老龄相关的静息状态脑功能网络变化的磁共振成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景功能磁共振(fMRI)利用检测脑血氧代谢水平的变化间接对脑功能活动成像,如认知功能、注意功能、执行功能、感觉功能等;具有同步低频fMRI信号的空间远隔脑区组成脑网络,意味着这些脑区能够协同活动。人脑网络是一个非常复杂的网络构造;脑默认网络是被最早发现的脑网络之一,大量的研究表明网络受年龄、衰老、神经精神疾病影响,生理性脑衰老过程蕴含网络功能连接性减低。
     目的静息状态脑功能磁共振网络包含了时空信号相反的网络构造,即认知任务活动诱导的正性激活的网络和负激活的默认网络。默认网络、背侧注意网络、执行控制网络和突显网络构成的大尺度网络是支撑认知活动的基础;本课题进一步研究默认网络子网络的正负相关网络及默认网络、背侧注意网络、执行控制网络和突显网络构成的大尺度网络在老年期的退变,特别关注这些网络变化的程度。
     方法对18位正常青年人和22位健康老年人进行了静息功能磁共振扫描,成像序列包括常规结构成像及血氧水平依赖(BOLD)的T2*加权像。检查前对所有受试者进行神经心理学测评,其简易精神状态量表评分28-30分。图像处理应用国际通用脑功能图像处理软件,以后扣带回(PCC)和前额叶内侧腹侧区(vMPFC)为种子区,分析功能磁共振图像低频波动信号,基于全脑像素提取默认网络成分及与其呈反相关关系的网络,对两组受试者网络连接性进行组内和组间统计学分析。另外,利用种子区信号相关性分析提取功能磁共振图像中的四个制式网络,包括默认网络(DMN)、背侧注意网络(DAN)、执行网络(ECN),突显网络(SN),以感觉系统视觉网络作为对照控制,比较大尺度网络在老年组与青年组的变化。
     结果组内统计分析采用单样本t检验(双侧),取阈值p<0.01,经Monte-Carlo模拟校正,激活聚丛大小18像素(486mm3),校正后像素p<0.01,分别获得了青年组和老年组的PCC+、vMPFC+、PCC-和vMPFC-网络。组间比较分析采用双样本t检验(双侧),取阈值p<0.05,经Monte-Carlo模拟校正,激活聚丛大小54像素(1458mm3),校正后像素p<0.05。老年组的默认网络及其反相关网络表现了以功能连接性减低为特征的变化。构成默认网络的主要脑区呈现了与PCC及vMPFC的功能连接性减低;PCC负相关和vMPFC负相关网络功能连接性减低的脑区分布具有不同特点,前者位于两侧额顶叶侧面,后者以大脑内侧辅助运动区为主。老年脑功能网络的损害分布呈前后方向梯度改变,前部较后部明显,与以往研究结果一致。
     两组数据样本t检验,在经alphasim校正的p<0.01的阈值水平下,显示DMN受影响最显著,其次为DAN,再次为ECN,SN受影响最小;默认网络、背侧注意网络、执行控制网络和突显网络分别损失了14.9%,7.9%,4.6%及1.6%的功能连接区。视觉网络作为控制因素,经统计比较我们发现老年组和青年组的视觉网络无明显差异。同时,利用基于体素的形态测量(VBM)比较了青年组和老年受试者的脑灰质体积,结果显示老年人的额叶、顶叶及颞叶的内侧面、外侧面灰质体积呈现广泛的显著减少,而枕顶叶体积无显著变化。
     结论老年人注意网络和默认网络表现了功能连接性减低为特征的变化,这些网络改变有助于更深入理解老年期脑功能生理性衰退;正常人的脑衰老表现为在网络水平上呈现有组织性的变化;我们的研究表明老年期大尺度的脑网络呈现选择性的损害,高级认知网络较低级脑功能网络退变更突出。静息功能磁共振网络分析是无创性探索老年脑内在机制变化的重要工具,脑网络的变化可以作为研究老年相关脑疾病的潜在生物学标志。
Background Functional MRI indirectly reflect brain activitiessupporting cognition, sensory, motor and so on, by the way of bloodoxygen level depend (BOLD). Brain networks organized by spatialdistance brain regions with fMRI signals of synchronic low frequencyfluctuations mean they could function cooperatively. Age-relatedhigh-order brain functions such as memory, attention, problem solving aswell as sensorimotor ability may alter at different degree, the intrinsicbrain networks underlying the brain functions remain largely unclear,aging-related changes in aging brain should be investigated further.
