视觉剥夺后脑结构和功能重构的多模态影像学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:不同发育阶段视觉剥夺对盲人脑结构重构的影响
     [目的]本研究通过收集从先盲到晚盲各失明年龄段的大样本数据库,联合脑皮层厚度分析、脑灰质体积分析以及脑白质弥散指标分析等多种脑结构分析方法,试图阐明以下科学问题:(1)发育关键期对大脑结构的重构发挥什么样的作用?(2)即使过了关键期,脑结构是否仍旧发生了持续的重构,或者说失明年龄与重构是否存在相关?
     [方法]本研究共纳入20例先盲、31例早盲、53例晚盲和40例视力正常的对照者。对所有受试者行三维T1加权结构像和弥散张量成像(DTI)采集。使用T1结构像构建皮层表面,提取皮层厚度;并对T1像进行容积分割,得到相对灰质体积;使用单指数模型解算弥散张量,提取出各向异性分数(FA)指标。分别使用基于体素(或者顶点)的分析方法和基于感兴趣区的分析方法比较上述结构指标的组间差异。并分析各结构指标与失明年龄的相关性。
     [结果](1)和正常人相比,先盲以初级及腹侧视觉皮层广泛增厚为主要表现,部分减低的脑区位于双侧颞极、梭状回、以及双侧中央前回;晚盲腹侧视觉亚区及MT+皮层厚度明显变薄;而早盲除了MT+以外,其余视觉亚区受累均不显著。初级和腹侧视觉皮层的厚度与失明年龄呈显著负相关。(2)整个盲人组视觉皮层灰质体积以减低为主。初级视觉皮层比高级视觉皮层受累严重,晚盲比早盲受累严重。并且初级及腹侧视觉皮层灰质体积与失明年龄呈负相关。各盲人组旁中央小叶灰质体积明显增加,并且先盲组显著高于早盲组和晚盲组。(3)各盲人组的前视觉通路白质FA值显著减低,失明年龄约大,受累范围越广泛,但各组减低幅度无显著差异,FA值与失明年龄也无显著相关。
     [小结](1)早期视觉经验对视觉皮层及其他感觉皮层的结构重塑起着至关重要的作用;(2)失明年龄对盲人的脑灰质结构特别是对视觉皮层的重构也有显著的影响,并且这种影响即使在视觉皮层发育关键期之后也持续存在。
     第二部分:盲人脑功能连接密度的重构
     [目的]为了阐明不同视觉剥夺时期对静息态脑功能组构的影响,本研究引入功能连接密度(FCD)分析来验证以下两个假设:(1)先盲和晚盲初级视觉皮层的功能连接密度均减低,因为前期研究已经表明他们前视觉传导通路结构均受损;(2)先盲在高级视觉区的功能连接密度重构要比晚盲显著,因为大脑在关键发育期拥有更强的跨模态重塑能力
     [方法]本研究纳入先盲19例、晚盲34例和健康对照43例。对所有受试者行静息态功能磁共振成像(rs-fMRI)。得到的数据先进行rs-fMRI的常规预处理后,计算出全脑短程及长程FCD指标。基于体素水平比较各组短程及长程FCD的差异,并分析FCD与失明年龄的相关性。
     [结果](1)和正常人相比,早盲初级视觉皮层的短程及长程FCD显著减低,高级视觉通路FCD的增加,并且腹侧视觉通路比背侧通路重构显著。(2)晚盲初级视觉皮层的FCD减低比先盲广泛,而且视觉后丘脑也受累。晚盲的高级视觉通路FCD也有重构,但是腹侧通路受累比先盲要弱得多。(3)在晚盲中,左侧初级视觉皮层的短程FCD与失明年龄存在负相关。
     [小结](1)各盲人组初级感觉皮层、腹侧及背侧视觉通路上的静息态功能组构发生了明显的重塑;(2)早期视觉经验在腹侧视觉通路功能连接的重塑方面起着重要的作用;(3)即使过了发育关键期,初级视觉皮层的功能连接受损也会随着失明年龄增加而更严重。
     第三部分:先盲视觉亚区结构和功能的发育与视觉经验的相关性
     [目的]前面研究已经表明先盲视觉皮层发生了显著的结构和功能重构,但是各视觉亚区的受累情况尚未完全阐明。本研究综合运用皮层厚度分析和功能连接(FC)分析进一步验证以下假设:(1)不同视觉亚区的结构和功能发育对视觉经验的依赖程度是不同的;(2)高级视觉皮层和初级视觉皮层之间的内在FC在先盲中发育正常。
     [方法]本研究共纳入39例先盲和56例正常志愿者。首先对各受试者行三维T1结构像和rs-fMRI数据采集。提取出全脑和各视觉亚区的皮层厚度。计算初级体感皮层(S1)与视觉皮层及其各亚区的FC以及视觉各亚区内部之间的FC。比较各组上述指标的差异。
     [结果](1)先盲的初级视觉皮层厚度增加最显著,而许多高级视觉皮层亚区厚度增加不明显;越靠近初级视觉皮层,增幅越大。(2)视觉皮层和S1的FC显著减低,并且初级视觉皮层比高级视觉皮层受累明显,腹侧视觉区比背侧视觉区受累明显。(3)同侧大脑半球的初级视觉区与高级视觉区的FC增加,而半球间的功能连接减弱。
     [小结]视觉各亚区的发育对视觉依赖性是不同的,这种假设可以解释多数有关枕叶皮层结构和功能重构发现。基于视觉区内FC分析,本研究也提示间接皮层-皮层连接可能是非视觉感觉信号到达初级视觉皮层的重要通路。
     第四部分:先盲注意网络功能连接的可塑性
     [目的]许多研究表明先盲比正常人对听觉和触觉的感知能力要强,而注意在其中可能起到重要的作用。为了明确先盲的注意网络是否发生了重构,本文使用静息态网络分析试图验证以下假设:(1)注意网络内的功能连接是增强的,这有助于解释先盲处理注意需求任务的能力高于正常人;(2)注意网络与枕叶脑区的FC也增强,从而有助于解释先盲在处理听/触觉识别任务时枕叶皮层的激活。
     [方法]本研究纳入39例先盲和76例正常志愿者。首先采集rs-fMRI和DTI数据。对rs-fMRI数据进行预处理后,提取出背侧注意网络(DAN)和腹侧注意网络(VAN),分析注意网络内部,以及注意网络与枕叶之间的功能连接差异。并使用概率追踪寻找注意网络与枕叶皮层直接结构连接的证据。
     [结果](1)和正常人相比,先盲注意网络内的FC只发现增强。增强的连接主要在DAN内,以及DAN与其它注意节点之间;而VAN内FC增强不明显。(2)额岛区注意节点(aINS、pMFG和pIFG)与广泛枕叶皮层的FC显著增强。(3)额岛注意节点与枕叶之间有直接的结构连接。
     [小结](1)注意网络内FC的增加助于提高先盲对触觉/听觉刺激的识别力;(2)额岛注意节点与枕叶的功能连接也增强有助于内源性注意信号从额叶传递到枕叶,从而解释枕叶的跨模态激活及静态脑代谢增强;(3)额岛枕通路可能是内源性注意信号到达枕叶皮层的通路之一。
     第五部分:皮层下梗死脑白质完整性与运动康复的相关性
     [目的]上述研究表明多模态影像分析法对揭示盲人的结构及功能重构有重要价值。为了进一步验证我们分析方法在研究其它局部损伤导致的脑重构方面也能适用,我们选择了一组运动回复良好的皮层下单发梗死的慢性患者,使用多种DTI分析方法,试图阐明以下问题:(1)运动功能回复良好中风患者的运动相关白质束是否仍然存在长期的损伤?(2)这些患者的白质弥散指标的变化是否能预测精细运动的损伤?
