基于磁共振成像的脑网络技术及临床应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大脑是迄今为止人类所知最为复杂,最为精细的系统,它由解剖上相连、功能上既相互独立又相互影响的脑区所组成。脑网络研究是目前神经科学的研究热点之一,它能够从系统水平上研究脑区间的连接机制,揭示大脑的内在组织模式。近年,脑成像技术,尤其是磁共振成像技术(magnetic resonance imaging, MRI)的出现和快速发展提供了获取大脑各种数据的影像学工具,而基于图论的复杂网络分析则为脑网络的研究提供了强有力的技术手段。本文将以脑网络分析方法的发展和应用为研究重点,以磁共振成像技术中最热门的两大成像技术—功能磁共振成像(functional magnetic resonance imaging, fMRI)和弥散张量成像(diffusion tensorimaging, DTI)为研究工具,对大脑的功能连接网络和结构连接网络进行研究,结合图论分析探测大脑的内在组织特性,并进一步将其应用于临床大脑疾病中,从系统水平层面探测大脑疾病的病理生理机制。本文的主要研究工作包括如下几个部分:
     1.利用独立成分分析(independent component analysis, ICA)和图论分析对健康被试的静息态功能磁共振成像(fMRI)数据进行分析,研究大脑静息态网络(resting-state networks, RSNs)的拓扑特性。结果表明静息态网络(RSNs)具有高效的“小世界”组织特性。更重要的是,我们发现高级认知网络(如注意、中央执行和默认网络)和初级感知网络(如视觉、听觉和感觉运动网络)的网络拓扑指标存在显著差异,首次从网络属性上定量地证明了高级认知和初级感知网络间的分级现象。该方法可扩展到临床应用,尤其对于特定功能子网络(如RSNs)异常的大脑疾病具有较好的应用价值和意义。
     2.采用基于全脑大尺度功能连接分析方法对社交焦虑障碍(social anxietydisorder, SAD)患者的功能连接网络进行研究。结果发现,与健康对照相比,SAD患者异常的功能连接,主要存在于额叶皮层和枕叶皮层。此外,部分异常脑区功能连接与社交焦虑症状的严重程度存在相关性。该研究旨在从整体水平上研究病理状态下脑功能连接网络的异常,所发现的异常功能连接可能作为SAD患者早期诊断的生物学标记。
     3.融合基于静息态功能磁共振成像(fMRI)的功能连接和基于弥散张量成像(DTI)的结构连接分析对心因性非癫痫发作(psychogenic non-epilepsy seizures,PNES)的脑功能网络和结构网络进行研究。图论分析的结果表明PNES患者的功能连接和结构连接网络的组织特性遭受破坏,并趋向规则化网络发展。此外,PNES患者结构连接网络的节点属性发生了异常改变,涉及的脑区与注意网络、感觉运动网络、皮层下脑区和默认网络有关。进一步,我们还发现PNES患者的功能和结构连接的耦合强度显著降低,且降低的耦合强度与患者的病程呈现负相关。ROC(receiver operating characteristic, ROC)曲线分析发现耦合强度这一指标具有较高的敏感性和特异性来区分PNES患者和健康被试。该研究证实了功能连接和结构连接网络的融合分析能够为揭示PNES的内在病理生理机制提供一个新的思路。
     4.利用一种快速的基于体素的数据驱动方法—功能连接密度(functionalconnectivity density, FCD)分析探测PNES患者的短程功能连接密度(short-rangeFCD)和长程功能连接密度(long-range FCD)。结果显示PNES患者的功能连接密度发生异常的脑区主要涉及注意、情感和感觉运动系统。此外,异常的功能连接密度还涉及枕叶皮层,且部分异常的脑区与患者的病程具有相关性,我们推侧这可能与PNES患者对外界的警觉性和响应增强的泛化有关。该研究从功能连接密度的角度进一步拓展了我们对PNES病理生理机制的了解。
The human brain is so far considered to the most complex, most delicate object inthe universe, which is organized into parallel, interacting systems of anatomicallyconnected areas. Nowadays, brain network research is one of the hot topics in the fieldof neuroscience, which can investigate the connection mechanism between brainregions on the level of system, and further reveal the underlying organization of thebrain. In recent years, the invention and rapid development of brain imagingtechnologies, especially magnetic resonance imaging (MRI), provide imaging tool toacquire various brain data; while complex network analysis based on graph theoryprovides a valuable technical means for brain network research. Focusing on thedevelopment and clinical applications of brain network analysis, this dissertationcombined two popular imaging technologies based on MRI, that is, functional magneticresonance imaging (fMRI) and diffusion tensor imaging (DTI), and graph theoreticalanalysis to investigate brain functional connectivity and structural connectivitynetworks, reveal the underlying topological organization of the brain in the healthysubjects, and further detect the pathophysiological mechanism of clinical brain diseasesfrom the system level. The main works and contributions of this dissertation are asfollows:
     1. Combining independent component analysis (ICA) and graph theoreticalanalysis to deal with resting-state fMRI (rs-fMRI) data in healthy subjects andinvestigate the topological properties of resting-state networks (RSNs). Our resultsshowed that each RSN had robust small-world properties. More important, the networktopological properties were significantly different between higher cognitive networks(dorsal attention network, central-executive network and default mode network) andperceptual networks (visual network, auditory network and somato-motor network).These findings for the first time provide quantitative evidence for the topologicalfractionation between higher cognitive and perceptual networks. Our approach toinvestigate topological properties in RSNs may be extended to clinical research, especially to diseases that show selective abnormal connectivity in specific brainnetworks
     2. Using large-scale functional connectivity analysis to investigate whole-brainfunctional connectivity network in social anxiety disorder (SAD). Compared withhealthy controls, SAD patients exhibited abnormal functional connectivity, especiallyinvolving the frontal cortex and occipital cortex. In addition, correlations were detectedbetween changes in resting functional connectivity and social anxiety symptom severityin some cases. The aim of this study was to investigate the abnormal functionalconnectivity under pathologic state from the whole-brain level, and our findings couldrepresent an early imaging biomarker for SAD.
     3. Combining functional connectivity based on resting-state fMRI signalcorrelations and structural connectivity based on diffusion tensor imaging tractographyto investigate brain functional and structural networks in psychogenic non-epilepsyseizures (PNES). Using graph theoretical analysis, we found that PNES patients lostoptimal topological organization in functional connectivity and structural connectivitynetworks reflected by a shift towards more regular brain architecture. In addition,structural connectivity networks exhibited altered regional characteristics in some keyregions associated with attention, sensorimotor, subcortical and default-mode systems inPNES patients. Most importantly, we found that the coupling strength betweenfunctional and structural connectivity was significantly decreased, and this decrease wasmore marked in patients with a longer duration of disease. When taking couplingstrength as an index for plotting receiver operating characteristic (ROC) curves, PNESpatients can be differentiated from healthy controls with high sensitivity and specificity.These results may provide new insights into our understanding of thepathophysiological mechanisms of PNES.