     Objective Intrinsic brain activity in a resting state incorporatescomponents of the task negative network called default mode network(DMN) and task-positive networks called attentional networks.Attentional function impairment is one of the major clinicalmanifestations in elderly people. Anti-correlation is a critical feature ofbrain networks. In the present study, the subnetworks of DMN and theircorresponding anti-correlated networks were compared between the eldergroup and young group to investigate the differences of the intrinsic brainactivity. Another aim of our study was to investigate the patterns of alterations in the large-scale brain networks with aging progress,including default mode network (DMN), executive-control network(ECN), dorsalattentional network (DAN) and salience network; we areespecially concerned of the degree to which the large-scale intrinsicnetworks disruted respectively.
     Methods Two groups of healthy subjects including18young and22older adults were performed resting-state functional magnetic resonanceimaging (fMRI) scanning with a blood oxygen level dependent sensitivesequence (BOLD). All the subjects were normal in the neuropsychologytest with MMSE scores ranged from28to30. Four network componentsof positive and negative correlations were extracted based on seedregions of posterior cingulate cortex (PCC) and ventromedial prefrontalcortex (vMPFC) from the fMRI data, respectively. The fMRI data wereprocessed by international widely used software. Four canonicalresting-state networks including the DMN, ECN, DAN and saliencenetwork were determined by employing seed-based temporal analysis.The visual network was used as control. Connectivity maps werecompared between groups by using two-sample t tests with a thresholdadjustment method based on Monte-Carlo simulations correction at avoxelwise p<0.05.
     Results Characteristics of decreased functional connectivity in both ofpositive and negative subetworks of the DMN were found in the older group. The traditional regions involved in the DMN showed significantconnectivity decrease. Changes of PCC negative correlations map andvMPFC negative correlations map presented different patterns indistribution. The vMPFC negative network displayed attenuated activitymainly in midline regions (mainly containing supplementary motor area,SMA), whereas the PCC negative network demonstrated decreasedactivity in the regions of lateral fronto-parietal areas.
     We found that distinct disruptive alterations presented in thelarge-scale aging-related resting brain networks. That is, the DMN wasimpaired the mostly, followed by the DAN and ECN, the saliencenetwork showed minimally functional connectivity disruption. For theelderly group, network volumes reduced by14.9%,7.9%,4.6%and1.6%when compared with each of unified mask for DMN, DAN, ECN and SN,respectively. The visual network was used as control measurement of thehigh order networks, and was found equivalently preserved as control.
     Voxel based morphology (VBM) analysis indicated extensive braingray matter atrophy in lateral and medial frontal lobe, temporal lobe andparts of parietal lobe, whereas the volume of the parieto-occipital loberelatively preserved in the aged subjects.Conclusions The decreased functional connectivity in brain networks inthe old group may reflect impairments of cognitive functions evenwithout any task load or stimuli. Degeneration of brain in normal people altered organizationally a level of networks. Our findings suggested theaged brain is characterized of selective vulnerability in large-scale brainnetworks. The findings could help for understanding the degenerationmechanism in aging brain. Resting-state fMRI could be an importantnon-invasive tool for investigating the mechanisms in aging brain.
引文
[1]周文丽,张建鹏,冯伟华,等.脑衰老机制与脑疾病的关系[J].生命的化学,2008,28(4):435-438.
    [2]耿道颖,沈天真,陈星荣.正常国人脑部MRI定量分析及其应用价值[J].中国医学计算机成像杂志,2006,6(2):73-76.
    [3] Resnick SM, Pham DL, Kraut MA, et al. Longitudinalmagneticresonance imaging studies of older adults: A shrinkingbrain[J]. Journal of Neuroscience,2003,23(8):3295-3301.
    [4] Salat DH, Kaye JA, Janowsky JS. Prefrontal grayand whitematter volumes in healthy aging and Alzheimer disease[J]. ArchNeurol,1999,56(3):338-344.
    [5] Courchesne E, Chisum HJ, Townsend J, et al. Normal braindevelopment and aging: Quantitative analysis at in vivo MRimaging in healthy volunteers[J]. Radiology,2000,216(3):672-682.
    [6] Pfefferbaum A, Sullivan EV, Rosenbloom MJ, et al. A controlledstudy of cortical gray matter and ventricular changes in alcoholicmen over a5-year interval[J]. Archives of General Psychiatry,1998,55(10):905-912.
    [7] Raz N, Lindenberger U, Rodrigue KM, et al.Regional brainchanges in aging healthy adults: General trends, individualdifferences and modifiers[J]. Cerebral Cortex,2005,15(11):1676-1689.