     [方法]本研究选择28例运动康复良好的中风患者和24例健康对照。首先评价中风患者的神经系统指标,包括Fugl-Meyer评分,握力检查(GFT),九孔实验(NHPT)以及简易智能量表(MMSE)。采集所有受试者的DTI图像。计算弥散张量,提取弥散指标。使用骨架分析法(TBSS)、VBA以及ROI等多种手段评价中风患者的脑白质弥散指标变化情况,并分析弥散指标与精细运动评分(GFT和NHPT)的相关性。
     [结果]和正常人相比,本研究未发现病灶侧CST的FA值显著降低,也未发现任何FA增加的脑区。TBSS和VBA均发现双侧齿状核周围白质、病灶侧脑桥臂和丘脑后部FA值显著减低。进一步分析发现,FA的减低主要是横向本征值的增加导致的。最后,齿状核周围白质束FA值与精细运动评分显著相关。
     [小结](1)即使在运动功能恢复良好的慢性中风患者中,小脑白质特别是齿状核周围白质仍旧存在持续的继发性损伤;(2)弥散指标的特征提示以脱髓鞘可能性大;(3)齿状核周围白质束的弥散特征可以作为预测精细运动功能恢复的潜在生物标记,监测其重构有利于评估上述康复手段的疗效。
     结论
     本文使用多模态影像学方法分析了失明后脑结构和功能的重构。结果表明:早期视觉经验不管是对盲人脑的灰/白质结构还是对静息态功能的重构起着关键作用。另外,失明年龄对盲人枕叶皮层的结构和功能重构有重要影响。视觉各亚区的发育对视觉经验的依赖性是不同的。静息态注意网络的内在功能联系发生了增强。非视觉信号可能通过顶枕间接皮层-皮层通路和额岛枕直接皮层-皮层通路传入视觉皮层。
Part1:The effect of visual deprivation at different developmental stages on the reorganization of brain structure
     [Purpose] In this study, we used multiple structural analysis methods, including cortical thickness, gray matter volume (GMV) and diffusion indices analysis, to elucidate the following issues:(1) the effect of critical developmental period on the brain structural reorganization;(2) the association between these structural indices and the onset age of blindness.
     [Methods] Twenty congenitally blind (CB),31early blind (EB),53late blind (LB), and40sighted control (SC) subjects were recruited in this study. Three-dimensional T1weighted imaging and diffusion tensor imaging (DTI) were acquired using3.0T MRI scanner. We constructed the whole brain cortical thickness and gray matter volume using the3D T1data, and obtained the diffusion fractional anisotropy (FA) based the DTI data. Voxel-based and ROI-based analyses were used to test the group differences in the above-mentioned structural indices. We also investigated the association between these indices and the onset age of blindness using partial correlation coefficient.
     [Results](1) Compared with the SC, the CB showed significantly thickened cortex in the early and ventral visual areas, and thinned cortex in the temporal pole, fusiform, and precentral gyrus; in contrast, the LB manifested decreased thickness in the ventral visual areas and the MT+. The EB only showed thinned cortex in the MT+. Negative correlation between the onset age of blindness and cortical thickness was found in the early and ventral visual areas.(2) All the blind subgroups showed decreased GMV in the visual cortex, and increased GMV in the paracentral gyrus; moreover, the early visual areas were more involved than the higher ones, and the LB were more involved than the CB. Negative correlation was shown between the GMV and onset age of blindness in the early and ventral visual areas.(3) Each blind subgroup showed reduced FA in the anterior visual pathway, and the LB and EB showed more broadly distributed than the CB. However, there were no significant differences in the FA among each pair of the three blind subgroups, and no statistical correlation was shown between the FA and onset age of blindness.
     [Summary](1) Early visual experience plays critical roles in the structural reorganization of the visual and other sensory cortices after visual deprivation.(2) Onset age of blindness also significantly influences the reorganization of the visual cortex, and the effect even continues after the critical developmental period.
     Part2:Functional connectivity plasticity in congenitally and late blind subjects
     [Purpose] This study introduce the functional connectivity density (FCD) to test two hypotheses:(1) CB and LB subjects exhibit similar functional dis-connectivity because they are subjected to similar damage in the retinofugal pathway;(2) CB subjects will exhibit more extensive increase in FCD than LB subjects will, because brain owns strong capacity for cross-modal plasticity during the critical period of development.
     [Methods] Nineteen CB,34LB and43SC were performed resting-state functional MRI. After routing preprocessing steps, the whole brain short-range and long-rang FCD were calculated. Voxel-wise comparison of the FCD among the three groups, correlation between the FCD and onset age of the blindness was performed.
     [Results] Compared with the SC, the CB showed decreased short-and long-range FCD in the early visual cortex, and increased FCD along the ventral and dorsal stream. The LB showed more broadly decreased FCD in the early visual cortex, and even in the posterior thalamus. They also display significantly increase FCD along the ventral and dorsal stream, but showed weaker involvement in the ventral one compared with the CB. Finally, the short-range FCD at the left primary visual cortex was negatively correlated with the onset age of blindness.
     [Summary] Visual deprivation both at the early and late stage can significantly reshape the resting-state functional organization. Furthermore, visual experience plays an important role in reshaping the functional connectivity in the ventral visual pathway.
     Part3:The development of visual areas depends differently on visual experience
     [Purpose] As discussed in the former sections, remarkable structural and functional reorganization of visual cortex was found in the CB, however, little is known the changes in each visual area. This study used cortical thickness analysis and FC analysis to verify the following hypothesis:(1) the development of visual areas depends differently on visual experience;(2) the FC between the higher-tier and early visual areas will develop normally in CB subject.
     [Methods] Thirteen CB and56SC were involved in this study, and3D T1WI and rs-fMRI were acquired. The cortical thickness was extracted. The FC between S1and the visual cortex, and those between each pair of visual areas were calculated.
     [Results] The thickness of early visual areas showed significantly increase in the CB, while many higher tier areas showed no differences with the SC. The FC between visual cortex and the S1were significantly decreased in the CB; furthermore, the early areas showed more involvement than the higher one, and the ventral areas were more involved than the dorsal one. The FC within visual areas in the same hemisphere were normal or strengthened, while those in different hemisphere were weakened.
     [Summary] The development of visual areas depends differently on visual experience, which can explain most findings about the structural and functional reorganization in the visual cortex in the CB. The strengthened FC within the ipsilateral visual areas suggests the indirect cortico-cortical connection is a candidate pathway that non-visual signals reach the V1.
     Part4:Enhanced spontaneous functional interactions in attention networks in congenitally blind individuals
     [Purpose] Many studies showed the CB has superior tactile/auditory perceptive performance than the SC, and attention may plays role in the neural process. This study using FC analysis to verify the following hypothesis:(1) the FC within the attention network were strengthened in the CB;(2) the FC between attention network and occipital cortex were also strengthened. Clarifying the above issues can explain the neural mechanism of the non-visual processing in the occipital cortex.
     [Methods] This study involved39CB and76SC. The rs-fMRI and DTI data were used for analysis. We first extract the dorsal attention network (DAN) and ventral attention network (VAN). Group differences of the FC within the attention network and between attention network and the occipital cortex were analyzed. Finally, probabilistic tractography was carried out to find the anatomical connections between attention network and the occipital cortex.
     [Results] Compared with the SC, we only found strengthened FC within the DAN, and between DAN and the other attention network. Furthermore, the FC between fronto-insular attention nodes and the occipital cortex were strengthened. Finally, the structural connections were shown between fronto-insular attention nodes and the occipital cortex.
     [Summary](1) The strengthened FC within the attention network contributed to the improved tactile/auditory performance in the CB.(2) The cross-modal activation of occipital cortex may be caused by strengthened FC between fronto-insular nodes and occipital cortex.(3) Fronto-insular-occipital is a candidate pathway that endogenous attention signals reach the occipital cortex.
     Part5:Altered white matter integrity in well-recovered chronic stroke patients
     [Purpose] The former studies demonstrated that multimodal imaging analysis is robust to reveal the structural and functional reorganization in the blind. To clarify that these methods can also be powerfully utilized in other brain injury model, we recruited a group of sub-cortical stroke patients with well-recovered motor function. DTI analyses were used to elucidate the following issues:(1) Do these patients undergo persistent damage in the motor-related fibers that seem not to affect the major motor function;(2) whether can white matter integrity changes predict the fine motor deficit.
     [Methods] This study selected28chronic stroke patients with well-recovered motor function. The neurological examinations were measured, including the Fugl-Meyer score, grip force test (GFT), nine hole peg test (NHPT) and MMSE. DTI images were acquired and the diffusion indices were extracted from the DTI data. Multiple analysis methods including the TBSS, VBA and ROI-wise analysis were introduced to evaluate the changes of the diffusion indices in the whole brain white matter. The correlations between diffusion indices and fine motor score (GFT and NHPT) were also test.
     [Results] This study did not find any reduce in FA at the ipsilesional CST, nor increase in any brain area. Significantly decreased FA was shown in bilateral peri-dentate tract, ipsilesional brachium pontis, and ipsilesional posterior thalamus. Further analysis showed decreased FA is mainly caused by increased transverse eigenvalue. Finally, the FA of peri-dentate tract showed significant correlation with the fine motor scores.
     [Summary](1) Even in chronic stroke patients with well-recovered global motor function, the cerebellar white matter still suffers persistent secondary damages.(2) Diffusion properties of the peri-dentate fibers may be considered as a potential biomarker in predicting the prognosis of fine motor function.
     Conclusions
     Using multi-modal imaging techniques and comprehensive data analysis methods, we investigated the brain structural and functional reorganization after visual deprivation. Our result demonstrated:first, early visual experience plays critical role in both the structural and resting-state functional reorganization of brain. Second, onset age of blindness also affects the reorganization pattern of visual cortex. Third, the development of visual areas depends differently on visual experience. Fourth, In the CB, functional interactions within the attention networks and those between attention networks and occipital cortex are strengthened. Finally, we proposed that the non-visual signals could reach the visual cortex via the parietal-occipital indirect cortico-cortical pathway, or the fronto-insular-occipital direct cortico-cortical pathway.