     4. Using functional connectivity density (FCD) mapping, an ultrafast andvoxelwise data-driven approach, to measure short-and long-range FCD in PNESpatients. Compared with health controls, PNES patients showed abnormal FCD inregions associated with attention, emotion and sensorimotor systems. In addition, someregions in occipital cortex also exhibited abnormal long-range FCD, and were correlatedwith duration of disease, which could be related to generalization of greater vigilance orresponsivity to environmental stimuli in PNES patients. The findings further improve our understanding of the pathophysiological mechanisms of PNES using functionalconnectivity density mapping.
引文
[1] K. R. Van Dijk, T. Hedden, A. Venkataraman, et al. Intrinsic functional connectivity as a tool forhuman connectomics: theory, properties, and optimization[J]. J Neurophysiol.2010,103(1):297-321
    [2] S. L. Bressler. Large-scale cortical networks and cognition[J]. Brain Res Brain Res Rev.1995,20(3):288-304
    [3] M. M. Mesulam. From sensation to cognition[J]. Brain.1998,121(Pt6):1013-52
    [4] A. R. McIntosh. Towards a network theory of cognition[J]. Neural Netw.2000,13(8-9):861-70
    [5] K. Friston. Beyond phrenology: what can neuroimaging tell us about distributed circuitry?[J].Annu Rev Neurosci.2002,25:221-50
    [6] G. Buzsáki. Rhythms of the brain[M]. Oxford; New York: Oxford University Press,2006
    [7] J. Lehrer. Neuroscience: Making connections[J]. Nature.2009,457(7229):524-7
    [8] J. W. Lichtman, J. Livet and J. R. Sanes. A technicolour approach to the connectome[J]. NatRev Neurosci.2008,9(6):417-22
    [9] O. Sporns, G. Tononi and R. Kotter. The human connectome: A structural description of thehuman brain[J]. PLoS Comput Biol.2005,1(4):e42
    [10] E. Bullmore and O. Sporns. Complex brain networks: graph theoretical analysis of structuraland functional systems[J]. Nat Rev Neurosci.2009,10(3):186-98
    [11] V. Menon. Large-scale brain networks and psychopathology: a unifying triple network model[J].Trends Cogn Sci.2011,15(10):483-506
    [12] S. Ogawa, T. M. Lee, A. R. Kay, et al. Brain magnetic resonance imaging with contrastdependent on blood oxygenation[J]. Proc Natl Acad Sci U S A.1990,87(24):9868-72
    [13] L. Pauling and C. D. Coryell. The Magnetic Properties and Structure of Hemoglobin,Oxyhemoglobin and Carbonmonoxyhemoglobin[J]. Proc Natl Acad Sci U S A.1936,22(4):210-6
    [14] P. T. Fox and M. E. Raichle. Focal physiological uncoupling of cerebral blood flow andoxidative metabolism during somatosensory stimulation in human subjects[J]. Proc Natl AcadSci U S A.1986,83(4):1140-4
    [15] D. J. Heeger and D. Ress. What does fMRI tell us about neuronal activity?[J]. Nat RevNeurosci.2002,3(2):142-51
    [16] S. Ogawa, D. W. Tank, R. Menon, et al. Intrinsic signal changes accompanying sensorystimulation: functional brain mapping with magnetic resonance imaging[J]. Proc Natl Acad SciU S A.1992,89(13):5951-5
    [17]赵喜平.磁共振成像系统的原理及其应用[M].北京:科学出版社,2000
    [18] P. A. Bandettini, A. Jesmanowicz, E. C. Wong, et al. Processing strategies for time-course datasets in functional MRI of the human brain[J]. Magn Reson Med.1993,30(2):161-73
    [19] Y. Zang, F. Jia, X. Weng, et al. Functional organization of the primary motor cortexcharacterized by event-related fMRI during movement preparation and execution[J]. NeurosciLett.2003,337(2):69-72
    [20] R. L. Buckner, A. Z. Snyder, A. L. Sanders, et al. Functional brain imaging of young,nondemented, and demented older adults[J]. J Cogn Neurosci.2000,12Suppl2:24-34
    [21] C. Buchel, J. T. Coull and K. J. Friston. The predictive value of changes in effectiveconnectivity for human learning[J]. Science.1999,283(5407):1538-41
    [22] K. E. Stephan, V. A. Magnotta, T. White, et al. Effects of olanzapine on cerebellar functionalconnectivity in schizophrenia measured by fMRI during a simple motor task[J]. Psychol Med.2001,31(6):1065-78
    [23] M. E. Raichle and D. A. Gusnard. Intrinsic brain activity sets the stage for expression ofmotivated behavior[J]. J Comp Neurol.2005,493(1):167-76
    [24] B. Biswal, F. Z. Yetkin, V. M. Haughton, et al. Functional connectivity in the motor cortex ofresting human brain using echo-planar MRI[J]. Magn Reson Med.1995,34(4):537-41
    [25] D. Cordes, V. M. Haughton, K. Arfanakis, et al. Frequencies contributing to functionalconnectivity in the cerebral cortex in "resting-state" data[J]. AJNR Am J Neuroradiol.2001,22(7):1326-33
    [26] M. Hampson, B. S. Peterson, P. Skudlarski, et al. Detection of functional connectivity usingtemporal correlations in MR images[J]. Hum Brain Mapp.2002,15(4):247-62
    [27] M. J. Lowe, B. J. Mock and J. A. Sorenson. Functional connectivity in single and multisliceechoplanar imaging using resting-state fluctuations[J]. Neuroimage.1998,7(2):119-32
    [28] D. Cordes, V. M. Haughton, K. Arfanakis, et al. Mapping functionally related regions of brainwith functional connectivity MR imaging[J]. AJNR Am J Neuroradiol.2000,21(9):1636-44
    [29] M. E. Raichle, A. M. MacLeod, A. Z. Snyder, et al. A default mode of brain function[J]. ProcNatl Acad Sci U S A.2001,98(2):676-82
    [30] M. D. Fox and M. E. Raichle. Spontaneous fluctuations in brain activity observed withfunctional magnetic resonance imaging[J]. Nat Rev Neurosci.2007,8(9):700-11
    [31] D. Zhang and M. E. Raichle. Disease and the brain's dark energy[J]. Nat Rev Neurol.2010,6(1):15-28
    [32] P. J. Basser, J. Mattiello and D. LeBihan. MR diffusion tensor spectroscopy and imaging[J].Biophys J.1994,66(1):259-67
    [33] P. J. Basser, J. Mattiello and D. LeBihan. Estimation of the effective self-diffusion tensor fromthe NMR spin echo[J]. J Magn Reson B.1994,103(3):247-54
    [34] S. Mori and P. C. van Zijl. Fiber tracking: principles and strategies-a technical review[J].NMR Biomed.2002,15(7-8):468-80
