheelwright S, Ashwin C, et al. The amygdala theory of autism. Neuroscience & Biobehavioral Reviews[J],2000,24(3): 355-364.
    [87]Milner B, Corkin S, Teuber HL. Further analysis of the hippocampal amnesic syndrome:14-year follow-up study of HM. Neuropsychologia[J],1968,6(3): 215-234.
    [88]Phelps EA, LaBar KS, Anderson AK, O'Connor KJ, Fulbright RK, et al. Specifying the contributions of the human amygdala to emotional memory:A case study. Neurocase[J],1998,4(6):527-540.
    [89]Adolphs R, Tranel D, Hamann S, Young AW, Calder AJ, et al. Recognition of facial emotion in nine individuals with bilateral amygdala damage. Neuropsychologia[J],1999,37(82):1111-1117.
    [90]Whalen PJ, Kagan J, Cook RG, Davis FC, Kim H, et al. Human amygdala responsivity to masked fearful eye whites. Science[J],2004,306(5704):2061-2061.
    [91]Adolphs R, Tranel D, Damasio AR. The human amygdala in social judgment. Nature[J],1998,393(6684):470-473.
    [92]Heberlein AS, Adolphs R. Impaired spontaneous anthropomorphizing despite intact perception and social knowledge. Proceedings of the National Academy of Sciences of the United States of America[J],2004,101(19):7487-7491.
    [93]Singer T, Kiebel SJ, Winston JS, Dolan RJ, Frith CD. Brain responses to the acquired moral status of faces. Neuron[J],2004,41(4):653-662.
    [94]Bouton ME. Context, ambiguity, and unlearning:Sources of relapse after behavioral extinction. Biological psychiatry[J],2002,52(10):976-986.
    [95]Myers KM, Davis M. Behavioral and neural analysis of extinction. Neuron[J], 2002,36(4):567-584.
    [96]Sotres-Bayon F, Bush DEA, LeDoux JE. Emotional perseveration:an update on prefrontal-amygdala interactions in fear extinction. Learning & Memory[J],2004, 11(5):525-535.
    [97]Morgan MA, LeDoux JE. Differential contribution of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats. Behavioral Neuroscience[J],1995,109(4):681-688.
    [98]Morgan MA, Schulkin J, LeDoux JE. Ventral medial prefrontal cortex and emotional perseveration:the memory for prior extinction training. Behavioural Brain Research[J],2003,146(1-2):121-130.
    [99]Quirk GJ, Gehlert DR. Inhibition of the amygdala:key to pathological states? Annals of the New York Academy of Sciences[J],2003,985(1):263-272.
    [100]Quirk GJ, Russo GK, Barron JL, Lebron K. The role of ventromedial prefrontal cortex in the recovery of extinguished fear. The Journal of Neuroscience[J],2000, 20(16):6225-6231.
    [101]Rosenkranz JA, Grace AA. Dopamine-mediated modulation of odour-evoked amygdala potentials during pavlovian conditioning. Nature[J],2002,417(6886): 282-287.
    [102]Ressler KJ, Rothbaum BO, Tannenbaum L, Anderson P, Graap K, et al. Cognitive enhancers as adjuncts to psychotherapy:use of D-cycloserine in phobic individuals to facilitate extinction of fear. Archives of General Psychiatry[J],2004, 61(11):1136.
    [103]Knight DC, Smith CN, Cheng DT, Stein EA, Helmstetter FJ. Amygdala and hippocampal activity during acquisition and extinction of human fear conditioning. Cognitive, Affective,& Behavioral Neuroscience[J],2004,4(3):317-325.
    [104]Bailey CH, Bartsch D, Kandel ER. Toward a molecular definition of long-term memory storage. Proceedings of the National Academy of Sciences[J],1996,93(24): 13445.
    [105]Dudai Y. Molecular bases of long-term memories:a question of persistence. Current Opinion in Neurobiology[J],2002,12(2):211-216.
    [106]Lattal KM, Honarvar S, Abel T. Effects of post-session injections of anisomycin on the extinction of a spatial preference and on the acquisition of a spatial reversal preference. Behavioural Brain Research[J],2004,153(2):327-339.
    [107]Adolphs R. What does the amygdala contribute to social cognition? Annals of the New York Academy of Sciences[J],2010,1191:42-61.
    [108]LeDoux JE, Gorman JM. A call to action:overcoming anxiety through active coping. American Journal of Psychiatry[J],2001,158(12):1953-1955.
    [109]Gross JJ. Emotion regulation:Affective, cognitive, and social consequences. Psychophysiology[J],2002,39(3):281-291.
    [110]Ochsner KN, Bunge SA, Gross JJ, Gabrieli JDE. Rethinking feelings:An fMRI study of the cognitive regulation of emotion. Journal of Cognitive Neuroscience[J], 2002,14(8):1215-1229.
    [111]Barbas H. Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Research Bulletin[J],2000,52(5): 319-330.
    [112]Phelps EA, O'Connor KJ, Gatenby JC, Gore JC, Grillon C, et al. Activation of the left amygdala to a cognitive representation of fear. Nature Neuroscience[J],2001, 4(4):437-441.
    [113]Funayama ES, Grillon C, Davis M, Phelps EA. A double dissociation in the affective modulation of startle in humans:effects of unilateral temporal lobectomy. Journal of Cognitive Neuroscience[J],2001,13(6):721-729.
    [114]Ochsner KN, Ray RD, Cooper JC, Robertson ER, Chopra S, et al. For better or for worse:neural systems supporting the cognitive down-and up-regulation of negative emotion. Neuroimage[J],2004,23(2):483-499.