引文
[1]Grill-Spector K, Malach R. The human visual cortex[J]. Annu Rev Neurosci, 2004,27:649-677.
    [2]Wandell BA, Dumoulin SO, Brewer AA. Visual field maps in human cortex[J]. Neuron,2007,56(2):366-383.
    [3]Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex[J]. Cereb Cortex,1991,1(1):1-47.
    [4]Golarai G, Ghahremani DG, Whitfield-Gabrieli S, et al. Differential development of high-level visual cortex correlates with category-specific recognition memory[J]. Nat Neurosci,2007,10(4):512-522.
    [5]Seymour K, Clifford CW, Logothetis NK, et al. Coding and binding of color and form in visual cortex[J]. Cereb Cortex,2010,20(8):1946-1954.
    [6]Haxby JV, Grady CL, Horwitz B, et al. Dissociation of object and spatial visual processing pathways in human extrastriate cortex[J]. Proc Natl Acad Sci U S A, 1991,88(5):1621-1625.
    [7]Goodale MA, Milner AD. Separate visual pathways for perception and action[J]. Trends Neurosci,1992,15(1):20-25.
    [8]Konen CS, Kastner S. Two hierarchically organized neural systems for object information in human visual cortex[J]. Nat Neurosci,2008,11(2):224-231.
    [9]McGee AW, Yang Y, Fischer QS, et al. Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor[J]. Science,2005,309(5744): 2222-2226.
    [10]Putignano E, Lonetti G, Cancedda L, et al. Developmental downregulation of histone posttranslational modifications regulates visual cortical plasticity[J]. Neuron,2007,53(5):747-759.
    [11]Triplett JW, Owens MT, Yamada J, et al. Retinal input instructs alignment of visual topographic maps[J]. Cell,2009,139(1):175-185.
    [12]Li Y, Van Hooser SD, Mazurek M, et al. Experience with moving visual stimuli drives the early development of cortical direction selectivity[J]. Nature,2008, 456(7224):952-956.
    [13]Yazaki-Sugiyama Y, Kang S, Cateau H, et al. Bidirectional plasticity in fast-spiking GAB A circuits by visual experience[J]. Nature,2009,462(7270): 218-221.
    [14]Burton H, Sinclair RJ, McLaren DG Cortical activity to vibrotactile stimulation:an fMRI study in blind and sighted individuals[J]. Hum Brain Mapp,2004,23(4):210-228.
    [15]Kim JK, Zatorre RJ. Tactile-auditory shape learning engages the lateral occipital complex[J]. J Neurosci,2011,31(21):7848-7856.
    [16]Gagnon L, Kupers R, Schneider FC, et al. Tactile maze solving in congenitally blind individuals[J]. Neuroreport,2010,21(15):989-992.
    [17]Collignon O, Vandewalle G, Voss P, et al. Functional specialization for auditory-spatial processing in the occipital cortex of congenitally blind humans[J]. Proc Natl Acad Sci U S A,2011,108(11):4435-4440.
    [18]Chan CC, Wong AW, Ting KH, et al. Cross auditory-spatial learning in early-blind individuals[J]. Hum Brain Mapp,2011.
    [19]Amedi A, Raz N, Pianka P, et al. Early 'visual' cortex activation correlates with superior verbal memory performance in the blind[J]. Nat Neurosci,2003,6(7): 758-766.
    [20]Vecchi T. Visuo-spatial imagery in congenitally totally blind people[J]. Memory,1998,6(1):91-102.
    [21]Roder B, Teder-Salejarvi W, Sterr A, et al. Improved auditory spatial tuning in blind humans[J]. Nature,1999,400(6740):162-166.
    [22]Bedny M, Pascual-Leone A, Dodell-Feder D, et al. Language processing in the occipital cortex of congenitally blind adults[J]. Proc Natl Acad Sci U S A,2011, 108(11):4429-4434.
    [23]Gougoux F, Lepore F, Lassonde M, et al. Neuropsychology:pitch discrimination in the early blind[J]. Nature,2004,430(6997):309.
    [24]Bavelier D, Neville HJ. Cross-modal plasticity:where and how?[J]. Nat Rev Neurosci,2002,3(6):443-452.
    [25]Liu C, Liu Y, Li W, et al. Increased regional homogeneity of blood oxygen level-dependent signals in occipital cortex of early blind individuals[J]. Neuroreport,2011,22(4):190-194.
    [26]De Volder AG, Bol A, Blin J, et al. Brain energy metabolism in early blind subjects:neural activity in the visual cortex[J]. Brain Res,1997,750(1-2): 235-244.
    [27]Mishina M, Senda M, Kiyosawa M, et al. Increased regional cerebral blood flow but normal distribution of GABAA receptor in the visual cortex of subjects with early-onset blindness[J]. Neuroimage,2003,19(1):125-131.
    [28]Veraart C, De Volder AG, Wanet-Defalque MC, et al. Glucose utilization in human visual cortex is abnormally elevated in blindness of early onset but decreased in blindness of late onset[J]. Brain Res,1990,510(1):115-121.
    [29]Uhl F, Franzen P, Podreka I, et al. Increased regional cerebral blood flow in inferior occipital cortex and cerebellum of early blind humans[J]. Neurosci Lett, 1993,150(2):162-164.
    [30]Ptito M, Schneider FC, Paulson OB, et al. Alterations of the visual pathways in congenital blindness[J]. Exp Brain Res,2008,187(1):41-49.
    [31]Noppeney U, Friston KJ, Ashburner J, et al. Early visual deprivation induces structural plasticity in gray and white matter[J]. Curr Biol,2005,15(13): R488-490.
    [32]Pan WJ, Wu Q Li CX, et al. Progressive atrophy in the optic pathway and visual cortex of early blind Chinese adults:A voxel-based morphometry magnetic resonance imaging study[J]. Neuroimage,2007,37(1):212-220.
    [33]Shimony JS, Burton H, Epstein AA, et al. Diffusion tensor imaging reveals white matter reorganization in early blind humans[J]. Cereb Cortex,2006, 16(11):1653-1661.
    [34]Shu N, Li J, Li K, et al. Abnormal diffusion of cerebral white matter in early blindness[J]. Hum Brain Mapp,2009,30(1):220-227.
    [35]Shu N, Liu Y, Li J, et al. Altered anatomical network in early blindness revealed by diffusion tensor tractography[J]. PLoS ONE,2009,4(9):e7228.
    [36]Li J, Liu Y, Qin W, et al. Age of Onset of Blindness Affects Brain Anatomical Networks Constructed Using Diffusion Tensor Tractography.[J]. Cereb Cortex, 2012.
    [37]Yu C, Liu Y, Li J, et al. Altered functional connectivity of primary visual cortex in early blindness[J]. Hum Brain Mapp,2008,29(5):533-543.
    [38]Liu Y, Yu C, Liang M, et al. Whole brain functional connectivity in the early blind[J]. Brain,2007,130(Pt 8):2085-2096.
    [39]Zangaladze A, Epstein CM, Grafton ST, et al. Involvement of visual cortex in tactile discrimination of orientation[J]. Nature,1999,401(6753):587-590.
    [40]Collignon O, Davare M, Olivier E, et al. Reorganisation of the right occipito-parietal stream for auditory spatial processing in early blind humans. A transcranial magnetic stimulation study[J]. Brain Topogr,2009,21(3-4): 232-240.
    [41]Collignon O, Davare M, De Volder AG, et al. Time-course of posterior parietal and occipital cortex contribution to sound localization[J]. J Cogn Neurosci, 2008,20(8):1454-1463.
    [42]Poirier C, Collignon O, Scheiber C, et al. Auditory motion perception activates visual motion areas in early blind subjects[J]. Neuroimage,2006,31(1): 279-285.
    [43]Poirier C, Collignon O, Devolder AG, et al. Specific activation of the V5 brain area by auditory motion processing:an fMRI study[J]. Brain Res Cogn Brain Res,2005,25(3):650-658.
    [44]Ricciardi E, Sani L, Gentili C, et al. Brain response to visual, tactile and auditory flow in sighted and blind individuals supports a supramodal functional organization in MT+ complex[J]. Neuroimage,2006,31((Suppl.1)):512 TH-PM.
    [45]Ricciardi E, Vanello N, Sani L, et al. The effect of visual experience on the development of functional architecture in MT+[J]. Cereb Cortex,2007,17(12): 2933-2939.
    [46]Ricciardi E, Basso D, Sani L, et al. Functional inhibition of the human middle temporal cortex affects non-visual motion perception:a repetitive transcranial magnetic stimulation study during tactile speed discrimination[J]. Exp Biol Med (Maywood),2011,236(2):138-144.