    [8] Raz N, Rodrigue KM, Head D, et al. Differential aging of themedial temporal lobe: A study of a five-year change[J].Neurology,2004,62(3):433-438.
    [9] Sullivan EV, Pfefferbaum A, Adalsteinsson E, et al. Differentialrates of regional change in callosal and ventricular size: a4-yearlongitudinal MRI study of elderly men[J]. Cerebral Cortex,2002,12(4):438-445.
    [10] Sullivan EV, Adalsteinsson E, Pfefferbaum A. Selectiveage-related degradation of anterior callosal fiber bundlesquantified in vivo with fiber tracking[J]. Cerebral Cortex,2006,16(7):1030-1039.
    [11]陈宇,吴明祥,徐坚民,等.DTI纤维追踪法定量分析90名正常国人脑白质老化[J].中国医学影像技术,2009,25(3):369-372.
    [12] Pfefferbaum A, Sullivan EV, Hedehus M, et al. Age-relateddecline in brain white matter anisotropy measured with spatiallycorrected echo-planar diffusion tensor imaging[J]. Magn ResonMed,2000,44(2):259-268.
    [13] Sullivan EV, Adalsteinsson E, Hedehus M, et al. Equivalentdisruption of regional white matter microstructure in ageinghealthy men and women[J]. Neuroreport,2001,12(1):99-104.
    [14] Bhagat YA, Beaulieu C. Diffusion anisotropy in subcorticalwhite matter and cortical gray matter: changes with aging and therole of CSF-suppression [J]. J Magn Reson Imaging,2004,20(2):216-227.
    [15] Nusbaum AO, Tang CY, Buchsbaum MS, et al. Regional andglobal changes in cerebral diffusion with normal aging[J]. Am JNeuroradiol,2001,22(1):136-142.
    [16] O’Sullivan M, Jones DK, Summers PE, et al. Evidence forcortical “disconnection” as a mechanism of age-related cognitivedecline [J]. Neurology,2001,57(4):632-638.
    [17] Abe O, Aoki S, Hayashi N, et al. Normal aging in the centralnervous system: quantitative MR diffusion-tensor analysis[J].Neurobiol Aging,2002,23(3):433-441.
    [18] Chun T, Filippi CG, Zimmerman RD, et al. Diffusion changes inthe aging human brain [J]. AJNR Am J Neuroradiol,2000,21(6):1078-1083.
    [19] Chang L, Ernst T, Poland RE, et al. In vivo proton magneticresonance spectroscopy of the normal aging human brain [J].Life Sci,1996,58(22):2049-2056.
    [20] Haes HC, Lazeyras F, Krishnan KR, et al. Proton spectroscopy ofhuman brain: effects of age and sex [J]. ProgNeuropsychopharmacol Biol Psychiatry,1994,18(6):995-1004.
    [21] Soher BJ, van Zijl PC, Duyn JH, et al. Quantitative proton MRspectroscopic imaging of the human brain[J]. Magn Reson Med,1996,35(3):356-363.
    [22] Cohen B, Renshaw P, Stoll A et al. Decreased brain cholineuptake in older adults: an in vivo proton magnetic resonancespectroscopy study[J]. JAMA,1995,274:902-907.
    [23] Kadota T, Horinouchi T, Kuroda C. Development and aging ofthe cerebrum: assessment with proton MR spectroscopy[J].AJNR Am J Neuroradiol,2001,22(1):128-135.
    [24] Brooks JC, Roberts N, Kemp GJ, et al. A proton magneticresonance spectroscopy study of age-related changes in frontallobe metabolite concentrations [J]. Cereb Cortex,2001,11(7):598-605.
    [25] Kaiser LG, Schuff N, Cashdollar N, et al. Age-related glutamateand glutamine concentration changes in normal human brain:1HMR spectroscopy study at4T[J]. Neurobiol Ageing,2005,26(5):665-672.
    [26]赖新生,黄泳.血管性痴呆SPECT、PET脑功能成像研究概况[J].影像医学,2005,11(11):1044-1045.
    [27] Haxby JV, Grady CL, Duara R, et al. Relations among age,visual memory, and resting cerebral metabolism in40healthymen[J]. Brain Cognition,1986,5(4):412–427.
    [28] Herscovitch P, Auchus A P, Gado M, et al. Correction ofpositron emission tomography data for cerebral atrophy[J].Journal of Cerebral Blood Flow and Metabolism,1986,6(1):120–124.
    [29] Horwitz B, Duara R, Rapoport SI. Age differences inintercorrelations between regional cerebral metabolic rates forglucose[J]. Annals of Neurology,1986,19(1):60-67.
