不同状态下脑功能网络特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着功能磁共振和神经电生理技术的开发与利用,人脑活动数据的采集已经成为可能。如何从脑活动数据中发现具有生物学意义的知识及规律,正在成为当前神经信息学理论与实践研究的热点与难点。与此同时,复杂网络的研究在快速发展,在众多领域得到应用,研究者采用相同量化参数,发现一些共有的拓扑结构。人脑功能需要不同的神经环路交互作用才能实现,在复杂网络研究框架下,以交互作用为网络连接,以解剖脑区或电极为网络节点,构造脑功能网络,研究不同状态下的网络拓扑特性,有助于揭示脑内信息加工机制。
     本论文基于功能磁共振和脑电数据,从复杂网络角度,分别研究了静息状态、冥想状态、任务状态的脑功能网络拓扑特性。论文的主要研究工作及贡献包括以下几个方面:
     1.研究静息态脑功能网络的非随机拓扑结构。基十静息态功能磁共振数据,采用标准脑模板和偏相关方法来构建人脑功能网络,并进行拓扑结构分析。以最大生成树的方法进行脑网络骨架可视化,结果发现树中央区域主要由默认模式网络和注意网络脑区组成。应用谱平分算法,整个脑网络以划分成大小不同的具有生物学意义的功能团结构,每个团具有相对独立的功能。研究脑网络节点和连接在功能团内部和外部的作用,结果发现处于拓扑中心的核心节点和桥共同形成脑网络信息整合的中心。本研究勾画出人脑功能网络骨架和功能团结构的图谱,有利于我们进一步理解脑内信息加工的功能分割和功能整合机制。
     2.研究高低频段对静息态脑功能网络的影响。将静息态数据划分为高频段(0.027~0.073Hz)和低频段(0.01~0.027Hz),构建差异化脑功能网络,计算二组频段的低频振荡振幅、局部一致性、功能连通性等量化指标的差异。结果发现,频段差异主要集中在默认模式网络的中线位置和杏仁核功能区域。本研究的差异化脑功能网络的构建方法和频率对脑功能网络影响范围的发现拓展了脑功能网络研究思路。
     3.冥想状态脑功能网络特性研究。比较一个月冥想训练前后的脑功能网络拓扑特性和连通模式,发现处于大脑自我调节中心的前扣带回脑区的效率呈现增加趋势,而辅助运动区网络指标值呈现下降趋势,这种网络特性的改变可能用米维持通过训练达到的冥想状态。本研究从新的网络视角提供了经验相关的脑功能网络特性改变的实证支持。
     4.任务状态脑功能网络的差异性研究。基于事件相关电位数据,采用同步似然方法计算电极间的功能关系,分析和比较了在道德两难决策过程中涉及个人和非涉及个人情景下的脑功能网络特性的差别。研究发现,涉及个人情景在右脑有更多更强的长程连接,并且与额叶有关,揭示了脑功能网络的连通模式与道德两难决策中认知和情感间冲突程度的表征有着密切关系。本研究提出道德加工的分布式机制和发现高冲突道德两难的大脑右侧化现象,有助于为任务脑功能网络和道德认知神经科学的研究拓宽思路。
     总之,本论文对几种典型状态的脑功能网络做了一次系统研究的重要尝试,获得了一些有价值的结果。论文所提的方法和研究结果将促进脑功能网络研究的发展和完善,为笔者未来研究工作奠定了坚实的基础。
In the past decade, a multitude of human brain activity data has been acquired with the fast development of functional magnetic resonance imaging and neural electrophysiological techniques. How to find valuable and biologically meaningful knowledge and rules behind these data is a critical problem and is a hot research topic in neuroinformatics. At the same time, complex networks have attracted great attention as a compelling framework with which complex systems are being studied in many fields. Many natural and man-made networks generated from different datasets have been exhibited common principles that govern network behavior and can be quantitatively characterized by the same parameters. The human brain generates large amount of oscillatory neural activity in support of brain function. The interplay between the activity of different brain regions and their integration is crucial to the organizational principles that underlie cognitive and brain function, and one strategy is quantitative analysis and characterization of these brain activity from a network perspective.
     In the present dissertation, we investigate the organization rules behind multimodal experimental image data by combining computer science, neuroscience, imaging and statistics, as well as the psychology knowledge, and mainly focus on the topological properties of brain networks at rest or during tasks and meditation-related brain network plasticity. The main contents and contributions of the dissertation are as following.
     1. Non-random organization of resting brain networks. We investigated the topological properties of brain networks derived from resting-state functional magnetic resonance imaging. A prior anatomical automatic labeling template was first used to parcellate the brain volume into90network nodes and functional connectivity was defined by partial correlation coefficients between the mean time series of each pair of anatomically unconnected regions. The connectivity backbone represented by a maximum spanning tree was then used to visualize network layout and most brain areas of the default and attention-related network activity were observed to be distributed at the center of the network layout as important functional hubs of information processing at rest. Newman's spectral optimization method was applied to reveal the intrinsically community architectures and the resulting nonrandom structure fit well some biologically meaningful functional systems of the brain. Both brain regions (nodes) and connections in the brain network were then classified into different categories, and several hub regions and bridge connections played pivotal roles in the global information transfer, whose lesions exhibited different impacts on network efficiency. These studies mapped the connectivity skeleton and community structure of brain networks and would help us understand functional specialization and functional integration during information processing in the human brain.
     2. Frequency-related differences observed in functional brain networks. We used amplitude of low frequency fluctuation, regional homogeneity, functional connectivity and complex network to reveal distinctions in the default mode network and amygdale. The new method of constructing brain networks and the effects of frequency on brain networks would provide new insights in studies of functional brain networks.
     3. Meditation-related brain plasticity observed in functional brain networks. We adopted meditation as a vehicle and examined changes of network topological properties due to training. The results indicated network properties of the anterior cingulate during resting state condition were altered by short-term meditation, and attempted to provide an interpretation of improvement in self-regulation. The study provided empirical support of experience-driven brain plasticity from a network perspective.