    [47]Ptito M, Matteau I, Zhi Wang A, et al. Crossmodal recruitment of the ventral visual stream in congenital blindness[J]. Neural Plast,2012,2012:304045.
    [48]James TW, Humphrey GK, Gati JS, et al. Differential effects of viewpoint on object-driven activation in dorsal and ventral streams[J]. Neuron,2002,35(4): 793-801.
    [49]James TW, Humphrey GK, Gati JS, et al. Haptic study of three-dimensional objects activates extrastriate visual areas[J]. Neuropsychologia,2002,40(10): 1706-1714.
    [50]Amedi A, Jacobson Q Hendler T, et al. Convergence of visual and tactile shape processing in the human lateral occipital complex[J]. Cereb Cortex,2002, 12(11):1202-1212.
    [51]Amedi A, Malach R, Hendler T, et al. Visuo-haptic object-related activation in the ventral visual pathway[J]. Nat Neurosci,2001,4(3):324-330.
    [52]Stoesz MR, Zhang M, Weisser VD, et al. Neural networks active during tactile form perception:common and differential activity during macrospatial and microspatial tasks[J]. Int J Psychophysiol,2003,50(1-2):41-49.
    [53]Prather SC, Votaw JR, Sathian K. Task-specific recruitment of dorsal and ventral visual areas during tactile perception[J]. Neuropsychologia,2004,42(8): 1079-1087.
    [54]Sathian K, Zangaladze A. Feeling with the mind's eye:the role of visual imagery in tactile perception[J]. Optom Vis Sci,2001,78(5):276-281.
    [55]Kosslyn SM, Pascual-Leone A, Felician O, et al. The role of area 17 in visual imagery:convergent evidence from PET and rTMS[J]. Science,1999, 284(5411):167-170.
    [56]Bonino D, Ricciardi E, Sani L, et al. Tactile spatial working memory activates the dorsal extrastriate cortical pathway in congenitally blind individuals[J]. Arch Ital Biol,2008,146(3-4):133-146.
    [57]Renier LA, Anurova I, De Volder AG, et al. Preserved functional specialization for spatial processing in the middle occipital gyrus of the early blind[J]. Neuron,2010,68(1):138-148.
    [58]Collignon O, Lassonde M, Lepore F, et al. Functional cerebral reorganization for auditory spatial processing and auditory substitution of vision in early blind subjects[J]. Cereb Cortex,2007,17(2):457-465.
    [59]Voss P, Gougoux F, Zatorre RJ, et al. Differential occipital responses in early-and late-blind individuals during a sound-source discrimination task[J]. Neuroimage,2008,40(2):746-758.
    [60]Fiehler K, Rosler F. Plasticity of multisensory dorsal stream functions: evidence from congenitally blind and sighted adults[J]. Restor Neurol Neurosci, 2010,28(2):193-205.
    [61]Reich L, Szwed M, Cohen L, et al. A ventral visual stream reading center independent of visual experience[J]. Curr Biol,2011,21(5):363-368.
    [62]Mahon BZ, Anzellotti S, Schwarzbach J, et al. Category-specific organization in the human brain does not require visual experience[J]. Neuron,2009,63(3): 397-405.
    [63]Amedi A, Stern WM, Camprodon JA, et al. Shape conveyed by visual-to-auditory sensory substitution activates the lateral occipital complex[Jj. Nat Neurosci,2007,10(6):687-689.
    [64]Wolbers T, Zahorik P, Giudice NA. Decoding the direction of auditory motion in blind humans[J]. Neuroimage,2011,56(2):681-687.
    [65]Matteau I, Kupers R, Ricciardi E, et al. Beyond visual, aural and haptic movement perception:MT+is activated by electrotactile motion stimulation of the tongue in sighted and in congenitally blind individuals[J]. Brain Res Bull, 2010,82(5-6):264-270.
    [66]Kupers R, Chebat DR, Madsen KH, et al. Neural correlates of virtual route recognition in congenital blindness[J]. Proc Natl Acad Sci U S A,2010, 107(28):12716-12721.
    [67]Falchier A, Clavagnier S, Barone P, et al. Anatomical evidence of multimodal integration in primate striate cortex[J]. J Neurosci,2002,22(13):5749-5759.
    [68]Falchier A, Schroeder CE, Hackett TA, et al. Projection from visual areas V2 and prostriata to caudal auditory cortex in the monkey [J]. Cereb Cortex,2010, 20(7):1529-1538.
    [69]Werner S, Noppeney U. Distinct functional contributions of primary sensory and association areas to audiovisual integration in object categorization[J]. J Neurosci,2010,30(7):2662-2675.
    [70]Romanski LM. Representation and integration of auditory and visual stimuli in the primate ventral lateral prefrontal cortex[J]. Cereb Cortex,2007,17 Suppl 1: i61-69.
    [71]Bedny M, Konkle T, Pelphrey K, et al. Sensitive period for a multimodal response in human visual motion area MT/MST[J]. Curr Biol,2010,20(21): 1900-1906.
    [72]Sadato N, Okada T, Honda M, et al. Critical period for cross-modal plasticity in blind humans:a functional MRI study[J]. Neuroimage,2002,16(2): 389-400.
    [73]De Volder AG, Catalan-Ahumada M, Robert A, et al. Changes in occipital cortex activity in early blind humans using a sensory substitution device[J]. Brain Res,1999,826(1):128-134.
    [74]Park HJ, Lee JD, Kim EY, et al. Morphological alterations in the congenital blind based on the analysis of cortical thickness and surface area[J]. Neuroimage,2009,47(1):98-106.
    [75]Jiang J, Zhu W, Shi F, et al. Thick Visual Cortex in the Early Blind[J]. J Neurosci,2009,29(7):2205-2211.
    [76]Yu C, Shu N, Li J, et al. Plasticity of the corticospinal tract in early blindness revealed by quantitative analysis of fractional anisotropy based on diffusion tensor tractography[J]. Neuroimage,2007,36(2):411-417.
    [77]Lepore N, Voss P, Lepore F, et al. Brain structure changes visualized in early-and late-onset blind subjects[J]. Neuroimage,2010,49(1):134-140.
    [78]Schoth F, Burgel U, Dorsch R, et al. Diffusion tensor imaging in acquired blind humans[J]. Neurosci Lett,2006,398(3):178-182.
    [79]Zhang Y, Wan S, Ge J, et al. Diffusion tensor imaging reveals normal geniculocalcarine-tract integrity in acquired blindness[J]. Brain Res,2012, 1458:34-39.
    [80]Li J, Liu Y, Qin W, et al. Age of onset of blindness affects brain anatomical networks constructed using diffusion tensor tractography[J]. Cereb Cortex, 2013,23(3):542-551.
    [81]Reese TQ Heid O, Weisskoff RM, et al. Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo[J]. Magn Reson Med,2003,49(1):177-182.
    [82]Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction[J]. Neuroimage,1999,9(2):179-194.
    [83]Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II:Inflation, flattening, and a surface-based coordinate system[J]. Neuroimage,1999,9(2): 195-207.
    [84]Talairach J, Tournoux P. Co-Planar Stereotaxic Atlas of the Human Brain: Georg Thieme Verlag; 1988.
    [85]Segonne F, Dale AM, Busa E, et al. A hybrid approach to the skull stripping problem in MRI[J]. Neuroimage,2004,22(3):1060-1075.
    [86]Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images[J]. Proc Natl Acad Sci U S A,2000,97(20): 11050-11055.
    [87]Fischl B, Sereno MI, Tootell RB, et al. High-resolution intersubject averaging and a coordinate system for the cortical surface[J]. Hum Brain Mapp,1999, 8(4):272-284.
    [88]Ashburner J. A fast diffeomorphic image registration algorithm[J]. Neuroimage, 2007,38(1):95-113.
    [89]Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI[J]. J Magn Reson B,1996, 111(3):209-219.
    [90]Qin W, Zhang M, Piao Y, et al. Wallerian Degeneration in Central Nervous System:Dynamic Associations between Diffusion Indices and Their Underlying Pathology[J]. PLoS ONE,2012,7(7):e41441.
    [91]Van Essen DC. A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex[J]. Neuroimage,2005,28(3):635-662.
    [92]Eickhoff SB, Stephan KE, Mohlberg H, et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data[J]. Neuroimage,2005,25(4):1325-1335.
    [93]Chechik G, Meilijson I, Ruppin E. Neuronal regulation:A mechanism for synaptic pruning during brain maturation[J]. Neural Comput,1999,11(8): 2061-2080.
    [94]Bourgeois JP, Jastreboff PJ, Rakic P. Synaptogenesis in visual cortex of normal and preterm monkeys:evidence for intrinsic regulation of synaptic overproduction[J].Proc Natl Acad Sci U S A,1989,86(11):4297-4301.