    [30] Kuhl DE, Metter EJ, Riege WH, et al. Effects of human aging onpatterns of local cerebral glucose utilization determined by the
    [18F] fluorodeoxyglucose method[J]. Journal of Cerebral BloodFlow and Metabolism,1982,2(2):163-171.
    [31] Yamaguchi T, Kanno I, Uemura K, et al. Reduction in regionalcerebral metabolic rate of oxygen during human aging[J]. Stroke,1986,17(6):1220-1228.
    [32] Damoiseaux JS, Beckmann CF, Arigita EJS, et al. Reducedresting-state brain activity in the “default network” in normalaging[J]. Cerebral Cortex,2008,18(8):1856-1864.
    [33] Koch W, Teipel S, Mueller S, et al. Effects of aging on defaultmode network activity in resting state fMRI: does the method ofanalysis matter?[J] NeuroImage,2010,51(1):280-287.
    [34] Uddin LQ, Kelly AM, Biswal BB, et al. Functional connectivityof default mode network components: correlation, anticorrelation,and causality[J]. Hum Brain Mapp,2009,30(2):625-637.
    [35] Cabeza R, Grady CL, Nyberg L, et al. Age-related differences inneural activity during memory encoding and retrieval: a positronemission tomography study[J]. J Neurosci,1997,17(1):391-400.
    [36] Grady CL, McIntosh AR, Horwitz B, et al. Age-related changesin the neural correlates of degraded and non degraded faceprocessing[J]. Cogn Neuropsychol,2002,217:165-186.
    [37] Garavan H, Ross TJ, Stein EA. Right hemispheric dominance ofinhibitory control: an event-related functional MRI study[J]. ProcNatl Acad Sci U S A,1999,96(14):8301-8306.
    [38] Neilson KA, Langenecker SA, Garavan HP. Differences in thefunctional neuroanatomy of inhibitory control across the adultfile span[J]. Psychol Ageing,2002,17:56-71.
    [39] Grady CL, Maisog JM, Horwitz B, et al. Age-related changes incortical blood flow activation during visual processing of facesand location[J]. Journal of Neuroscience,1994,14(3, Pt2):1450-1462.
    [40] Grady CL, McIntosh AR, Horwitz B, et al. Age-related changesin the neural correlates of degraded and nondegraded faceprocessing[J]. Cognitive Neuropsychology,2000,217:165-186.
    [41] Gunning-Dixon FM, Raz N. Neuroanatomical correlates ofselected executive functions in middle-aged and older adults: Aprospective MRI study[J]. Neuropsychologia,2003,41(14):1929-1941.
    [42] Fischer H, Sandblom J, Gavazzeni J, et al. Age-differentialpatterns of brain activation during perception of angry faces[J].Neuroscience Letters,2005,386(2):99-104.
    [43] Grady CL, Springer MV, Hongwanishkul D, et al. Age-relatedchanges in brain activity across the adult lifespan[J]. CognNeurosci,2006,18(2):227-241.
    [44] Davis SW, Dennis NA, Daselaar SM, et al. Que PASA? theposterior-anterior shift in aging[J]. Cerebral Cortex,2008,18(5):1201-1209.
    [45] Ogawa S, Lee TM, Kay AR, et al. Brain magnetic resonanceimaging with contrast dependent on blood oxygenation[J]. ProcNatl Acad Sci U S A,1990,87(24):9868-9872.
    [46] Belcher AM, Yen CC, Stepp H, et al. Large-scale brain networksin the awake, truly resting marmoset monkey[J]. J Neurosci,2013,33(42):16796-16804.
    [47] Poirier C, Van der Linden AM. Spin echo BOLD fMRI onsongbirds [J]. Methods Mol Biol,2011,771(43):569-576.
    [48] Van den Burg EH, Verhoye M, Peeters RR, et al. Activation of asensorimotor pathway in response to a water temperature drop ina teleost fish[J]. J Exp Biol,2006,209(Pt11):2015-2024.
    [49] Lee JH, Durand R, Gradinaru V, et al. Global and local fMRIsignals driven by neurons defined optogenetically by type andwiring[J].Nature,2010,465(7299):788-792.
    [50] Schulz K, Sydekum E, Krueppel R, et al. Simultaneous BOLDfMRI and fiber-optic calcium recording in rat neocortex[J]. NatMethods,2012,9(6):597-602.
    [51] Telesford QK, Laurienti PJ, Friedman DP, et al. The effects ofalcohol on the nonhuman primate brain: a network scienceapproach to neuroimaging [J]. Alcohol Clin Exp Res,2013,37(11):1891-1900.