     4. Research of brain networks derived from event-related potential (ERP). We applied synchronization likelihood analysis and graph theory-based network analysis of ERP data in moral decision making to study the personal/impersonal distinction in organization of functional connectivity. The results indicated that the personal task had some larger long-range connections involved in frontal regions and the right hemisphere, and higher network efficiency of some frontal electrodes than the impersonal. This may be related to brain resource reorganization contributing to efficient conflict resolution mediated by distributed processing.
引文
[1]叶奕乾.普通心理学[M].上海:华东师范大学出版社,2010
    [2]陈宜张.大脑黑匣揭秘[M]北京:北京教育出版社,2002.
    [3]史忠植.神经网络[M].北京:高等教育出版社,2009.
    [4]Shepherd G M. The synaptic organization of the brain[M]. Oxford:Oxford University Press, 2004.
    [5]梁夏,王金辉,贺永.人脑连接组研究:脑结构网络和脑功能网络[J].科学通报,2010,55(16):1565-1583.
    [6]Song M, Jiang T. A review of functional magnetic resonance imaging for Brainnetome[J]. Neurosci Bull,2012,28(4):389-398.
    [7]方福康.神经系统中的复杂性研究[J].上海理工大学学报,2011,33(2):103-110
    [8]张方风,郑志刚.复杂脑网络研究:现状与挑战[J].上海理工大学学报,2012,34(2):138-153.
    [9]周曙.事件相关振荡与振荡脑网络[J].心理科学进展,2008,16(3):435-440.
    [10]Zeidenberg M. Neural networks in artificial intelligence[M]. Chichester:Ellis Horwood,1990.
    [11]Hagan M T, Demuth H B, Beale M H. Neural network design[M]. Stamford:Thomson Learning, 1996.
    [12]王亚辉.秀丽隐杆线虫(Caenorhabditis elegans)—一个研究神经系统的最简单模型[J].中国神经科学杂志,2000,16(1):60-64.
    [13]Fries P. A mechanism for cognitive dynamics:neuronal communication through neuronal coherence[J], Trends Cogn Sci 2005,9(10):474-480.
    [14]Telesford Q K, Simpson S L, Burdette J H, et al. The brain as a complex system:using network science as a tool for understanding the brain[J]. Brain Connectivity,2011,1 (4):295-308.
    [15]Maurya M R, Subramaniam S. Computational challenges in systems biology[M]. San Diego: Academic Press.2010.
    [16]汤雷翰,赵鸿,刘宗华等.复杂系统结构及动力学现象的统计物理研究[J].上海理工大学学报,2011,33(5):409-417.
    [17]吴大兴,姚树桥,刘鼎.揭示大脑奥秘的新途径:还原论与整合论的有机融合[J].医学与哲学,2004,25(6):37-38.
    [18]汤怡群.探索大脑奥秘的脑理论[J].武汉大学学报(理学版),1984,15(4):28-34.
    [19]竺可青.人脑的奥秘能否由人脑自身揭示——浅谈神经科学现代研究方法[J].医学与哲学,2002,23(3):21-23.
    [20]彭聃龄.普通心理学[M].北京:北京师范大学出版社,2001
    [21]李继顾.神经科学基础[M].北京:高等教育出版社,2002.
    [22]Simpson D. Phrenology and the neurosciences:Contributions of FJ Gall and JG Spurzheim[J]. ANZ journal of surgery,2005,75(6):475-482.
    [23]Dronkers N F, Plaisant O, Iba-Zizen M T, et al. Paul Broca's historic cases:high resolution MR imaging of the brains of Lcborgne and Lelong[J]. Brain,2007.130(5):1432-1441.
    [24]Bogen J, Bogen G. Wernicke's region—Where is it?[J]. Ann NY Acad Sci 1976,280(1): 834-843.
    [25]胡守仁,余少波,戴葵.神经网络导论[M].北京:国防科技大学出版社,1993.
    [26]Luriya A. The bases of neuropsychology[M]. Moscow:Publishing House of Moscow State University,1973.
    [27]Fodor J A. The modularity of mind:An essay on faculty[M], Cambridge:MIT Press,1983.
    [28]Cosmides L, Tooby J, Barkow J. The adapted mind:Evolutionary psychology and the generation of culture[M]. Oxford:Oxford University Press,1992.
    [29]Almendral J A. Criado R, Leyva I, et al. Introduction to focus issue:mesoscaies in complex nctworks[J], Chaos.2011.21 (1):016101.
    [301 Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain:3-dimensional proportional system: an approach to cerebral imaging[M]. New York:Georg Thieme Verlag Stuttgart.1988.
    [31]汤煜春.中国人数字化标准脑图谱的建立[D].济南:山东大学,2009.
    [32]Tzourio-Mazoyer N. Landeau B. Papathanassiou D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[J]. Neuroimage,2002.15(1):273-289.
    [33]Smith S M, Jenkinson M. Woolrich M W. et al. Advances in functional and structural MR image analysis and implementation as FSL[J]. Neuroimage,2004,23(Suppl):S208-S219.
    [34]Woolrich M W. Jbabdi S, Patenaude B. et al. Bayesian analysis of neuroimaging data in FSL[J]. Neuroimage,2009,45(1):S173-S186.
    [35]Deshpande G, Santhanam P, Hu X. Instantaneous and causal connectivity in resting state brain networks derived from functional MRI data[J]. Neuroimage,2011,54(2):1043-1052.
    [36]Wang J, Wang L, Zang Y, et al. Parcellation-dependent small-world brain functional networks:a resting-state fMRI study[J], Hum Brain Mapp,2009,30(5):1511-1523.
    [37]何大韧,刘宗华,汪秉宏.复杂系统与复杂网络[M].北京:高等教育出版社,2009.