    [35] P. Hagmann, L. Cammoun, X. Gigandet, et al. Mapping the structural core of human cerebralcortex[J]. PLoS Biol.2008,6(7):e159
    [36] P. Hagmann, M. Kurant, X. Gigandet, et al. Mapping human whole-brain structural networkswith diffusion MRI[J]. PLoS One.2007,2(7):e597
    [37] Y. Li, Y. Liu, J. Li, et al. Brain anatomical network and intelligence[J]. PLoS Comput Biol.2009,5(5):e1000395
    [38] P. Hagmann, O. Sporns, N. Madan, et al. White matter maturation reshapes structuralconnectivity in the late developing human brain[J]. Proc Natl Acad Sci U S A.2010,107(44):19067-72
    [39] G. Gong, P. Rosa-Neto, F. Carbonell, et al. Age-and gender-related differences in the corticalanatomical network[J]. J Neurosci.2009,29(50):15684-93
    [40] W. Wen, W. Zhu, Y. He, et al. Discrete neuroanatomical networks are associated with specificcognitive abilities in old age[J]. J Neurosci.2011,31(4):1204-12
    [41] Q. Chen, S. Lui, C. X. Li, et al. MRI-negative refractory partial epilepsy: role for diffusiontensor imaging in high field MRI[J]. Epilepsy Res.2008,80(1):83-9
    [42] L. Thivard, S. Lehericy, A. Krainik, et al. Diffusion tensor imaging in medial temporal lobeepilepsy with hippocampal sclerosis[J]. Neuroimage.2005,28(3):682-90
    [43] C. F. Murphy, F. M. Gunning-Dixon, M. J. Hoptman, et al. White-matter integrity predictsstroop performance in patients with geriatric depression[J]. Biol Psychiatry.2007,61(8):1007-10
    [44]M. Kyriakopoulos, T. Bargiotas, G. J. Barker, et al. Diffusion tensor imaging in schizophrenia[J].Eur Psychiatry.2008,23(4):255-73
    [45] Y. Zhou, N. Shu, Y. Liu, et al. Altered resting-state functional connectivity and anatomicalconnectivity of hippocampus in schizophrenia[J]. Schizophr Res.2008,100(1-3):120-32
    [46] C. Y. Lo, P. N. Wang, K. H. Chou, et al. Diffusion tensor tractography reveals abnormaltopological organization in structural cortical networks in Alzheimer's disease[J]. J Neurosci.2010,30(50):16876-85
    [47] N. Shu, Y. Liu, K. Li, et al. Diffusion tensor tractography reveals disrupted topologicalefficiency in white matter structural networks in multiple sclerosis[J]. Cereb Cortex.2011,21(11):2565-77
    [48] G. Tononi, O. Sporns and G. M. Edelman. A measure for brain complexity: relating functionalsegregation and integration in the nervous system[J]. Proc Natl Acad Sci U S A.1994,91(11):5033-7
    [49] K. J. Friston. Functional and effective connectivity in neuroimaging: a synthesis[J]. Hum BrainMapp.1994,2(1-2):56-78
    [50] D. M. Cole, S. M. Smith and C. F. Beckmann. Advances and pitfalls in the analysis andinterpretation of resting-state FMRI data[J]. Front Syst Neurosci.2010,4:8
    [51] W. W. Seeley, V. Menon, A. F. Schatzberg, et al. Dissociable intrinsic connectivity networks forsalience processing and executive control[J]. J Neurosci.2007,27(9):2349-56
    [52] W. W. Seeley, R. K. Crawford, J. Zhou, et al. Neurodegenerative diseases target large-scalehuman brain networks[J]. Neuron.2009,62(1):42-52
    [53] C. F. Beckmann, M. DeLuca, J. T. Devlin, et al. Investigations into resting-state connectivityusing independent component analysis[J]. Philos Trans R Soc Lond B Biol Sci.2005,360(1457):1001-13
    [54] J. S. Damoiseaux, S. A. Rombouts, F. Barkhof, et al. Consistent resting-state networks acrosshealthy subjects[J]. Proc Natl Acad Sci U S A.2006,103(37):13848-53
    [55] J. S. Damoiseaux, C. F. Beckmann, E. J. Arigita, et al. Reduced resting-state brain activity inthe "default network" in normal aging[J]. Cereb Cortex.2008,18(8):1856-64
    [56] M. De Luca, C. F. Beckmann, N. De Stefano, et al. fMRI resting state networks define distinctmodes of long-distance interactions in the human brain[J]. Neuroimage.2006,29(4):1359-67
    [57] K. Jann, M. Kottlow, T. Dierks, et al. Topographic electrophysiological signatures of FMRIResting State Networks[J]. PLoS One.2010,5(9):e12945
    [58] W. Liao, D. Mantini, Z. Zhang, et al. Evaluating the effective connectivity of resting statenetworks using conditional Granger causality[J]. Biol Cybern.2010,102:57-69
    [59] D. Mantini, M. G. Perrucci, C. Del Gratta, et al. Electrophysiological signatures of resting statenetworks in the human brain[J]. Proc Natl Acad Sci U S A.2007,104(32):13170-5
    [60] S. M. Smith, P. T. Fox, K. L. Miller, et al. Correspondence of the brain's functional architectureduring activation and rest[J]. Proc Natl Acad Sci U S A.2009,106(31):13040-5
    [61] R. Salvador, J. Suckling, M. R. Coleman, et al. Neurophysiological architecture of functionalmagnetic resonance images of human brain[J]. Cereb Cortex.2005,15(9):1332-42
    [62] G. S. Wig, B. L. Schlaggar and S. E. Petersen. Concepts and principles in the analysis of brainnetworks[J]. Ann N Y Acad Sci.2011,1224:126-46
    [63]王.梁夏,贺永.人脑连接组研究:脑结构网络和脑功能网络[J].科学通报.2010,55(16):1565-83
    [64] A. Fornito, A. Zalesky and E. T. Bullmore. Network scaling effects in graph analytic studies ofhuman resting-state FMRI data[J]. Front Syst Neurosci.2010,4:22
    [65] A. Zalesky, A. Fornito, I. H. Harding, et al. Whole-brain anatomical networks: does the choiceof nodes matter?[J]. Neuroimage.2010,50(3):970-83
    [66] J. Wang, L. Wang, Y. Zang, et al. Parcellation-dependent small-world brain functional networks:a resting-state fMRI study[J]. Hum Brain Mapp.2009,30(5):1511-23
    [67] J. H. Wang, X. N. Zuo, S. Gohel, et al. Graph theoretical analysis of functional brain networks:test-retest evaluation on short-and long-term resting-state functional MRI data[J]. PLoS One.2011,6(7):e21976
    [68] S. Hayasaka and P. J. Laurienti. Comparison of characteristics between region-and voxel-basednetwork analyses in resting-state fMRI data[J]. Neuroimage.2010,50(2):499-508
    [69] M. P. van den Heuvel, C. J. Stam, M. Boersma, et al. Small-world and scale-free organization ofvoxel-based resting-state functional connectivity in the human brain[J]. Neuroimage.2008,43(3):528-39