    [95]Buchel C. Cortical hierarchy turned on its head[J]. Nat Neurosci,2003,6(7): 657-658.
    [96]Sadato N, Pascual-Leone A, Grafman J, et al. Neural networks for Braille reading by the blind[J]. Brain,1998,121 (Pt 7):1213-1229.
    [97]Lambert S, Sampaio E, Mauss Y, et al. Blindness and brain plasticity: contribution of mental imagery? An fMRI study [J]. Brain Res Cogn Brain Res, 2004,20(1):1-11.
    [98]Garg A, Schwartz D, Stevens AA. Orienting auditory spatial attention engages frontal eye fields and medial occipital cortex in congenitally blind humans[J]. Neuropsychologia,2007,45(10):2307-2321.
    [99]Karlen SJ, Kahn DM, Krubitzer L. Early blindness results in abnormal corticocortical and thalamocortical connections [J]. Neuroscience,2006,142(3): 843-858.
    [100]Kupers R, Fumal A, de Noordhout AM, et al. Transcranial magnetic stimulation of the visual cortex induces somatotopically organized qualia in blind subjects[J]. Proc Natl Acad Sci U S A,2006,103(35):13256-13260.
    [101]Rehkamper Q Necker R, Nevo E. Functional anatomy of the thalamus in the blind mole rat Spalax ehrenbergi:an architectonic and electrophysiologically controlled tracing study[J]. J Comp Neurol,1994,347(4):570-584.
    [102]Callaway EM, Katz LC. Effects of binocular deprivation on the development of clustered horizontal connections in cat striate cortex[J]. Proc Natl Acad Sci U S A,1991,88(3):745-749.
    [103]Sur M, Leamey CA. Development and plasticity of cortical areas and networks[J]. Nat Rev Neurosci,2001,2(4):251-262.
    [104]Reich L, Maidenbaum S, Amedi A. The brain as a flexible task machine: implications for visual rehabilitation using noninvasive vs. invasive approaches[J]. Curr Opin Neurol,2012,25(1):86-95.
    [105]Kupers R, Pietrini P, Ricciardi E, et al. The nature of consciousness in the visually deprived brain[J]. Front Psychol,2011,2:19.
    [106]Driver J, Noesselt T. Multisensory interplay reveals crossmodal influences on 'sensory-specific1 brain regions, neural responses, and judgments[J]. Neuron, 2008,57(1):11-23.
    [107]Bizley JK, Nodal FR, Bajo VM, et al. Physiological and anatomical evidence for multisensory interactions in auditory cortex[J]. Cereb Cortex,2007,17(9): 2172-2189.
    [108]Lewis TL, Maurer D. Multiple sensitive periods in human visual development: evidence from visually deprived children[J]. Dev Psychobiol,2005,46(3): 163-183.
    [109]Kiorpes L, Price T, Hall-Haro C, et al. Development of sensitivity to global form and motion in macaque monkeys (Macaca nemestrina)[J]. Vision Res, 2012,63:34-42.
    [110]Kovacs I, Kozma P, Feher A, et al. Late maturation of visual spatial integration in humans[J]. Proc Natl Acad Sci U S A,1999,96(21):12204-12209.
    [111]Kovacs I. Human development of perceptual organization[J]. Vision Res,2000, 40(10-12):1301-1310.
    [112]Kiorpes L, Bassin SA. Development of contour integration in macaque monkeys[J]. Vis Neurosci,2003,20(5):567-575.
    [113]Distler C, Bachevalier J, Kennedy C, et al. Functional development of the corticocortical pathway for motion analysis in the macaque monkey:a 14C-2-deoxyglucose study[J]. Cereb Cortex,1996,6(2):184-195.
    [114]Bourne JA, Rosa MG Hierarchical development of the primate visual cortex, as revealed by neurofilament immunoreactivity:early maturation of the middle temporal area (MT)[J]. Cereb Cortex,2006,16(3):405-414.
    [115]Wattam-Bell J, Birtles D, Nystrom P, et al. Reorganization of global form and motion processing during human visual development[J]. Curr Biol,2010,20(5): 411-415.
    [116]Rodman HR, Scalaidhe SP, Gross CG. Response properties of neurons in temporal cortical visual areas of infant monkeys[J]. J Neurophysiol,1993, 70(3):1115-1136.
    [117]Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging[J]. Nat Rev Neurosci,2007,8(9): 700-711.
    [118]Leopold DA, Murayama Y, Logothetis NK. Very slow activity fluctuations in monkey visual cortex:implications for functional brain imaging[J]. Cereb Cortex,2003,13(4):422-433.
    [119]Laufs H, Krakow K, Sterzer P, et al. Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest[J]. Proc Natl Acad Sci U S A,2003,100(19):11053-11058.
    [120]Smith SM, Fox PT, Miller KL, et al. Correspondence of the brain's functional architecture during activation and rest[J]. Proc Natl Acad Sci U S A,2009, 106(31):13040-13045.
    [121]Qin W, Liu Y, Jiang T, et al. The development of visual areas depends differently on visual experience[J]. PLoS ONE,2013,8(1):e53784.
    [122]Sepulcre J, Liu H, Talukdar T, et al. The organization of local and distant functional connectivity in the human brain[J]. PLoS Comput Biol,2010,6(6): e1000808.
    [123]Tomasi D, Volkow ND. Aging and functional brain networks[J]. Mol Psychiatry,2011.
    [124]Wang D, Qin W, Liu Y, et al. Altered white matter integrity in the congenital and late blind people[J]. Neural Plasticity,2013,2013:8.
    [125]Power JD, Barnes KA, Snyder AZ, et al. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion[J]. Neuroimage,2012,59(3):2142-2154.
    [126]Van Dijk KR, Sabuncu MR, Buckner RL. The influence of head motion on intrinsic functional connectivity MRI[J]. Neuroimage,2012,59(1):431-438.
    [127]Satterthwaite TD, Wolf DH, Loughead J, et al. Impact of in-scanner head motion on multiple measures of functional connectivity:relevance for studies of neurodevelopment in youth[J]. Neuroimage,2012,60(1):623-632.
    [128]Tomasi D, Volkow ND. Functional connectivity density mapping[J]. Proc Natl Acad Sci U S A,2010,107(21):9885-9890.
    [129]Bridge H, Cowey A, Ragge N, et al. Imaging studies in congenital anophthalmia reveal preservation of brain architecture in 'visual' cortex[J]. Brain,2009,132(Pt 12):3467-3480.
    [130]Izraeli R, Koay G, Lamish M, et al. Cross-modal neuroplasticity in neonatally enucleated hamsters:structure, electrophysiology and behaviour[J]. Eur J Neurosci,2002,15(4):693-712.
    [131]Piche M, Chabot N, Bronchti G, et al. Auditory responses in the visual cortex of neonatally enucleated rats[J]. Neuroscience,2007,145(3):1144-1156.
    [132]Beer AL, Plank T, Greenlee MW. Diffusion tensor imaging shows white matter tracts between human auditory and visual cortex[J]. Exp Brain Res,2011, 213(2-3):299-308.
    [133]Desgent S, Boire D, Ptito M. Altered expression of parvalbumin and calbindin in interneurons within the primary visual cortex of neonatal enucleated hamsters[J]. Neuroscience,2010,171(4):1326-1340.
    [134]Hooks BM, Chen C. Critical periods in the visual system:changing views for a model of experience-dependent plasticity [J]. Neuron,2007,56(2):312-326.
    [135]Wang BS, Sarnaik R, Cang J. Critical period plasticity matches binocular orientation preference in the visual cortex[J]. Neuron,2010,65(2):246-256.
    [136]Gougoux F, Zatorre RJ, Lassonde M, et al. A functional neuroimaging study of sound localization:visual cortex activity predicts performance in early-blind individuals[J]. PLoS Biol,2005,3(2):e27.
    [137]Fieger A, Roder B, Teder-Salejarvi W, et al. Auditory spatial tuning in late-onset blindness in humans[J]. J Cogn Neurosci,2006,18(2):149-157.
    [138]Wittenberg GF, Werhahn KJ, Wassermann EM, et al. Functional connectivity between somatosensory and visual cortex in early blind humans[J]. Eur J Neurosci,2004,20(7):1923-1927.
    [139]Klinge C, Eippert F, Roder B, et al. Corticocortical connections mediate primary visual cortex responses to auditory stimulation in the blind[J]. J Neurosci,2010,30(38):12798-12805.
    [140]Raz N, Amedi A, Zohary E. V1 activation in congenitally blind humans is associated with episodic retrieval[J]. Cereb Cortex,2005,15(9):1459-1468.
    [141]Burton H, Snyder AZ, Conturo TE, et al. Adaptive changes in early and late blind:a fMRI study of Braille reading[J]. J Neurophysiol,2002,87(1): 589-607.