    [38]Ogawa S. Lee T M, Nayak A S, et al. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields[J]. Magn Res Med,1990,14(1):68-78.
    [39J Belliveau J, Kennedy D. McKinstry R, et al. Functional mapping of the human visual cortex by magnetic resonance imaging[J]. Science,1991.254(5032):716-719.
    [40]Raichle M E, MacLeod A M, Snyder A Z, et al. A default mode of brain function[J]. Proc Natl Acad Sci U S A,2001,98(2):676-682.
    [41]Raichle M E. The brain's dark energy[J]. Science,2006,314(5803):1249-1250.
    [42]Biswal B. Zerrin Yetkin F, Haughton V M, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar mri[J]. Magn Res Med.1995,34(4):537-541.
    [43]Zang Y F. He Y, Zhu C Z, ct al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI[J]. Brain Dev.2007.29(2):83-91.
    [44]刘曾荣.文铁桥.姚晓东.脑与非线性动力学[M]北京:科学出版社.2006.
    [45]周涛,柏文洁,汪秉宏等.复杂网络研究概述[J].物理,2005,34(1):31-36.
    [46]汪秉宏,周涛,王文旭等.当前复杂系统研究的方向[J].复杂系统与复杂性科学,2009,5(4):21-28.
    [47]李晓仕,张鹏,狄增如等.复杂网络中的社团结构[J].复杂系统与复杂性科学,2008,5(3):19-40.
    [48]Barabasi A L. Linked:The new science of netwotks[M], Cambridge:Perseus,2002.
    [49]Watts D J, Strogatz S H. Collective dynamics of'small-world'networks[J]. Nature,1998, 393(6684):440-442.
    [50]Barabasi A L, Albert R. Emergence of scaling in random networks[J]. Science.1999,286(5439): 509-512.
    [51]汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社,2006.
    [52]Stam C J, Reijneveld J C. Graph theoretical analysis of complex networks in the brain[J]. Nonlinear Biomed Phys,2007,1(1):1-19.
    [53]Friston K J. Functional and effective connectivity in neuroimaging:a synthesis[J]. Hum Brain Mapp,1994,2:56-78.
    [54]Greicius M D, Krasnow B, Reiss A L, et al. Functional connectivity in the resting brain:a network analysis of the default mode hypothcsis[J]. Proc Natl Acad Sci USA,2003,100(1): 253-258.
    [55]Bullmore E. Sporns O. Complex brain networks:graph theoretical analysis of struetural and functional systems[J]. Nat Rev Neurosci,2009,10(3):186-198.
    [56]Stam C J. Characterization of anatomical and functional connectivity in the brain:A complex networks perspective[J]. Int J Psychophys,2010,77(3):186-194.
    [57]Meunier D, Achard S, Morcom A, et al. Age-related changes in modular organization of human brain functional networks[J]. Neuroimage,2009,44(3):715-723.
    [58]He Y, Wang J, Wang L. et al. Uncovering intrinsic modular organization of spontaneous brain activity in humans[J], PLoS One,2009,4(4):e5226.
    [59]Zuo X-N, Ehmke R, Mennes M, et al. Network centrality in the human functional conncctomefJ]. Cereb Cortex,2011,22(8):1862-1875.
    [60]Adelstein J S, Shehzad Z, Mennes M, et al. Personality is reflected in the brain's intrinsic functional architecture[J]. PLoS One,2011.6(11):e27633.
    [61]Supekar K, Menon V, Rubin D, et al. Network analysis of intrinsic functional brain connectivity in Alzheimer's disease[J]. PLoS Comput Biol,2008,4(6):el000100.
    [62]Wang L, Zhu C, He Y, et al. Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder[J]. Hum Brain Mapp,2009,30(2):638-649.
    [63]Pontcn S. Bartolomei F, Stam C. Small-world networks and epilepsy:graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizurcs[J]. Clin Neurophysiol,2007.118(4): 918-927.
    [64]Bassett D S. Clinical applications of complex network analysis[M]. In:Sporns O. Analysis and function of large-scale brain networks. Washington:Society for Neuroscicnce,2010.
    [65]Xia M, He Y. Magnetic resonance imaging and graph theoretical analysis of complex brain networks in neuropsychiatric disorders[J]. Brain Connectivity.2011.1(2):1-59.
    [661 Petrella J R. Use of graph theory to evaluate brain networks:A clinical tool for a small world?[J]. Radiology.2011,259(2):317-320.
    [67]Stephan K. Hilgetag C, Burns G. et al. Computational analysis of functional connectivity between areas of primate cerebral cortex[J]. Philos Trans R Soc London Ser B.2000,355(1393): 111-126.
    [68]Stam C J. Functional connectivity patterns of human magnetoencephalographie reeordings:a 'small-world'network?[J]. Neurosci Lett,2004,355(1-2):25-28.
    [69]Micheloyannis S. Pachou E, Stam C J, et al. Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis[J]. Neurosci Lett 2006,402(3):273-277.
    [70]Grabner R, Fink A, Stipacek A, et al. Intelligence and working memory systems:Evidence of neural efficiency in alpha band ERD[J]. Cogn Brain Res,2004,20(2):212-225.
    [71]Micheloyannis S. Vourkas M, Tsirka V, et al. The influence of ageing on complex brain networks: A graph theoretical analysis[J]. Hum Brain Mapp,2009,30(1):200-208.
    [72]Bassett D S. Meyer-Lindenberg A, Achard S, et al. Adaptive reconfiguration of fractal small-world human brain functional nctworks[J], Proc Natl Acad Sci U S A.2006.103(51): 19518-19523.
    [73]Achard S. Salvador R, Whitcher B, et al. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs[J]. J Neurosci.2006,26(1): 63-72.
    [74]Sporns O, Tononi G, Edelman G M. Theoretical neuroanalomy:relating anatomical and functional connectivity in graphs and cortical connection matriccs[J]. C'creb Cortex,2000,10(2): 127.