    [70] M. D. Greicius, K. Supekar, V. Menon, et al. Resting-state functional connectivity reflectsstructural connectivity in the default mode network[J]. Cereb Cortex.2009,19(1):72-8
    [71] M. P. van den Heuvel, R. C. Mandl, R. S. Kahn, et al. Functionally linked resting-state networksreflect the underlying structural connectivity architecture of the human brain[J]. Hum BrainMapp.2009,30(10):3127-41
    [72] M. van den Heuvel, R. Mandl, J. Luigjes, et al. Microstructural organization of the cingulumtract and the level of default mode functional connectivity[J]. J Neurosci.2008,28(43):10844-51
    [73] C. J. Honey, O. Sporns, L. Cammoun, et al. Predicting human resting-state functionalconnectivity from structural connectivity[J]. Proc Natl Acad Sci U S A.2009,106(6):2035-40
    [74] A. Mechelli, K. J. Friston, R. S. Frackowiak, et al. Structural covariance in the human cortex[J].J Neurosci.2005,25(36):8303-10
    [75] D. S. Bassett, E. Bullmore, B. A. Verchinski, et al. Hierarchical organization of human corticalnetworks in health and schizophrenia[J]. J Neurosci.2008,28(37):9239-48
    [76] Y. He, Z. J. Chen and A. C. Evans. Small-world anatomical networks in the human brainrevealed by cortical thickness from MRI[J]. Cereb Cortex.2007,17(10):2407-19
    [77] M. P. van den Heuvel and O. Sporns. Rich-club organization of the human connectome[J]. JNeurosci.2011,31(44):15775-86
    [78] E. T. Bullmore and D. S. Bassett. Brain graphs: graphical models of the human brainconnectome[J]. Annu Rev Clin Psychol.2011,7:113-40
    [79] M. Rubinov and O. Sporns. Complex network measures of brain connectivity: uses andinterpretations[J]. Neuroimage.2010,52(3):1059-69
    [80] O. Sporns and J. D. Zwi. The small world of the cerebral cortex[J]. Neuroinformatics.2004,2(2):145-62
    [81] S. Achard, R. Salvador, B. Whitcher, et al. A resilient, low-frequency, small-world human brainfunctional network with highly connected association cortical hubs[J]. J Neurosci.2006,26(1):63-72
    [82] D. S. Bassett and E. Bullmore. Small-world brain networks[J]. Neuroscientist.2006,12(6):512-23
    [83] C. Zhou, L. Zemanova, G. Zamora, et al. Hierarchical organization unveiled by functionalconnectivity in complex brain networks[J]. Phys Rev Lett.2006,97(23):238103
    [84] C. J. Honey, R. Kotter, M. Breakspear, et al. Network structure of cerebral cortex shapesfunctional connectivity on multiple time scales[J]. Proc Natl Acad Sci U S A.2007,104(24):10240-5
    [85] C. J. Stam, B. F. Jones, G. Nolte, et al. Small-world networks and functional connectivity inAlzheimer's disease[J]. Cereb Cortex.2007,17(1):92-9
    [86] C. J. Stam, W. de Haan, A. Daffertshofer, et al. Graph theoretical analysis ofmagnetoencephalographic functional connectivity in Alzheimer's disease[J]. Brain.2009,132(Pt1):213-24
    [87] S. J. Leistedt, N. Coumans, M. Dumont, et al. Altered sleep brain functional connectivity inacutely depressed patients[J]. Hum Brain Mapp.2009,30(7):2207-19
    [88] S. C. Ponten, L. Douw, F. Bartolomei, et al. Indications for network regularization duringabsence seizures: weighted and unweighted graph theoretical analyses[J]. Exp Neurol.2009,217(1):197-204
    [89] L. Wang, C. Zhu, Y. He, et al. Altered small-world brain functional networks in children withattention-deficit/hyperactivity disorder[J]. Hum Brain Mapp.2009,30(2):638-49
    [90] S. Achard and E. Bullmore. Efficiency and cost of economical brain functional networks[J].PLoS Comput Biol.2007,3(2):e17
    [91] L. Ferrarini, I. M. Veer, E. Baerends, et al. Hierarchical functional modularity in theresting-state human brain[J]. Hum Brain Mapp.2009,30(7):2220-31
    [92] D. Meunier, R. Lambiotte, A. Fornito, et al. Hierarchical modularity in human brain functionalnetworks[J]. Front Neuroinformatics.2009,3:37
    [93] Y. He, J. Wang, L. Wang, et al. Uncovering intrinsic modular organization of spontaneous brainactivity in humans[J]. PLoS One.2009,4(4):e5226
    [94] D. S. Bassett, E. T. Bullmore, A. Meyer-Lindenberg, et al. Cognitive fitness of cost-efficientbrain functional networks[J]. Proc Natl Acad Sci U S A.2009,
    [95] M. P. van den Heuvel, C. J. Stam, R. S. Kahn, et al. Efficiency of functional brain networks andintellectual performance[J]. J Neurosci.2009,29(23):7619-24
    [96] J. E. Schmitt, R. K. Lenroot, G. L. Wallace, et al. Identification of genetically mediated corticalnetworks: a multivariate study of pediatric twins and siblings[J]. Cereb Cortex.2008,18(8):1737-47
    [97] A. Fornito, A. Zalesky, D. S. Bassett, et al. Genetic influences on cost-efficient organization ofhuman cortical functional networks[J]. J Neurosci.2011,31(9):3261-70
    [98] D. Meunier, S. Achard, A. Morcom, et al. Age-related changes in modular organization ofhuman brain functional networks[J]. Neuroimage.2009,44(3):715-23
    [99] S. Micheloyannis, M. Vourkas, V. Tsirka, et al. The influence of ageing on complex brainnetworks: A graph theoretical analysis[J]. Hum Brain Mapp.2007,
    [100]D. S. Bassett and E. T. Bullmore. Human brain networks in health and disease[J]. Curr OpinNeurol.2009,22(4):340-7
    [101]Y. Liu, M. Liang, Y. Zhou, et al. Disrupted small-world networks in schizophrenia[J]. Brain.2008,131(Pt4):945-61
    [102]S. Micheloyannis, E. Pachou, C. J. Stam, et al. Small-world networks and disturbed functionalconnectivity in schizophrenia[J]. Schizophr Res.2006,87(1-3):60-6
    [103]M. Rubinov, S. A. Knock, C. J. Stam, et al. Small-world properties of nonlinear brain activityin schizophrenia[J]. Hum Brain Mapp.2009,30(2):403-16
    [104]Y. He, Z. Chen, G. Gong, et al. Neuronal networks in Alzheimer's disease[J]. Neuroscientist.2009,15(4):333-50
    [105]K. Supekar, V. Menon, D. Rubin, et al. Network analysis of intrinsic functional brainconnectivity in Alzheimer's disease[J]. PLoS Comput Biol.2008,4(6):e1000100