    [142]Serino A, Canzoneri E, Avenanti A. Fronto-parietal areas necessary for a multisensory representation of peripersonal space in humans:an rTMS study [J]. J Cogn Neurosci,2011,23(10):2956-2967.
    [143]Pasalar S, Ro T, Beauchamp MS. TMS of posterior parietal cortex disrupts visual tactile multisensory integration[J]. Eur J Neurosci,2010,31(10): 1783-1790.
    [144]Makin TR, Holmes NP, Zohary E. Is that near my hand? Multisensory representation of peripersonal space in human intraparietal sulcus[J]. J Neurosci,2007,27(4):731-740.
    [145]Kitada R, Kito T, Saito DN, et al. Multisensory activation of the intraparietal area when classifying grating orientation:a functional magnetic resonance imaging study [J]. J Neurosci,2006,26(28):7491-7501.
    [146]Anderson JS, Ferguson MA, Lopez-Larson M, et al. Topographic maps of multisensory attention[J]. Proc Natl Acad Sci U S A,2010,107(46): 20110-20114.
    [147]Corbetta M, Shulman GL. Spatial neglect and attention networks[J]. Annu Rev Neurosci,2011,34:569-599.
    [148]Mahon BZ, Schwarzbach J, Caramazza A. The representation of tools in left parietal cortex is independent of visual experience[J]. Psychol Sci,2010,21(6): 764-771.
    [149]Collignon O, Voss P, Lassonde M, et al. Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects [J]. Exp Brain Res,2009, 192(3):343-358.
    [150]Burton H, Sinclair RJ, Dixit S. Working memory for vibrotactile frequencies: comparison of cortical activity in blind and sighted individuals[J]. Hum Brain Mapp,2010,31(11):1686-1701.
    [151]Stevens AA, Snodgrass M, Schwartz D, et al. Preparatory activity in occipital cortex in early blind humans predicts auditory perceptual performance[J]. J Neurosci,2007,27(40):10734-10741.
    [152]Save E, Cressant A, Thinus-Blanc C, et al. Spatial firing of hippocampal place cells in blind rats[J].J Neurosci,1998,18(5):1818-1826.
    [153]Gagnon L, Schneider FC, Siebner HR, et al. Activation of the hippocampal complex during tactile maze solving in congenitally blind subjects[J]. Neuropsychologia,2012,50(7):1663-1671.
    [154]Lepore N, Shi Y, Lepore F, et al. Pattern of hippocampal shape and volume differences in blind subjects[J]. Neuroimage,2009,46(4):949-957.
    [155]Fortin M, Voss P, Lord C, et al. Wayfinding in the blind:larger hippocampal volume and supranormal spatial navigation[J]. Brain,2008,131(Pt 11): 2995-3005.
    [156]Chebat DR, Chen JK, Schneider F, et al. Alterations in right posterior hippocampus in early blind individuals[J]. Neuroreport,2007,18(4):329-333.
    [157]Hadjikhani N, Liu AK, Dale AM, et al. Retinotopy and color sensitivity in human visual cortical area V8[J]. Nat Neurosci,1998,1(3):235-241.
    [158]Janssen P, Vogels R, Orban GA. Macaque inferior temporal neurons are selective for disparity-defined three-dimensional shapes[J]. Proc Natl Acad Sci USA,1999,96(14):8217-8222.
    [159]Thomas C, Avidan G, Humphreys K, et al. Reduced structural connectivity in ventral visual cortex in congenital prosopagnosia[J]. Nat Neurosci,2009,12(1): 29-31.
    [160]Pietrini P, Furey ML, Ricciardi E, et al. Beyond sensory images:Object-based representation in the human ventral pathway[J]. Proc Natl Acad Sci U S A, 2004,101(15):5658-5663.
    [161]Kupers R, Beaulieu-Lefebvre M, Schneider FC, et al. Neural correlates of olfactory processing in congenital blindness [J]. Neuropsychologia,2011,49(7): 2037-2044.
    [162]Tsao DY, Schweers N, Moeller S, et al. Patches of face-selective cortex in the macaque frontal lobe[J]. Nat Neurosci,2008,11(8):877-879.
    [163]Catani M, Howard RJ, Pajevic S, et al. Virtual in vivo interactive dissection of white matter fasciculi in the human brain[J]. Neuroimage,2002,17(1):77-94.
    [164]Baluch F, Itti L. Mechanisms of top-down attention[J]. Trends Neurosci,2011, 34(4):210-224.
    [165]Burton H, Diamond JB, McDermott KB. Dissociating cortical regions activated by semantic and phonological tasks:a FMRI study in blind and sighted people[J]. J Neurophysiol,2003,90(3):1965-1982.
    [166]Kassuba T, Klinge C, Holig C, et al. The left fusiform gyrus hosts trisensory representations of manipulable objects[J]. Neuroimage,2011,56(3): 1566-1577.
    [167]Fiehler K, Burke M, Bien S, et al. The human dorsal action control system develops in the absence of vision[J]. Cereb Cortex,2009,19(1):1-12.
    [168]Amedi A, Raz N, Azulay H, et al. Cortical activity during tactile exploration of objects in blind and sighted humans[J]. Restor Neurol Neurosci,2010,28(2): 143-156.
    [169]Peltier S, Stilla R, Mariola E, et al. Activity and effective connectivity of parietal and occipital cortical regions during haptic shape perception[J]. Neuropsychologia,2007,45(3):476-483.
    [170]Ptito M, Matteau I, Gjedde A, et al. Recruitment of the middle temporal area by tactile motion in congenital blindness[J]. Neuroreport,2009,20(6): 543-547.
    [171]Striem-Amit E, Dakwar O, Reich L, et al. The large-scale organization of "visual" streams emerges without visual experience[J]. Cereb Cortex,2012, 22(7):1698-1709.
    [172]Renier L, De Volder AG. Vision substitution and depth perception:early blind subjects experience visual perspective through their ears[J]. Disabil Rehabil Assist Technol,2010,5(3):175-183.
    [173]Auvray M, Hanneton S, O'Regan JK. Learning to perceive with a visuo-auditory substitution system:localisation and object recognition with'the vOICe'[J]. Perception,2007,36(3):416-430.
    [174]Proulx MJ, Stoerig P, Ludowig E, et al. Seeing 'where' through the ears:effects of learning-by-doing and long-term sensory deprivation on localization based on image-to-sound substitution[J]. PLoS ONE,2008,3(3):e1840.
    [175]Kim JK, Zatorre RJ. Generalized learning of visual-to-auditory substitution in sighted individuals[J]. Brain Res,2008,1242:263-275.
    [176]He BJ, Snyder AZ, Vincent JL, et al. Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect[J]. Neuron,2007,53(6):905-918.
    [177]Norman-Haignere SV, McCarthy G, Chun MM, et al. Category-selective background connectivity in ventral visual cortex[J]. Cereb Cortex,2012,22(2): 391-402.
    [178]Matsui T, Tamura K, Koyano KW, et al. Direct Comparison of Spontaneous Functional Connectivity and Effective Connectivity Measured by Intracortical Microstimulation:An fMRI Study in Macaque Monkeys[J]. Cereb Cortex, 2011.
    [179]Greicius MD, Supekar K, Menon V, et al. Resting-state functional connectivity reflects structural connectivity in the default mode network[J]. Cereb Cortex, 2009,19(1):72-78.
    [180]Honey CJ, Sporns O, Cammoun L, et al. Predicting human resting-state functional connectivity from structural connectivity[J]. Proc Natl Acad Sci U S A,2009,106(6):2035-2040.
    [181]Conturo TE, Lori NF, Cull TS, et al. Tracking neuronal fiber pathways in the living human brain[J]. Proc Natl Acad Sci U S A,1999,96(18):10422-10427.
    [182]Bronchti G, Rado R, Terkel J, et al. Retinal projections in the blind mole rat:a WGA-HRP tracing study of a natural degeneration[J]. Brain Res Dev Brain Res,1991,58(2):159-170.
    [183]Bock AS, Kroenke CD, Taber EN, et al. Retinal input influences the size and corticocortical connectivity of visual cortex during postnatal development in the ferret[J]. J Comp Neurol,2011.
    [184]den Ouden HE, Friston KJ, Daw ND, et al. A dual role for prediction error in associative learning[J]. Cereb Cortex,2009,19(5):1175-1185.
    [185]Eckert MA, Kamdar NV, Chang CE, et al. A cross-modal system linking primary auditory and visual cortices:evidence from intrinsic fMRI connectivity analysis[J]. Hum Brain Mapp,2008,29(7):848-857.
    [186]Ptito M, Fumal A, de Noordhout AM, et al. TMS of the occipital cortex induces tactile sensations in the fingers of blind Braille readers[J]. Exp Brain Res,2008,184(2):193-200.