    [75]郝冬梅,阮晓钢.模拟大脑皮层结构和功能连接的神经网络研究[J].系统仿真学报.2005,17(2):510-512.
    [76]方锦清.大脑网络的探索进程(一)——研究特点、方法与三大类型[J].自然杂志,2012,34(6):344-349.
    [77]雷旭.基于贝叶斯理论的EEG-fMRI融合技术研究[D].成都:电子科技大学,2011.
    [78]Liao W, Ding J, Marinazzo D, et al. Small-world directed networks in the human brain: Multivariate Granger causality analysis of resting-state fMRI[J]. Neuroimage,2011,54(4): 2683-2694.
    [79]Zeng L L, Shen H, Liu L, et al. Identifying major depression using whole-brain functional connectivity:a multivariate pattern analysis[J]. Brain,2012,135(5):1498-1507.
    [80]Niu H, Wang J, Zhao T, et al. Revealing Topological Organization of Human Brain Functional Networks with Resting-State Functional near Infrared Spectroscopy[J]. PLoS ONE,2012,7(9): e45771.
    [81]Feng Y, Bai I., Ren Y. et al. FMRI connectivity analysis of acupuncture effects on the whole brain network in mild cognitive impairment patients[J]. Magn Reson Imaging.2012,30(5): 672-682.
    [82]Liu P. Zhang Y. Zhou G Y, et al. Partial correlation investigation on the default mode network involved in acupuncture:An fMRI study[J]. Neurosci Lett.2009.462(3):183-187.
    [83]钱学森,于景元,戴汝为.一个科学新领域——开放的复杂巨系统及其方法论[J].自然杂志,1990,13(1):3-10.
    [84]Seung H S. Ncurosciencc:Towards functional connectomics[J]. Nature.2011,471(7337): 170-172.
    [85]Bullmore E, Sporns O. The economy of brain network organization[J]. Nat Rev Neurosci,2012, 13(5):336-349.
    [86]Vertes P E, Alexander-Bloch A F, Gogtay N. et al. Simple models of human brain functional networks[J]. Proc Natl Acad Sci USA,2012,109(15):5868-5873.
    [87]McCulloch W S, Pitts W. A logical calculus of the ideas immanent in nervous activity[J]. B Math Biol,1943,5(4):115-133.
    [88]Hopfield J J. Neural networks and physical systems with emergent collective computational abilities[J], Proc Natl Acad Sci U S A,1982,79(8):2554-2558.
    [89]Hopfield J J. Neurons with graded response have collective computational properties like those of two-state neurons[J], Proc Natl Acad Sci U S A,1984,81(10):3088-3092.
    [90]戴汝为.复杂巨系统科学——一门21世纪的科学[J].自然杂志.1997.19(4):187-192.
    [91]Bassett D S, Gazzaniga M S. Understanding complexity in the human brain[J]. Trends Cogn Sci, 2011,15(5):200-209.
    [92]Waldrop M M. Complexity:The emerging science at the edge of order and chaos[M]. New York: Simon & Schuster,1992.
    [93]Wig G S, Schlaggar B L, Petersen S E. Concepts and principles in the analysis of brain networks[J]. Ann NY Acad Sci 2011.1224(1):126-146.
    [94]Barabasi A-L, Gulbahce N, Loscalzo J. Network medicine:a network-based approach to human disease[J]. Nat Rev Genet,2011,12(1):56-68.
    [95]Wen Q, Chklovskii D B. Segregation of the Brain into Gray and White Matter:A Design Minimizing Conduction Delays[J]. PLoS Comput Biol,2005,1(7):e78.
    [96]Raichle M E. A brief history of human brain mapping[J]. Trends Cogn Sci.2009,32(2):118-126.
    [97]Friston K J. Modalities, modes, and models in functional neuroimaging[J]. Science,2009, 326(5951):399-403.
    [98]Raichle M E. Two views of brain function[J]. Trends Cogn Sci,2010,14(4):180-190.
    [99]Zhang D, Raichle M E. Disease and the brain's dark energy[J]. Nat Rev Neurol,2010,6(1): 15-28.
    [100]Yan C, Liu D, He Y, et al. Spontaneous brain activity in the default mode network is sensitive to different resting-state conditions with limited cognitive load[J]. PLoS One,2009,4(5):e5743.
    [101]Friston K J. Statistical parametric mapping:the analysis of functional brain images[M]. San Diego:Academic Press,2007.
    [102]Song X W, Dong Z Y, Long X Y, et al. REST:A toolkit for resting-state functional magnetic resonance imaging data processing[J], PLoS One,2011,6(9):e25031.
    [103]Hampson M, Peterson B S. Skudlarski P, et al. Detection of functional connectivity using temporal correlations in MR images[J]. Hum Brain Mapp,2002.15(4):247-262.
    [104]Kruskal J B. On the shortest spanning subtree of a graph and the traveling salesman problem[J], Proc Am Math Soc,1956.7(1):48-50.
    [105]孙凌宇,冷明,谭云兰等.赋权有向图的最小生成树算法[J].计算机工程,2010,36(2):61-66.
    [106]Tononi G, Edehnan G M, Sporns O. Complexity and coherency:integrating information in the brain[J]. Trends Cogn Sci.1998,2(12):474-484.
    [107]Tononi G, Sporns O, Edelman G M. A measure for brain complexity:relating functional segregation and integration in the nervous system[J]. Proc Natl Acad Sei U S A.1994,91(11): 5033-5037.
    [108]Tononi G. Sporns O, Edelman G M Measures of degeneracy and redundancy in biological networks[J]. Proc Natl Acad Sci USA,1999,96(6):3257-3262.
    [109]熊哲宏.人的认知能力是如何组织起来的?[J].心理科学,2004,27(1):244-244.