    [106]W. Liao, Z. Zhang, Z. Pan, et al. Altered functional connectivity and small-world in mesialtemporal lobe epilepsy[J]. PLoS One.2010,5(1):e8525
    [107]Z. Zhang, W. Liao, H. Chen, et al. Altered functional-structural coupling of large-scale brainnetworks in idiopathic generalized epilepsy[J]. Brain.2011,134(Pt10):2912-28
    [108]W. Liao, Z. Zhang, Z. Pan, et al. Default mode network abnormalities in mesial temporal lobeepilepsy: a study combining fMRI and DTI[J]. Hum Brain Mapp.2011,32(6):883-95
    [109]Y. He, A. Dagher, Z. Chen, et al. Impaired small-world efficiency in structural corticalnetworks in multiple sclerosis associated with white matter lesion load[J]. Brain.2009,132(Pt12):3366-79
    [110]C. Gerloff and M. Hallett. Big news from small world networks after stroke[J]. Brain.2010,133(Pt4):952-5
    [111] N. Shu, Y. Liu, J. Li, et al. Altered anatomical network in early blindness revealed by diffusiontensor tractography[J]. PLoS One.2009,4(9):e7228
    [112]N. Amir, H. Klumpp, J. Elias, et al. Increased activation of the anterior cingulate cortex duringprocessing of disgust faces in individuals with social phobia[J]. Biol Psychiatry.2005,57(9):975-81
    [113]M. Tillfors, T. Furmark, I. Marteinsdottir, et al. Cerebral blood flow in subjects with socialphobia during stressful speaking tasks: a PET study[J]. Am J Psychiatry.2001,158(8):1220-6
    [114]T. Furmark, M. Tillfors, I. Marteinsdottir, et al. Common changes in cerebral blood flow inpatients with social phobia treated with citalopram or cognitive-behavioral therapy[J]. Arch GenPsychiatry.2002,59(5):425-33
    [115]X. H. Zhao, P. J. Wang, C. B. Li, et al. Altered default mode network activity in patient withanxiety disorders: an fMRI study[J]. Eur J Radiol.2007,63(3):373-8
    [116]C. Gentili, E. Ricciardi, M. I. Gobbini, et al. Beyond amygdala: Default Mode Network activitydiffers between patients with social phobia and healthy controls[J]. Brain Res Bull.2009,79(6):409-13
    [117]M. G. Knyazeva, M. Jalili, R. S. Frackowiak, et al. Psychogenic seizures and frontaldisconnection: EEG synchronisation study[J]. J Neurol Neurosurg Psychiatry.2011,82(5):505-11
    [118]S. J. van der Kruijs, N. M. Bodde, M. J. Vaessen, et al. Functional connectivity of dissociationin patients with psychogenic non-epileptic seizures[J]. J Neurol Neurosurg Psychiatry.2012,83(3):239-47
    [119]O. Sporns. Networks of the Brain[M]. Cambridge; MA: MIT Press,2010
    [120]O. Sporns. The human connectome: a complex network[J]. Ann N Y Acad Sci.2011,1224:109-25
    [121]W. Liao, J. Ding, D. Marinazzo, et al. Small-world directed networks in the human brain:Multivariate Granger causality analysis of resting-state fMRI[J]. Neuroimage.2011,54(4):2683-94
    [122]D. J. Watts and S. H. Strogatz. Collective dynamics of 'small-world' networks[J]. Nature.1998,393(6684):440-2
    [123]M. Kaiser and C. C. Hilgetag. Nonoptimal component placement, but short processing paths,due to long-distance projections in neural systems[J]. PLoS Comput Biol.2006,2(7):e95
    [124]O. Sporns. The non-random brain: efficiency, economy, and complex dynamics[J]. FrontComput Neurosci.2011,5:5
    [125]S. L. Bressler and V. Menon. Large-scale brain networks in cognition: emerging methods andprinciples[J]. Trends Cogn Sci.2010,14(6):277-90
    [126]M. E. Raichle. Two views of brain function[J]. Trends Cogn Sci.2010,14(4):180-90
    [127]A. Bartels and S. Zeki. Brain dynamics during natural viewing conditions--a new guide formapping connectivity in vivo[J]. Neuroimage.2005,24(2):339-49
    [128]M. Corbetta and G. L. Shulman. Control of goal-directed and stimulus-driven attention in thebrain[J]. Nat Rev Neurosci.2002,3(3):201-15
    [129]D. A. Gusnard and M. E. Raichle. Searching for a baseline: functional imaging and the restinghuman brain[J]. Nat Rev Neurosci.2001,2(10):685-94
    [130]M. D. Greicius, B. Krasnow, A. L. Reiss, et al. Functional connectivity in the resting brain: anetwork analysis of the default mode hypothesis[J]. Proc Natl Acad Sci U S A.2003,100(1):253-8
    [131]L. G. Ungerleider and J. V. Haxby.'What' and 'where' in the human brain[J]. Curr OpinNeurobiol.1994,4(2):157-65
    [132]B. A. Zielinski, E. D. Gennatas, J. Zhou, et al. Network-level structural covariance in thedeveloping brain[J]. Proc Natl Acad Sci U S A.2010,107(42):18191-6
    [133]A. M. Kelly, L. Q. Uddin, B. B. Biswal, et al. Competition between functional brain networksmediates behavioral variability[J]. Neuroimage.2008,39(1):527-37
    [134]G. Doucet, M. Naveau, L. Petit, et al. Brain activity at rest: A multi-scale hierarchicalfunctional organization[J]. J Neurophysiol.2011,
    [135]G. Northoff, A. Heinzel, M. de Greck, et al. Self-referential processing in our brain--ameta-analysis of imaging studies on the self[J]. Neuroimage.2006,31(1):440-57
    [136]V. D. Calhoun, T. Adali, G. D. Pearlson, et al. A method for making group inferences fromfunctional MRI data using independent component analysis[J]. Hum Brain Mapp.2001,14(3):140-51
    [137]M. J. Jafri, G. D. Pearlson, M. Stevens, et al. A method for functional network connectivityamong spatially independent resting-state components in schizophrenia[J]. Neuroimage.2008,39(4):1666-81
    [138]Y. O. Li, T. Adali and V. D. Calhoun. Estimating the number of independent components forfunctional magnetic resonance imaging data[J]. Hum Brain Mapp.2007,28(11):1251-66
    [139]A. Hyvarinen. Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Trans Neural Netw.1999,10(3):626-34
    [140]M. C. Stevens, K. A. Kiehl, G. Pearlson, et al. Functional neural circuits for mentaltimekeeping[J]. Hum Brain Mapp.2007,28(5):394-408
    [141]D. Mantini, M. Corbetta, M. G. Perrucci, et al. Large-scale brain networks account forsustained and transient activity during target detection[J]. Neuroimage.2009,44(1):265-74