    [187]Innocenti GM. Exuberant development of connections, and its possible permissive role in cortical evolution[J]. Trends Neurosci,1995,18(9):397-402.
    [188]Rockland KS, Ojima H. Multisensory convergence in calcarine visual areas in macaque monkey[J]. Int J Psychophysiol,2003,50(1-2):19-26.
    [189]Fujii T, Tanabe HC, Kochiyama T, et al. An investigation of cross-modal plasticity of effective connectivity in the blind by dynamic causal modeling of functional MRI data[J]. Neurosci Res,2009,65(2):175-186.
    [190]Burton H, Snyder AZ, Diamond JB, et al. Adaptive changes in early and late blind:a FMRI study of verb generation to heard nouns[J]. J Neurophysiol, 2002,88(6):3359-3371.
    [191]Lessard N, Pare M, Lepore F, et al. Early-blind human subjects localize sound sources better than sighted subjects[J]. Nature,1998,395(6699):278-280.
    [192]Goldreich D, Kanics IM. Tactile acuity is enhanced in blindness[J]. J Neurosci, 2003,23(8):3439-3445.
    [193]Van Boven RW, Hamilton RH, Kauffman T, et al. Tactile spatial resolution in blind braille readers[J]. Neurology,2000,54(12):2230-2236.
    [194]Wakefield CE, Homewood J, Taylor AJ. Cognitive compensations for blindness in children:an investigation using odour naming[J]. Perception,2004, 33(4):429-442.
    [195]Chen Q, Zhang M, Zhou X. Spatial and nonspatial peripheral auditory processing in congenitally blind people[J]. Neuroreport,2006,17(13): 1449-1452.
    [196]Collignon O, Renier L, Bruyer R, et al. Improved selective and divided spatial attention in early blind subjects[J]. Brain Res,2006,1075(1):175-182.
    [197]Forster B, Eardley AF, Eimer M. Altered tactile spatial attention in the early blind[J]. Brain Res,2007,1131(1):149-154.
    [198]Roder B, Kramer UM, Lange K. Congenitally blind humans use different stimulus selection strategies in hearing:an ERP study of spatial and temporal attention[J]. Restor Neurol Neurosci,2007,25(3-4):311-322.
    [199]Collignon O, De Volder AG. Further evidence that congenitally blind participants react faster to auditory and tactile spatial targets[J]. Can J Exp Psychol,2009,63(4):287-293.
    [200]Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain[J]. Nat Rev Neurosci,2002,3(3):201-215.
    [201]Tootell RB, Hadjikhani N, Hall EK, et al. The retinotopy of visual spatial attention[J]. Neuron,1998,21(6):1409-1422.
    [202]Buchel C, Josephs O, Rees G, et al. The functional anatomy of attention to visual motion. A functional MRI study[J]. Brain,1998,121:1281-1294.
    [203]Cate AD, Herron TJ, Yund EW, et al. Auditory attention activates peripheral visual cortex[J]. PLoS ONE,2009,4(2):e4645.
    [204]Bressler DW, Silver MA. Spatial attention improves reliability of fMRI retinotopic mapping signals in occipital and parietal cortex[J]. Neuroimage, 2010,53(2):526-533.
    [205]Jack AI, Shulman GL, Snyder AZ, et al. Separate modulations of human V1 associated with spatial attention and task structure[J]. Neuron,2006,51(1): 135-147.
    [206]Silver MA, Ress D, Heeger DJ. Neural correlates of sustained spatial attention in human early visual cortex[J]. J Neurophysiol,2007,97(1):229-237.
    [207]Saygin AP, Sereno MI. Retinotopy and attention in human occipital, temporal, parietal, and frontal cortex[J]. Cereb Cortex,2008,18(9):2158-2168.
    [208]Brefczynski JA, DeYoe EA. A physiological correlate of the 'spotlight' of visual attention[J]. Nat Neurosci,1999,2(4):370-374.
    [209]Sathian K, Stilla R. Cross-modal plasticity of tactile perception in blindness[J]. Restor Neurol Neurosci,2010,28(2):271-281.
    [210]Sadato N, Pascual-Leone A, Grafman J, et al. Activation of the primary visual cortex by Braille reading in blind subjects[J]. Nature,1996,380(6574): 526-528.
    [211]Weeks R, Horwitz B, Aziz-Sultan A, et al. A positron emission tomographic study of auditory localization in the congenitally blind[J]. J Neurosci,2000, 20(7):2664-2672.
    [212]Fox MD, Corbetta M, Snyder AZ, et al. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems[J]. Proc Natl Acad Sci U S A,2006,103(26):10046-10051.
    [213]Wen X, Yao L, Liu Y, et al. Causal interactions in attention networks predict behavioral performance[J]. J Neurosci,2012,32(4):1284-1292.
    [214]Smith SM. Fast robust automated brain extraction[J]. Hum Brain Mapp,2002, 17(3):143-155.
    [215]Behrens TE, Berg HJ, Jbabdi S, et al. Probabilistic diffusion tractography with multiple fibre orientations:What can we gain?[J]. Neuroimage,2007,34(1): 144-155.
    [216]Behrens TE, Woolrich MW, Jenkinson M, et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging[J]. Magn Reson Med,2003,50(5):1077-1088.
    [217]Jones DK, Pierpaoli C. Confidence mapping in diffusion tensor magnetic resonance imaging tractography using a bootstrap approach[J]. Magn Reson Med,2005,53(5):1143-1149.
    [218]Peltier SJ, Kerssens C, Hamann SB, et al. Functional connectivity changes with concentration of sevoflurane anesthesia[J]. Neuroreport,2005,16(3): 285-288.
    [219]Horovitz SQ Fukunaga M, de Zwart JA, et al. Low frequency BOLD fluctuations during resting wakefulness and light sleep:a simultaneous EEG-fMRI study[J]. Hum Brain Mapp,2008,29(6):671-682.
    [220]Weaver KE, Stevens AA. Attention and sensory interactions within the occipital cortex in the early blind:an fMRI study[J]. J Cogn Neurosci,2007, 19(2):315-330.
    [221]Burton H. Visual cortex activity in early and late blind people[J]. J Neurosci, 2003,23(10):4005-4011.
    [222]Moradi F, Buracas GT, Buxton RB. Attention strongly increases oxygen metabolic response to stimulus in primary visual cortex[J]. Neuroimage,2012, 59(1):601-607.
    [223]Zanto TP, Rubens MT, Thangavel A, et al. Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory[J]. Nat Neurosci,2011,14(5):656-661.
    [224]Urbanski M, Thiebaut de Schotten M, Rodrigo S, et al. Brain networks of spatial awareness:evidence from diffusion tensor imaging tractography[J]. J Neurol Neurosurg Psychiatry,2008,79(5):598-601.
    [225]Thiebaut de Schotten M, Urbanski M, Duffau H, et al. Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans[J]. Science, 2005,309(5744):2226-2228.
    [226]Umarova RM, Saur D, Schnell S, et al. Structural connectivity for visuospatial attention:significance of ventral pathways[J]. Cereb Cortex,2010,20(1): 121-129.
    [227]Lindenberg R, Renga V, Zhu LL, et al. Structural integrity of corticospinal motor fibers predicts motor impairment in chronic stroke[J]. Neurology,2010, 74(4):280-287.
    [228]Saunders DE, Clifton AG, Brown MM. Measurement of infarct size using MRI predicts prognosis in middle cerebral artery infarction[J]. Stroke,1995,26(12): 2272-2276.
    [229]Shelton FN, Reding MJ. Effect of lesion location on upper limb motor recovery after stroke[J]. Stroke,2001,32(1):107-112.
    [230]Butcher KS, Lee SB, Parsons MW, et al. Differential prognosis of isolated cortical swelling and hypoattenuation on CT in acute stroke[J]. Stroke,2007, 38(3):941-947.
    [231]Guo J, Zheng HB, Duan JC, et al. Diffusion tensor MRI for the assessment of cerebral ischemia/reperfusion injury in the penumbra of non-human primate stroke model[J]. Neurol Res,2011,33(1):108-112.
    [232]Zhu LL, Lindenberg R, Alexander MP, et al. Lesion load of the corticospinal tract predicts motor impairment in chronic stroke[J]. Stroke,2010,41(5): 910-915.
    [233]Gauthier LV, Taub E, Mark VW, et al. Atrophy of spared gray matter tissue predicts poorer motor recovery and rehabilitation response in chronic stroke[J]. Stroke,2012,43(2):453-457.
    [234]Fan F, Zhu C, Chen H, et al. Dynamic brain structural changes after left hemisphere subcortical stroke[J]. Hum Brain Mapp,2012.
    [235]Ruber T, Schlaug G, Lindenberg R. Compensatory role of the cortico-rubro-spinal tract in motor recovery after stroke[J]. Neurology,2012, 79(6):515-522.