    [110]熊哲宏.“模块心理学”的理论建构论纲[J].心理科学,2005,28(3):741-743.
    [111]熊哲宏,李放放.功能分解与心理的整体模块性[J].山东师范大学学报:教育科学版.2004,22(1):56-61.
    [112]Newman M E J. Detecting community structure in networks[J]. eur Phys J B,2004.38(2): 321-330.
    [113]Boccaletti S, Latora V, MorenA Y. eT al. Complex networks:Structure and dynamics[J]. Phys Rep 2006,424(4-5):175-308.
    [114]Newman M E J. Networks:an introduction[M], Oxford:Oxford University Press.2010.
    [115]Newman M E J, Girvan M. Finding and evaluating communily structure in networks[J]. Phys Rev E,2004,69(2):026113.
    [116]Newman M E J. Modularity and community structure in networks[J]. Proc Natl Acad Sci U S A. 2006,103(23):8577-8582.
    [117]Kamada T, Kawai S. An algorithm for drawing general undirected graphs[J]. Inf Process Lett. 1989,31(1):7-15.
    [118]Liu Y, Liang M, Zhou Y, ct al. Disrupted small-world networks in schizophrcnia[.I]. Brain.2008, 131(4):945-961.
    [119]Stam C J, Jones B F, Nolte G, et al. Small-world networks and functional connectivity in Alzheimer's disease[J]. Cereb Cortex,2007,17(1):92-99.
    [120]Maslov S, Sneppen K. Specificity and stability in topology of protein networks[J]. Science, 2002,296(5569):910-913.
    [121]Milo R. Shcn-Orr S, Itzkovitz S, et al. Network motifs:simple building blocks of complex networks[J]. Science,2002,298(5594):824-827.
    [122]Maslov S, Zhang Y C. Extracting hidden information from knowledge networks[.T]. Phys Rev Lett,2001.87(24):248701.
    [123]Floyd R W. Algorithm 97:shortest path[J]. Communications of the ACM.1962,5(6):345.
    [124]Rubinov M, Sporns O. Complex network measures of brain connectivity:Uses and interpretations[J]. Neuroimage,2010,52(3):1059-1069.
    [125]Latora V. Marchiori M. Efficient behavior of small-world networks[J]. Phys Rev Lett.2001. 87(19):198701.
    1126) Newman M E. Assortative mixing in networks[J]. Phys Rev Lett,2002,89(20):208701.
    [127]Press W H, Teukolsky S A, Vetterling W T, et al. Numerical recipes in C:the art of scientific computation[M]. Cambridge:Cambridge University Press,1992.
    [128]Tononi G, Sporns O, Edelman G M. A complexity measure for selective matching of signals by the brain[J]. Proc Natl Acad Sci U S A,1996,93(8):3422-3427.
    [129]Sporns O. Network analysis, complexity, and brain functiona[J]. Complexity,2003,8(1):56-60.
    [130]Guimera R, Sales-Pardo M, Amaral L A. Classes of complex networks defined by role-to-role connectivity profiles[J]. Nat Phys,2007,3(1):63-69.
    [131]Guimera R, Nunes Amaral L A. Functional cartography of complex metabolie nctworks[J]. Nature,2005,433(7028):895-900.
    [132]Guimera R, Mossa S, Turtschi A, et al. The worldwide air transportation network:Anomalous[J]. ccntrality, community structure, and cities' global roles[J]. Proc Natl Acad Sci U S A,2005, 102(22):7794-7799.
    [133]Freeman L. A set of measures of centrality based on betweenness[J], Sociometry,1977,40(1): 35-41.
    [134]Fransson P. Spontaneous low-frequency BOLD signal fluctuations:an fMRI investigation of the resting-state default mode of brain function hypothesis[J]. Hum Brain Mapp,2005,26(1): 15-29.
    [135]Kaiser M, Martin R, Andras P, et al. Simulation of robustness against lesions of cortical networks[J]. Eur J Neurosci 2007,25(10):3185-3192.
    [136]Kaiser M, Hilgetag C C. Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems[J]. PLoS Comput Biol,2006,2(7):c95.
    [137]Strogatz S H. Exploring complex networks[J]. Nature,2001,410(6825):268-276.
    [138]贺太纲,卢广文,李建萍.脑电中的混沌[J].生物医学工程学杂志,2000,17(2):209-213
    [139]Park B, Kim J I, Lee D, et al. Are brain networks stable during a 24-hour period?[J]. Neuroimage.2012,59(1):456-466.
    [140]Lorenz D M, Jeng A, Deem M W. The emergence of modularity in biological systems[J]. Phys Life Rev 2011,8(2):129-160.
    [141]Chavez M, Valencia M, Navarro V, et al. Functional modularity of background activities in normal and epileptic brain networks[J]. Phys Rev Lett 2010,104(11):118701.
    [142]Alexander-Bloch A F, Gogtay N, Meunier D, et al. Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia[J]. Front Syst Neurosci,2010, 4:1-16.
    [143]Chen Z J, He Y, Rosa-Neto P, et al. Revealing modular architecture of human brain structural networks by using cortical thickness from MRI[J]. Cereb Cortex,2008,18(10):2374-2381.
    [144]Zang Y, Jiang T, Lu Y, et al. Regional homogeneity approach to fMRI data analysis[J]. Neuroimage,2004,22(1):394-400.
    [145]Zuo X N, Di Martino A, Kelly C, et al. The oscillating brain:complex and reliable[J]. Neuroimage.2010,49(2):1432-1445.
    [146]Zuo X-N, Xu T, Jiang L. et al. Toward reliable characterization of functional homogeneity in the human brain:Preprocessing, scan duration, imaging resolution and computational space[J]. Neuroimage,2012,65(15):374-386.
    [147]Kiviniemi V, Jauhiainen J, Tervonen O, et al. Slow vasomotor fluctuation in fMRI of anesthetized child brain[J]. Magn Res Med.2000,44(3):373-378.