    [142]W. Liao, H. Chen, Y. Feng, et al. Selective aberrant functional connectivity of resting statenetworks in social anxiety disorder[J]. Neuroimage.2010,52(4):1549-58
    [143]X. N. Zuo, C. Kelly, J. S. Adelstein, et al. Reliable intrinsic connectivity networks: test-retestevaluation using ICA and dual regression approach[J]. Neuroimage.2010,49(3):2163-77
    [144]M. D. Fox, A. Z. Snyder, J. L. Vincent, et al. The human brain is intrinsically organized intodynamic, anticorrelated functional networks[J]. Proc Natl Acad Sci U S A.2005,102(27):9673-8
    [145]E. Tagliazucchi, P. Balenzuela, D. Fraiman, et al. Brain resting state is disrupted in chronicback pain patients[J]. Neurosci Lett.2010,485(1):26-31
    [146]S. H. Strogatz. Exploring complex networks[J]. Nature.2001,410(6825):268-76
    [147]M. D. Humphries, K. Gurney and T. J. Prescott. The brainstem reticular formation is asmall-world, not scale-free, network[J]. Proc Biol Sci.2006,273(1585):503-11
    [148]S. Maslov and K. Sneppen. Specificity and stability in topology of protein networks[J]. Science.2002,296(5569):910-3
    [149]R. Milo, S. Shen-Orr, S. Itzkovitz, et al. Network motifs: simple building blocks of complexnetworks[J]. Science.2002,298(5594):824-7
    [150]Q. H. Zou, C. Z. Zhu, Y. Yang, et al. An improved approach to detection of amplitude oflow-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF[J]. J NeurosciMethods.2008,172(1):137-41
    [151]X. N. Zuo, A. Di Martino, C. Kelly, et al. The oscillating brain: complex and reliable[J].Neuroimage.2010,49(2):1432-45
    [152]D. Tomasi and N. D. Volkow. Association between Functional Connectivity Hubs and BrainNetworks[J]. Cereb Cortex.2011,
    [153]Y. Iturria-Medina, R. C. Sotero, E. J. Canales-Rodriguez, et al. Studying the human brainanatomical network via diffusion-weighted MRI and Graph Theory[J]. Neuroimage.2008,40(3):1064-76
    [154]G. Gong, Y. He, L. Concha, et al. Mapping anatomical connectivity patterns of human cerebralcortex using in vivo diffusion tensor imaging tractography[J]. Cereb Cortex.2009,19(3):524-36
    [155]N. Mathias and V. Gopal. Small worlds: how and why[J]. Phys Rev E Stat Nonlin Soft MatterPhys.2001,63(2Pt1):021117
    [156]R. L. Carhart-Harris and K. J. Friston. The default-mode, ego-functions and free-energy: aneurobiological account of Freudian ideas[J]. Brain.2010,133(Pt4):1265-83
    [157]D. A. Fair, A. L. Cohen, N. U. Dosenbach, et al. The maturing architecture of the brain's defaultnetwork[J]. Proc Natl Acad Sci U S A.2008,105(10):4028-32
    [158]A. M. Kelly, A. Di Martino, L. Q. Uddin, et al. Development of anterior cingulate functionalconnectivity from late childhood to early adulthood[J]. Cereb Cortex.2009,19(3):640-57
    [159]M. B. Stein and D. J. Stein. Social anxiety disorder[J]. Lancet.2008,371(9618):1115-25
    [160]M. B. Stein and Y. M. Kean. Disability and quality of life in social phobia: epidemiologicfindings[J]. Am J Psychiatry.2000,157(10):1606-13
    [161]K. Mogg, B. P. Bradley, J. de Bono, et al. Time course of attentional bias for threat informationin non-clinical anxiety[J]. Behav Res Ther.1997,35(4):297-303
    [162]K. Horley, L. M. Williams, C. Gonsalvez, et al. Face to face: visual scanpath evidence forabnormal processing of facial expressions in social phobia[J]. Psychiatry Res.2004,127(1-2):43-53
    [163]S. G. Hofmann. Cognitive mediation of treatment change in social phobia[J]. J Consult ClinPsychol.2004,72(3):393-9
    [164]R. M. Rapee and R. G. Heimberg. A cognitive-behavioral model of anxiety in social phobia[J].Behav Res Ther.1997,35(8):741-56
    [165]M. Cammarota, L. R. Bevilaqua, M. R. Vianna, et al. The extinction of conditioned fear:structural and molecular basis and therapeutic use[J]. Rev Bras Psiquiatr.2007,29(1):80-5
    [166]M. C. Freitas-Ferrari, J. E. Hallak, C. Trzesniak, et al. Neuroimaging in social anxiety disorder:a systematic review of the literature[J]. Prog Neuropsychopharmacol Biol Psychiatry.2010,34(4):565-80
    [167]J. M. Warwick, P. Carey, G. P. Jordaan, et al. Resting brain perfusion in social anxiety disorder:a voxel-wise whole brain comparison with healthy control subjects[J]. ProgNeuropsychopharmacol Biol Psychiatry.2008,32(5):1251-6
    [168]M. Greicius. Resting-state functional connectivity in neuropsychiatric disorders[J]. Curr OpinNeurol.2008,21(4):424-30
    [169]M. D. Fox and M. Greicius. Clinical applications of resting state functional connectivity[J].Front Syst Neurosci.2010,4:19
    [170]M. D. Greicius, B. H. Flores, V. Menon, et al. Resting-state functional connectivity in majordepression: abnormally increased contributions from subgenual cingulate cortex andthalamus[J]. Biol Psychiatry.2007,62(5):429-37
    [171]A. Etkin, K. E. Prater, A. F. Schatzberg, et al. Disrupted amygdalar subregion functionalconnectivity and evidence of a compensatory network in generalized anxiety disorder[J]. ArchGen Psychiatry.2009,66(12):1361-72
    [172]N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, et al. Automated anatomical labeling ofactivations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subjectbrain[J]. Neuroimage.2002,15(1):273-89
    [173]K. Engel, B. Bandelow, O. Gruber, et al. Neuroimaging in anxiety disorders[J]. J NeuralTransm.2009,116(6):703-16
    [174]R. Veit, H. Flor, M. Erb, et al. Brain circuits involved in emotional learning in antisocialbehavior and social phobia in humans[J]. Neurosci Lett.2002,328(3):233-6
    [175]L. Stopa and D. M. Clark. Social phobia and interpretation of social events[J]. Behav Res Ther.2000,38(3):273-83
    [176]N. Amir, E. B. Foa and M. E. Coles. Automatic activation and strategic avoidance ofthreat-relevant information in social phobia[J]. J Abnorm Psychol.1998,107(2):285-90
    [177]T. M. Mellings and L. E. Alden. Cognitive processes in social anxiety: the effects of self-focus,rumination and anticipatory processing[J]. Behav Res Ther.2000,38(3):243-57