    [236]Verdon V, Schwartz S, Lovblad KO, et al. Neuroanatomy of hemispatial neglect and its functional components:a study using voxel-based lesion-symptom mapping[J]. Brain,2010,133(Pt 3):880-894.
    [237]Rehme AK, Eickhoff SB, Wang LE, et al. Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke[J]. Neuroimage,2011, 55(3):1147-1158.
    [238]Gerloff C, Bushara K, Sailer A, et al. Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke[J]. Brain,2006,129(Pt 3):791-808.
    [239]Stinear CM, Barber PA, Smale PR, et al. Functional potential in chronic stroke patients depends on corticospinal tract integrity[J]. Brain,2007,130(Pt 1): 170-180.
    [240]Lotze M, Beutling W, Loibl M, et al. Contralesional motor cortex activation depends on ipsilesional corticospinal tract integrity in well-recovered subcortical stroke patients[J]. Neurorehabil Neural Repair,2012,26(6): 594-603.
    [241]Mukherjee P, Bahn MM, McKinstry RC, et al. Differences between gray matter and white matter water diffusion in stroke:diffusion-tensor MR imaging in 12 patients[J]. Radiology,2000,215(1):211-220.
    [242]Wardlaw JM, Keir SL, Bastin ME, et al. Is diffusion imaging appearance an independent predictor of outcome after ischemic stroke?[J]. Neurology,2002, 59(9):1381-1387.
    [243]Lee JS, Han MK, Kim SH, et al. Fiber tracking by diffusion tensor imaging in corticospinal tract stroke:Topographical correlation with clinical symptoms[J]. Neuroimage,2005,26(3):771-776.
    [244]Thomalla G, Glauche V, Koch MA, et al. Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke [J]. Neuroimage,2004,22(4):1767-1774.
    [245]Thomalla G, Glauche V, Weiller C, et al. Time course of wallerian degeneration after ischaemic stroke revealed by diffusion tensor imaging[J]. J Neurol Neurosurg Psychiatry,2005,76(2):266-268.
    [246]Yu C, Zhu C, Zhang Y, et al. A longitudinal diffusion tensor imaging study on Wallerian degeneration of corticospinal tract after motor pathway stroke [J]. Neuroimage,2009,47(2):451-458.
    [247]Schaechter JD, Fricker ZP, Perdue KL, et al. Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients[J]. Hum Brain Mapp,2009,30(11):3461-3474.
    [248]Pannek K, Chalk JB, Finnigan S, et al. Dynamic corticospinal white matter connectivity changes during stroke recovery:a diffusion tensor probabilistic tractography study[J]. J Magn Reson Imaging,2009,29(3):529-536.
    [249]Ahn YH, You SH, Randolph M, et al. Peri-infarct reorganization of motor function in patients with pontine infarct[J]. NeuroRehabilitation,2006,21(3): 233-237.
    [250]Kwon YH, Lee CH, Ahn SH, et al. Motor recovery via the peri-infarct area in patients with corona radiata infarct[J]. NeuroRehabilitation,2007,22(2): 105-108.
    [251]Bembenek JP, Kurczych K, Karli Nski M, et al. The prognostic value of motor-evoked potentials in motor recovery and functional outcome after stroke-a systematic review of the literature[J]. Funct Neurol,2012,27(2):79-84.
    [252]Jang SH. Prediction of motor outcome for hemiparetic stroke patients using diffusion tensor imaging:A review[J]. NeuroRehabilitation,2010,27(4): 367-372.
    [253]Borich MR, Mang C, Boyd LA. Both projection and commissural pathways are disrupted in individuals with chronic stroke:investigating microstructural white matter correlates of motor recovery[J]. BMC Neurosci,2012,13:107.
    [254]Jin G, An N, Jacobs MA, et al. The role of parallel diffusion-weighted imaging and apparent diffusion coefficient (ADC) map values for evaluating breast lesions:preliminary results[J]. Acad Radiol,2010,17(4):456-463.
    [255]Smith SM, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data[J]. Neuroimage,2006,31(4): 1487-1505.
    [256]Lee JE, Chung MK, Lazar M, et al. A study of diffusion tensor imaging by tissue-specific, smoothing-compensated voxel-based analysis[J]. Neuroimage, 2009,44(3):870-883.
    [257]Smith SM, Nichols TE. Threshold-free cluster enhancement:addressing problems of smoothing, threshold dependence and localisation in cluster inference[J]. Neuroimage,2009,44(1):83-98.
    [258]Hirano T. Motor control mechanism by the cerebellum[J]. Cerebellum,2006, 5(4):296-300.
    [259]Granziera C, Schmahmann JD, Hadjikhani N, et al. Diffusion spectrum imaging shows the structural basis of functional cerebellar circuits in the human cerebellum in vivo[J]. PLoS ONE,2009,4(4):e5101.
    [260]Mottolese C, Richard N, Harquel S, et al. Mapping motor representations in the human cerebellum[J]. Brain,2013,136(Pt 1):330-342.
    [261]Szilagyi G, Vas A, Kerenyi L, et al. Correlation between crossed cerebellar diaschisis and clinical neurological scales[J]. Acta Neurol Scand,2012,125(6): 373-381.
    [262]Lin DD, Kleinman JT, Wityk RJ, et al. Crossed cerebellar diaschisis in acute stroke detected by dynamic susceptibility contrast MR perfusion imaging[J]. AJNR Am J Neuroradiol,2009,30(4):710-715.
    [263]Gold L, Lauritzen M. Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocortical function[J]. Proc Natl Acad Sci U S A,2002,99(11):7699-7704.
    [264]Lu J, Liu H, Zhang M, et al. Focal pontine lesions provide evidence that intrinsic functional connectivity reflects polysynaptic anatomical pathways[J]. J Neurosci,2011,31(42):15065-15071.
    [265]Song SK, Sun SW, Ju WK, et al. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia[J]. Neuroimage,2003,20(3):1714-1722.
    [266]Song SK, Sun SW, Ramsbottom MJ, et al. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water[J]. Neuroimage,2002,17(3):1429-1436.
    [267]Sprenger T, Seifert CL, Valet M, et al. Assessing the risk of central post-stroke pain of thalamic origin by lesion mapping[J]. Brain,2012,135(Pt 8): 2536-2545.
    [268]Stebbins GT, Nyenhuis DL, Wang C, et al. Gray matter atrophy in patients with ischemic stroke with cognitive impairment[J]. Stroke,2008,39(3):785-793.
    [269]Kraemer M, Schormann T, Hagemann G, et al. Delayed shrinkage of the brain after ischemic stroke:preliminary observations with voxel-guided morphometry[J]. J Neuroimaging,2004,14(3):265-272.
    [270]Sakashita Y, Matsuda H, Kakuda K, et al. Hypoperfusion and vasoreactivity in the thalamus and cerebellum after stroke[J]. Stroke,1993,24(1):84-87.
    [271]Morel A, Magnin M, Jeanmonod D. Multiarchitectonic and stereotactic atlas of the human thalamus[J]. J Comp Neurol,1997,387(4):588-630.
    [272]Jones EG. The Thalamus. New York:Plenum Press; 1985.
    [273]Behrens TE, Johansen-Berg H, Woolrich MW, et al. Non-invasive mapping of connections between human thalamus and cortex using diflusion imaging[J]. Nat Neurosci,2003,6(7):750-757.
    [274]Kaas JH, Lyon DC. Pulvinar contributions to the dorsal and ventral streams of visual processing in primates[J]. Brain Res Rev,2007,55(2):285-296.
    [275]Klein JC, Rushworth MF, Behrens TE, et al. Topography of connections between human prefrontal cortex and mediodorsal thalamus studied with diffusion tractography[J]. Neuroimage,2010,51(2):555-564.
    [276]Machado A, Baker KB. Upside down crossed cerebellar diaschisis:proposing chronic stimulation of the dentatothalamocortical pathway for post-stroke motor recovery[J]. Front Integr Neurosci,2012,6:20.
    [277]Michielsen ME, Selles RW, van der Geest JN, et al. Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients:a phase II randomized controlled trial[Jj. Neurorehabil Neural Repair,2011,25(3): 223-233.
    [278]Zittel S, Weiller C, Liepert J. Citalopram improves dexterity in chronic stroke patients[J]. Neurorehabil Neural Repair,2008,22(3):311-314.
    [279]Reitmeir R, Kilic E, Kilic U, et al. Post-acute delivery of erythropoietin induces stroke recovery by promoting perilesional tissue remodelling and contralesional pyramidal tract plasticity [J]. Brain,2011,134(Pt 1):84-99.
    [280]Higo N. Training-induced recovery of manual dexterity after a lesion in the motor cortex[J]. Keio J Med,2010,59(1):4-9.