    [14]邸新,饶恒毅.人脑功能连通性研究进展[J].生物化学与生物物理进展,2007.34(1):5-12.
    [149]Cox R W. AFNI:What a long strange trip it's been[J]. Neuroimage.2012,62(2):743-747.
    [150]Taylor P A, Gohel S, Di X, et al. Functional covariance networks:Obtaining resting-state networks from intersubject variability[J]. Brain Connectivity.2012,2(4):203-217.
    [151]Papez J W. A proposed mechanism of einotion[J]. Archives of neurology and psychiatry.1937, 38(4):725.
    [152]Raichle M E, Snyder A Z. A default mode of brain function:a brief history of an evolving idea[J]. Neuroimage,2007,37(4):1083-1090.
    [153]Conn P M. Neuroscience in medicinc[M]. Totowa:Humana Press,2008.
    [154]Rinne-Albers M A, van der Wee N J. Lamcrs-Winkelman F, et al. Ncuroimaging in children, adolescents and young adults with psychological trauma[2]. European child & adolescent psychiatry.2013,56(2):1-11.
    [155]Wass S. Distortions and disconnections:Disrupted brain connectivity in autism[J]. Brain Cognition.2011,75(1):18-28.
    [156]Posner M I. Rothbart M K, Shecse B E, el al. The anterior cingulate gyrus and the mechanism of self-regulation[J]. Cogn Affect Behav Neurosci,2007.7(4):391-395.
    [157]Mather M, Nga L. Age differences in thalamic low-frequency fluctuations[J]. Neurorcport.2013, 24(7):349-353.
    [158]Malpass K. Modelling connectivity networks of the brain-can neurodegencration and dementia progression be predicted?[J]. Nat Rev Neurol,2012,8(5):237-237.
    [159]Lynall M-E. Bassett D S, Kenvin R, et al. Functional connectivity and brain networks in schizophrenia[J]. J Neurosci.2010,30(28):9477-9487.
    [160]Song M, Du H, Wu N, et al. Impaired resting-state functional integrations within default mode network of generalized tonic-clonic seizures epilepsy[J]. PLoS One,2011,6(2):el7294.
    [161]Ma N, Liu Y, Li N, et al. Addiction related alteration in resting-state brain connectivity[J]. Neuroimage,2010,49(1):738-744.
    [162]Ma N. Liu Y. Fu X M, et al. Abnormal brain default-mode network functional connectivity in drug addicts[J], PLoS One,2011,6(1):e16560.
    [163]Yuan K, Qin W, Liu J, et al. Altered small-world brain functional networks and duration of heroin use in male abstinent heroin-dependent individuals[J]. Neurosci Lett,2010,477(1): 37-42.
    [164]唐一源.身心相互作用的机理及其应用探索[J].中国科学基金,2009,23(6):357-358.
    [165]唐一源.探索大脑,优化人生[M].北京:科学出版社,2009.
    [166]Rose R M. Embodying the mind:a brief history of the seience integrating mind and body[J]. Neuroimage,2009.47(3):785-786.
    [167]Lane R D, Wager T D. The new field of Brain—Body Medicine:What have we learned and where are we headed?[J] Neurolmage.2009,47(3):1135-1140.
    [168]Draganski B, (iaser C, Busch V. et al. Neuroplasticity:changes in grey matter induced by training. Nature,2004,427(6972):311-312.
    [169]Scholz J, Klein M C, Behrens T E J, et al. Training induces changes in white-matter architecture[J]. Nat Neurosci,2009,12(11):1370-1371.
    [170]Chiesa A, Serretti A. A systematic review of neurobiological and clinical features of mindfulness meditations[J]. Psychol Med 2010,40(8):1239-1252.
    [171]陈语.赵鑫,黄俊红等.正念冥想对情绪的调杰作:理论与神经机制[J].心理科学进展2011,19(10):1502-1510.
    [172]汪芬,黄宇霞.正念的心理和脑机制[J].心理科学进展,2011,19(11):1635-1644.
    [173]Tang Y Y. Mechanism of Integrative Body-Mind Training[J]. Neurosci Bull,2011,27(6): 383-388.
    [174]KoenigT, K tterR, Valdes-Sosa P. Networks in the brain[J]. BIF futura,2005,20:11-15.
    [175]田捷.秦伟,艾琳等.基于功能磁共振的针刺机制初步研究——从问题到方法[J].首都医科大学学报,2008,28(6):683-687.
    [176]Tang Y Y, Rothbart M K, Posner M I. Neural correlates of establishing, maintaining, and switching brain states[J]. Trends Cogn Sci,2012,16(6):330-337.
    [177]Hong L E, Gu H, Yang Y, et al. Association of nicotine addiction and nicotine's actions with separate cingulate cortex functional circuits[J]. Arch Gen Psychiatry,2009,66(4):431-441.
    [178]Matthews S C, Strigo I A, Simmons A N, et al. Decreased functional coupling of the amygdala and supragenual cingulate is related to increased depression in unmedicated individuals with current major depressive disorder[J]. J Affect Disord,2008,111(1):13-20.
    [179]Lord L-D, Allen P, Expert P, et al. Characterization of the anterior cingulate's role in the at-risk mental state using graph theory[J]. Ncuroimagc,2011,56(3):1531-1539.
    [180]Cajal S R Y, May R M. Degeneration and regeneration of the nervous system[M]. Oxford: Oxford University Press,1928.
    [181]Hubel D, Wiesel T. Cortical and callosal connections concerned with the vertical meridian of visual fields in the cat[J]. J Neurophysiol,1967,30(6):1561-1573.
    [182]Woollett K, Maguire Eleanor A. Acquiring "the knowledge" of london's layout drives structural brain changes[J]. Curr Biol 2011,21(24):2109-2114.