    [178]C. N. Macrae, J. M. Moran, T. F. Heatherton, et al. Medial prefrontal activity predicts memoryfor self[J]. Cereb Cortex.2004,14(6):647-54
    [179]R. D. Lane, E. M. Reiman, B. Axelrod, et al. Neural correlates of levels of emotionalawareness. Evidence of an interaction between emotion and attention in the anterior cingulatecortex[J]. J Cogn Neurosci.1998,10(4):525-35
    [180]R. J. Davidson, H. Abercrombie, J. B. Nitschke, et al. Regional brain function, emotion anddisorders of emotion[J]. Curr Opin Neurobiol.1999,9(2):228-34
    [181]R. J. Davidson and W. Irwin. The functional neuroanatomy of emotion and affective style[J].Trends Cogn Sci.1999,3(1):11-21
    [182]M. D'Esposito, B. R. Postle, D. Ballard, et al. Maintenance versus manipulation of informationheld in working memory: an event-related fMRI study[J]. Brain Cogn.1999,41(1):66-86
    [183]R. Sprengelmeyer, M. Rausch, U. T. Eysel, et al. Neural structures associated with recognitionof facial expressions of basic emotions[J]. Proc Biol Sci.1998,265(1409):1927-31
    [184]K. Nakamura, R. Kawashima, K. Ito, et al. Activation of the right inferior frontal cortex duringassessment of facial emotion[J]. J Neurophysiol.1999,82(3):1610-4
    [185]R. M. Rapee and S. H. Spence. The etiology of social phobia: empirical evidence and an initialmodel[J]. Clin Psychol Rev.2004,24(7):737-67
    [186]R. M. Rapee and M. J. Abbott. Modelling relationships between cognitive variables during andfollowing public speaking in participants with social phobia[J]. Behav Res Ther.2007,45(12):2977-89
    [187]M. Streit, A. Ioannides, T. Sinnemann, et al. Disturbed facial affect recognition in patients withschizophrenia associated with hypoactivity in distributed brain regions: amagnetoencephalographic study[J]. Am J Psychiatry.2001,158(9):1429-36
    [188]J. Y. Chiao, T. Harada, H. Komeda, et al. Neural basis of individualistic and collectivistic viewsof self[J]. Hum Brain Mapp.2009,30(9):2813-20
    [189]M. E. Wheeler and A. M. Treisman. Binding in short-term visual memory[J]. J Exp PsycholGen.2002,131(1):48-64
    [190]C. D. Frith. The social brain?[J]. Philos Trans R Soc Lond B Biol Sci.2007,362(1480):671-8
    [191]S. L. Rauch, L. M. Shin and C. I. Wright. Neuroimaging studies of amygdala function inanxiety disorders[J]. Ann N Y Acad Sci.2003,985:389-410
    [192]A. Etkin and T. D. Wager. Functional neuroimaging of anxiety: a meta-analysis of emotionalprocessing in PTSD, social anxiety disorder, and specific phobia[J]. Am J Psychiatry.2007,164(10):1476-88
    [193]J. LeDoux. Fear and the brain: where have we been, and where are we going?[J]. BiolPsychiatry.1998,44(12):1229-38
    [194]E. A. Phelps, M. R. Delgado, K. I. Nearing, et al. Extinction learning in humans: role of theamygdala and vmPFC[J]. Neuron.2004,43(6):897-905
    [195]C. Herry, D. R. Bach, F. Esposito, et al. Processing of temporal unpredictability in human andanimal amygdala[J]. J Neurosci.2007,27(22):5958-66
    [196]M. Davis and P. J. Whalen. The amygdala: vigilance and emotion[J]. Mol Psychiatry.2001,6(1):13-34
    [197]O. Devinsky, D. Gazzola and W. C. LaFrance, Jr. Differentiating between nonepileptic andepileptic seizures[J]. Nat Rev Neurol.2011,7(4):210-20
    [198]G. Baslet. Psychogenic non-epileptic seizures: a model of their pathogenic mechanism[J].Seizure.2011,20(1):1-13
    [199]A. A. Leis, M. A. Ross and A. K. Summers. Psychogenic seizures: ictal characteristics anddiagnostic pitfalls[J]. Neurology.1992,42(1):95-9
    [200]M. Reuber, G. A. Baker, R. Gill, et al. Failure to recognize psychogenic nonepileptic seizuresmay cause death[J]. Neurology.2004,62(5):834-5
    [201]O. Sporns, D. R. Chialvo, M. Kaiser, et al. Organization, development and function of complexbrain networks[J]. Trends Cogn Sci.2004,8(9):418-25
    [202]J. R. Ding, W. Liao, Z. Zhang, et al. Topological fractionation of resting-state networks[J].PLoS ONE.2011,6(10):e26596
    [203]M. Guye, G. Bettus, F. Bartolomei, et al. Graph theoretical analysis of structural and functionalconnectivity MRI in normal and pathological brain networks[J]. MAGMA.2010,23(5-6):409-21
    [204]P. Skudlarski, K. Jagannathan, K. Anderson, et al. Brain connectivity is not only lower butdifferent in schizophrenia: a combined anatomical and functional approach[J]. Biol Psychiatry.2010,68(1):61-9
    [205]M. A. Kramer and S. S. Cash. Epilepsy as a Disorder of Cortical Network Organization[J].Neuroscientist.2012,
    [206]M. C. Vlooswijk, M. J. Vaessen, J. F. Jansen, et al. Loss of network efficiency associated withcognitive decline in chronic epilepsy[J]. Neurology.2011,77(10):938-44
    [207]S. R. Benbadis, K. Siegrist, W. O. Tatum, et al. Short-term outpatient EEG video withinduction in the diagnosis of psychogenic seizures[J]. Neurology.2004,63(9):1728-30
    [208]J. R. Ding, H. Chen, C. Qiu, et al. Disrupted functional connectivity in social anxiety disorder:a resting-state fMRI study[J]. Magn Reson Imaging.2011,29(5):701-11
    [209]J. D. Power, K. A. Barnes, A. Z. Snyder, et al. Spurious but systematic correlations infunctional connectivity MRI networks arise from subject motion[J]. Neuroimage.2012,59(3):2142-54
    [210]K. R. Van Dijk, M. R. Sabuncu and R. L. Buckner. The influence of head motion on intrinsicfunctional connectivity MRI[J]. Neuroimage.2012,59(1):431-8
    [211]R. Wang, T. Beener, A. G. Sorensen, et al. Diffusion toolkit: a software package for diffusionimaging data processing and tractography[J]. Proc Intl Soc Mag Reson Med.2007,15:3720
    [212]M. P. van den Heuvel, R. C. Mandl, C. J. Stam, et al. Aberrant frontal and temporal complexnetwork structure in schizophrenia: a graph theoretical analysis[J]. J Neurosci.2010,30(47):15915-26
    [213]M. E. J. Newman. The structure and function of complex networks[J]. Siam Review.2003,45(2):167-256
    [214]L. C. Freeman. A set of measures of centrality based on betweenness[J]. Sociometry.1977,40(1):35-41