    [183]罗非,岁劲,吴一兵等.脑功能可塑性与灾后心理功能康复[J].心理科学进展,2009,17(3):594-601.
    [184]Cahn B R, Polich J. Meditation states and traits:EEG, ERP, and neuroimaging studies[J]. Psychol Bull,2006,132(2):180-211.
    [185]Lutz A, Slagter H, Dunne J, et al. Attention regulation and monitoring in meditation[J]. Trends Cogn Sei,2008,12(4):163-169.
    [186]Baer R A. Mindfulness training as a clinical intervention:A conceptual and empirical review [J]. Clinical psychology:Science and practice,2003,10(2):125-143.
    [187]任俊,黄璐,张振新.基于心理学视域的冥想研究[J].心理科学进展,2010,18(5):857-864.
    [188]Lazar S W, Kerr C E, Wasserman R H, et al. Meditation experience is associated with increased cortical thickness[J]. NeuroReport,2005,16(17):1893-1897.
    [189]Vestergaard-Poulsen P, van Beek M, Skewes J, et al. Long-term meditation is associated with increased gray matter density in the brain stem[J]. NeuroReport,2009.20(2):170-174.
    [190]Luders E, Clark K, Narr K L, et al. Enhanced brain connectivity in long-term meditation practitionersfJ]. Ncuroimage,2011,57(4):1308-1316.
    [191]Luders E, Toga A W, Lepore N, et al. The underlying anatomical correlates of long-term meditation:Larger hippocampal and frontal volumes of gray matter[J]. Neuroimage,2009, 45(3):672-678.
    [192]H Izel B, Ott U. Card T. et al. Investigation of inindfiilness meditation practitioners with voxel-based morphometry[J]. Soc Cogn Affect Neurosci,2008,3(1):55-61.
    [193]Holzcl B K, Carmody J. Evans K C, et al. Stress reduction correlates with structural changes in the amygdala[J]. Soc Cogn Affect Neurosci,2010,5(1):11-17.
    [194]Holzel B K, Carmody J, Vangel M, et al. Mindfulness practice leads to increases in regional brain gray matter density[J]. Psychiat Res Neuroimg.2011,191(1):36-43.
    [195]Slagter H A, Davidson R J. Lutz A. Mental training as a tool in the neuroseientific study of brain and cognitive plasticity[J]. Front Syst Neurosci,2011,5:1-12.
    [196]Slagter H A, Lutz A, Greischar L L. et al. Mental training affects distribution of limited brain rcsources[J]. PLoS Biol,2007.5(6):e138.
    [197]Tang Y Y. Ma Y, Wang J. et al. Short-term meditation training improves attention and self-rcgulation[J]. Proe Natl Aead Sci U S A,2007,104(43):17152-17156.
    [198]Tang Y Y. Lu Q, Geng X, et al. Short-term meditation induces white matter changes in the anterior cingulate[J]. Proc Natl Acad Sei U S A,2010,107(35):15649-15652.
    [194]Tang Y Y, Lu Q, Fan M. et al. Mechanisms of white matter changes induced by mcditationfJ]. Proc Natl Acad Sei USA,2012.109(26):10570-10574.
    [200]Tang Y Y, Ma Y, Fan Y, et al. Central and autonomic nervous system interaction is altered by short-term meditation[J]. Proc Natl Acad Sci U S A,2009,106(22):8865-8870.
    [201]Kelly A, Di Martino A, Uddin L. et al. Development of anterior cingulate functional connectivity from late childhood to early adulthood[J]. Cereb Cortex,2009,19(3):640-657.
    [202]张超.陈楠,李坤成.前扣带回结构和功能影像学研究进展[J].中国医学影像技术,2012,28(1):28-31.
    [203]Bressler S L, Menon V. Large-scale brain networks in cognition:emerging methods and principles[J]. Trends Cogn Sci.2010.14(6):277-290.
    [204]Benson H, Greenwood M M, Klemchuk H. The relaxation response:Psychophysiologic aspects and clinical applications[J]. Int J Psychiat Med,1975,6(1):87-98.
    [205]刘成林,谭铁牛.模式识别进展[M].此京:中国计算机学会通讯.2007
    [206]Dosenbach N U F, Nardos B. Cohen A L, et ai. Prediction of Individual brain maturity using fMRI[J]. Science.2010.329(5997):1358-1361.
    [207]雷威,杨志,詹旻野等.利用脑成像多体素模式分析解码认知的神经表征:原理和应用[J].心理科学进展,2010.18(12):1934-1941.
    [208]Norman K A, Polyn S M, Detre G J, et al. Beyond mind-reading:multi-voxel pattern analysis of fMRI data[J]. Trends Cogn Sci.2006,10(9):424-430.
    [209]Wang L. Shen II. Tang F, et al. Combined structural and resting-state functional MR I analysis of sexual dimorphism in the young adult human brain:An MVPA approach[J]. Neuroimage. 2012,61(4):931-940.
    [210]Vapnik V. Statistical learning theory[M]. New York:Wiley.1998.
    [211]刘美洁.脑磁共振成像数据的多类模式分析[D].长沙:国防科学技术大学,2011.
    [212]Brcfczynski-Lewis J A, Lutz A, Schaefer H S, et al. Neural correlates of attcntional expertise in long-term meditation practitioncrs[J]. Proc Natl Acad Sci U S A,2007.104(27):11483-11488.
    [213]Fair D A, Bathula D, Nikolas M A, et al. Distinct neuropsychoiogical subgroups in typically developing youth inform heterogeneity in children with ADHD[J]. Proc Natl Acad Sci USA. 2012.109(17):6769-6774.
    [214]Hsu C, Chang C, Lin C. A practical guide to support vector classification[J]. Department of Computer Science and Information Engineering, National Taiwan University, Taiwan,2003.
    [215]Tang Y Y, Posner M I. Tools of the trade:theory and method in mindfulness neuroscience[J]. Soc Cogn Affect Neurosci,2012,8(1):118-120.
    [216]Hagmann P, Sporns O, Madan N, et al. White matter maturation reshapes structural connectivity in the late developing human brain[J]. Proc Natl Acad Sci USA,2010,107(44):19067.
    [217]马莹华.大学生抑郁症的认知加工脑机制及干预研究[D].大连:大连理工大学,2009.
    [218]Ramamurthi B. The fourth state of consciousness:The Thuriya Avastha[J], Psychiat Clin Neuros,1995,49(2):107-110.
    [219]Soon C, Brass M, Heinze H. et al. Unconscious determinants of free decisions in the human brain[J]. Nat Neurosci,2008,11(5):543-545.
    [220]Rubia K. The neurobiology of meditation and its clinical effectiveness in psychiatric disorders[J]. Biol Psychol,2009,82(1):1-11.
    [221]Sporns O. The human connectome:a complex network[J]. Ann NY Acad Sci 2011.1224 (1): 109-125.
    [222]Hipp J F, Hawellek D J, Corbetta M, et al. Large-scale cortical correlation structure of spontaneous oscillatory activity[J]. Nat Neurosci,2012,15(6):884-890.
    [223]He B J, Zempel J M, Snyder A Z, et al. The temporal structures and functional significance of scale-free brain activity[J]. Neuron,2010,66(3):353-369.
    [224]Sherrington C. The integrative action of the nervous system[M]. New York:Nabu Press,2010.
    [225]Pievani M, de Haan W, Wu T, et al. Functional network disaiption in the degenerative dementias[J]. Lancet Neurol,2011,10(9):829-843.
    [226]Huebner B, Dwyer S, Hauser M. The role of emotion in moral psychology[J]. Trends Cogn Sci, 2009,13(1):1-6.
    [227]Kohlberg L. Stage and sequence:The cognitive-developmental approach to socialization[M]. Chicago:Rand McNally,1969.
    [228]Foot P. The problem of abortion and the doctrine of double effcct[M]. Oxford:Basil Blackwcll, 1985.
    [229]Thomson J J. Rights, restitution, and risk:essays, in moral theory[M]. Cambridge:Harvard University Press,1986.
    [230]Greene J D, Nystrom L E, Engell A D, et al. The neural bases of cognitive conflict and control in moral judgment[J]. Neuron,2004,44(2):389-400.
    [231]Walter N T. Montag C. Markett S, et al. Ignorance is no excuse:Moral judgments are influenced by a genetic variation on the oxytocin receptor gene[J], Brain Cognition.2012,78(3):268-273.
    [232]Greene J D, Sommerville R B. Nystrom L E, et al. An fMRI investigation of emotional engagement in moral judgment[J]. Science.2001,293(5537):2105-2108.
    [233]Youssef F F, Dookeeram K, Basdeo V, et al. Stress alters personal moral decision making[J]. Psychoneuroendocrino,2012.37(4):491-498.
    [234]谢熹瑶,罗跃嘉.道德判断中的情结因素——从认知神经科学的角度进行探讨[J].心理科学进展,2009,17(6):1250-1256
    [235]Greene J D. From neural'is'to moral'ought':What are the moral implications of neuroscientific moral psychology[J]. Nat Rev Neurosci,2003,4(10):846-850.
    [236]Rulkov N F, Sushchik M M, Tsimring L S, et al. Generalized synchronization of chaos in directionally coupled chaotic systems[J]. Phys Rev E,1995,51(2):980-994.
    [237]Stam C, Van Dijk B. Synchronization likelihood:an unbiased measure of generalized synchronization in multivariate data sets[J]. Physica D,2002,163(3-4):236-251.
    [238]Stam C J. Breakspear M. van Cappellen van Walsum A M, et al. Nonlinear synchronization in EF.G and whole-head MF.G recordings of healthy subjects[J]. Hum Brain Mapp,2003,19(2): 63-78.
    [239]Kennel M B. Brown R, Abarbanel H D I. Determining embedding dimension for phase-space reconstruction using a geometrical constructional. Phys Rev A.1992.45(6):3403-3411.
    [240]Packard N H. Crutchfield.1 P. Farmer J D. et al. Geometry from a time seriesfJJ. Phys Rev Lett. 1980,45(9):712-716.
    [241]Takens F. Detecting strange attractors in turbulence[J]. Dynamical systems and turbulence,1981 898:366-381.
    [242]周群.脑电信号同步:方法及应用研究[D].成都:电子科技大学,2009.
    [243]Montez T, Linkenkaer-Hansen K, van Dijk B W, et al. Synchronization likelihood with explicit time-frequency priors[J]. Neuroimage,2006,33(4):1117-1125.
    [244]Smit D J, Stam C J, Posthuma D, et al. Heritability of "small-world" networks in the brain:a graph theoretical analysis of resting-state EEG functional connectivity[J]. Hum Brain Mapp, 2008,29(12):1368-1378.
    [245]Boersma M, Smit D. de Bie H, et al. Network analysis of resting state EEG in the developing young brain:structure comes with maturation[J]. Hum Brain Mapp,2011,32(3):413-425.
    [246]Freitas A L, Azizian A, Leung H C, et al. Resisting recently acted-on cues:Compatibility of Go/NoGo responses to response history modulates (frontal P3) event-related potentials[J]. Psyehophysiology.2007.44(1):2-10.
    [247]Kohlberg L. Essays on moral development, volume 1:The psychology of moral development[M]. New York:Harper and Row,1984.
    [248]Anderson S W, Bechara A. Damasio H. et al. Impairment of social and moral behavior related to early damage in human profrontal cortex[J]. Nat Neurosci.1999,2(11):1032-1037.
    [249]Janson S. Networking—Smoothly Does It[J]. Science,2011,333(6040):298-299.
    [250]Pastrana E. Collective brain maps[Jj. Nature Methods,2010,7(4):253-253.