    [215]M. A. Koch, D. G. Norris and M. Hund-Georgiadis. An investigation of functional andanatomical connectivity using magnetic resonance imaging[J]. Neuroimage.2002,16(1):241-50
    [216]V. Latora and M. Marchiori. Efficient behavior of small-world networks[J]. Phys Rev Lett.2001,87(19):198701
    [217]A. D. Craig. How do you feel? Interoception: the sense of the physiological condition of thebody[J]. Nat Rev Neurosci.2002,3(8):655-66
    [218]M. A. Eckert, V. Menon, A. Walczak, et al. At the heart of the ventral attention system: the rightanterior insula[J]. Hum Brain Mapp.2009,30(8):2530-41
    [219]E. Gleichgerrcht, A. Ibanez, M. Roca, et al. Decision-making cognition in neurodegenerativediseases[J]. Nat Rev Neurol.2010,6(11):611-23
    [220]R. J. Brown, T. U. Syed, S. Benbadis, et al. Psychogenic nonepileptic seizures[J]. EpilepsyBehav.2011,22(1):85-93
    [221]A. Labate, A. Cerasa, M. Mula, et al. Neuroanatomic correlates of psychogenic nonepilepticseizures: A cortical thickness and VBM study[J]. Epilepsia.2012,53(2):377-385
    [222]S. D. Roosendaal, M. M. Schoonheim, H. E. Hulst, et al. Resting state networks change inclinically isolated syndrome[J]. Brain.2010,133(Pt6):1612-21
    [223]D. Feil and A. Kumar. The neuropsychiatry of subcortical ischemic brain disease[J]. CurrPsychiatry Rep.1999,1(1):69-77
    [224]M. Catani, R. J. Howard, S. Pajevic, et al. Virtual in vivo interactive dissection of white matterfasciculi in the human brain[J]. Neuroimage.2002,17(1):77-94
    [225]M. Reuber. Psychogenic nonepileptic seizures: answers and questions[J]. Epilepsy Behav.2008,12(4):622-35
    [226]K. R. Sigurdardottir and E. Olafsson. Incidence of psychogenic seizures in adults: apopulation-based study in Iceland[J]. Epilepsia.1998,39(7):749-52
    [227]J. P. Szaflarski, D. M. Ficker, W. T. Cahill, et al. Four-year incidence of psychogenicnonepileptic seizures in adults in hamilton county, OH[J]. Neurology.2000,55(10):1561-3
    [228]S. R. Benbadis and W. Allen Hauser. An estimate of the prevalence of psychogenicnon-epileptic seizures[J]. Seizure.2000,9(4):280-1
    [229]W. C. LaFrance, Jr. and J. J. Barry. Update on treatments of psychological nonepilepticseizures[J]. Epilepsy Behav.2005,7(3):364-74
    [230]D. Tomasi and N. D. Volkow. Functional connectivity density mapping[J]. Proc Natl Acad SciU S A.2010,107(21):9885-90
    [231]D. Tomasi and N. D. Volkow. Functional connectivity hubs in the human brain[J]. Neuroimage.2011,57(3):908-17
    [232]D. Tomasi and N. D. Volkow. Aging and functional brain networks[J]. Mol Psychiatry.2012,17(5):471,549-58
    [233]B. U. Foerster, D. Tomasi and E. C. Caparelli. Magnetic field shift due to mechanical vibrationin functional magnetic resonance imaging[J]. Magn Reson Med.2005,54(5):1261-7
    [234]D. Tomasi and N. D. Volkow. Abnormal functional connectivity in children withattention-deficit/hyperactivity disorder[J]. Biol Psychiatry.2012,71(5):443-50
    [235]R. L. Buckner, J. Sepulcre, T. Talukdar, et al. Cortical hubs revealed by intrinsic functionalconnectivity: mapping, assessment of stability, and relation to Alzheimer's disease[J]. JNeurosci.2009,29(6):1860-73
    [236]B. L. Miller and J. L. Cummings. The human frontal lobes: functions and disorders[M]. NewYork: Guilford Press,1999
    [237]T. Paus, M. Petrides, A. C. Evans, et al. Role of the human anterior cingulate cortex in thecontrol of oculomotor, manual, and speech responses: a positron emission tomography study[J].J Neurophysiol.1993,70(2):453-69
    [238]T. Paus. Primate anterior cingulate cortex: where motor control, drive and cognitioninterface[J]. Nat Rev Neurosci.2001,2(6):417-24
    [239]N. U. Dosenbach, K. M. Visscher, E. D. Palmer, et al. A core system for the implementation oftask sets[J]. Neuron.2006,50(5):799-812
    [240]G. Bush, P. Luu and M. I. Posner. Cognitive and emotional influences in anterior cingulatecortex[J]. Trends Cogn Sci.2000,4(6):215-222
    [241]N. Gene-Cos, R. Pottinger, G. Barrett, et al. A comparative study of mismatch negativity(MMN) in epilepsy and non-epileptic seizures[J]. Epileptic Disord.2005,7(4):363-72
    [242]H. R. Pouretemad, P. J. Thompson and P. B. Fenwick. Impaired sensorimotor gating in patientswith non-epileptic seizures[J]. Epilepsy Res.1998,31(1):1-12
    [243]P. L. Frances, G. A. Baker and P. L. Appleton. Stress and avoidance in Pseudoseizures: testingthe assumptions[J]. Epilepsy Res.1999,34(2-3):241-9
    [244]T. M. Tojek, M. Lumley, G. Barkley, et al. Stress and other psychosocial characteristics ofpatients with psychogenic nonepileptic seizures[J]. Psychosomatics.2000,41(3):221-6
    [245]J. Stone, M. Binzer and M. Sharpe. Illness beliefs and locus of control: a comparison ofpatients with pseudoseizures and epilepsy[J]. J Psychosom Res.2004,57(6):541-7
    [246]O. Pollatos, K. Gramann and R. Schandry. Neural systems connecting interoceptive awarenessand feelings[J]. Hum Brain Mapp.2007,28(1):9-18
    [247]A. Magaudda, S. C. Gugliotta, R. Tallarico, et al. Identification of three distinct groups ofpatients with both epilepsy and psychogenic nonepileptic seizures[J]. Epilepsy Behav.2011,22(2):318-23
    [248]P. Bakvis, P. Spinhoven, F. G. Zitman, et al. Automatic avoidance tendencies in patients withpsychogenic non-epileptic seizures[J]. Seizure.2011,20(8):628-34
    [249]N. Kapur, K. J. Friston, A. Young, et al. Activation of human hippocampal formation duringmemory for faces: a PET study[J]. Cortex.1995,31(1):99-108
    [250]R. L. Buckner and S. E. Petersen. What does neuroimaging tell us about the role of prefrontalcortex in memory retrieval?[J]. Seminars in the Neurosci.1996,8:47-55
    [251]P. Bakvis, P. Spinhoven, P. Putman, et al. The effect of stress induction on working memory inpatients with psychogenic nonepileptic seizures[J]. Epilepsy Behav.2010,19(3):448-54