    [52] Lu H, Zou Q, Gu H, et al. Rat brains also have a default modenetwork [J]. Proc Natl Acad Sci U S A,2012,109(10):3979-3984.
    [53] Keogh BP, Cordes D, Stanberry L, et al. BOLD-fMRI ofPTZ-induced seizures in rats [J]. Epilepsy Res,2005,66(1-3):75-90.
    [54] Min HK, Hwang SC, Marsh MP, et al. Deep brain stimulationinduces BOLD activation in motor and non-motor networks: anfMRI comparison study of STN and EN/GPi DBS in largeanimals [J]. Neuroimage,2012,63(3):1408-1420.
    [55] Biswal B, Yetkin FZ, Haughton VM, et al. Functionalconnectivity in the motor cortex of resting human brain usingecho-planar MRI[J]. Magn Reson Med,1995,34(4):537-541.
    [56] Greicius MD, Krasnow B, Reiss AL, et al. Functionalconnectivity in the resting brain: a network analysis of the defaultmode hypothesis[J]. Proc Natl Acad Sci U S A,2003,100(1):253-258.
    [57] Zang Y, Jiang T, Lu Y, et al. Regional homogeneity approach tofMRI data analysis [J]. Neuroimage,2004,22(1):394-400.
    [58] Zang YF, He Y, Zhu CZ, et al. Altered baseline brain activity inchildren with ADHD revealed by resting-state functional MRI [J].Brain Dev,2007,29(2):83-91.
    [59] Turner JA, Damaraju E, van Erp TG, et al. A multi-site restingstate fMRI study on the amplitude of low frequency fluctuationsin schizophrenia [J]. Front Neurosci,2013,7(137)121-126.
    [60] Zou QH, Zhu CZ, Yang Y, et al. An improved approach todetection of amplitude of low-frequency fluctuation (ALFF) forresting-state fMRI: fractional ALFF [J]. J Neurosci Methods,2008,172(1):137-141.
    [61] Zhong Y, Wang H, Lu G, et al. Detecting functional connectivityin fMRI using PCA and regression analysis [J]. Brain Topogr,2009,22(2):134-144.
    [62] Risk BB, Matteson DS, Ruppert D, et al. An evaluation ofindependent component analyses with an application toresting-state fMRI [J]. Biometrics,2014,70(1):224-36.
    [63] Margulies DS, Bottger J, Long X, et al. Resting developments: areview of fMRI post-processing methodologies for spontaneousbrain activity [J]. MAGMA,2010,23(5-6):289-307.
    [64] Oliveira PP, Jr., Nitrini R, Busatto G, et al. Use of SVM methodswith surface-based cortical and volumetric subcorticalmeasurements to detect Alzheimer's disease [J]. J Alzheimers Dis,2010,19(4):1263-1272.
    [65] Yan C, He Y. Driving and driven architectures of directedsmall-world human brain functional networks [J]. PLoS One,2011,6(8):e23460.
    [66] Newman ME. Modularity and community structure in networks[J]. Proc Natl Acad Sci U S A,2006,103(23):8577-8582.
    [67] Guye M, Bettus G, Bartolomei F, et al. Graph theoretical analysisof structural and functional connectivity MRI in normal andpathological brain networks[J]. MAGMA,2010,23(5-6):409-421.
    [68] Zuo XN, Ehmke R, Mennes M, et al. Network centrality in thehuman functional connectome[J]. Cereb Cortex,22(8):1862-1875.
    [69] Achard S, Salvador R, Whitcher B, et al. A resilient,low-frequency, small-world human brain functional network withhighly connected association cortical hubs [J]. J Neurosci,2006,26(1):63-72.
    [70] Shinoura N, Yamada R, Suzuki Y, et al. Functional magneticresonance imaging is more reliable than somatosensory evokedpotential or mapping for the detection of the primary motorcortex in proximity to a tumor [J]. Stereotact Funct Neurosurg,2007,85(2-3):99-105.
    [71] Signorelli F, Guyotat J, Schneider F, et al. Technical refinementsfor validating functional MRI-based neuronavigation data byelectrical stimulation during cortical language mapping[J].Minim Invasive Neurosurg,2003,46(5):265-268.
    [72] Bizzi A, Blasi V, Falini A, et al. Presurgical functional MRimaging of language and motor functions: validation withintraoperative electrocortical mapping[J]. Radiology,2008,248(2):579-589.
    [73] Nimsky C. Intraoperative acquisition of fMRI and DTI [J].Neurosurg Clin N Am,2011,22(2):269-277.
    [74] Orringer DA, Vago DR, Golby AJ. Clinical applications andfuture directions of functional MRI[J]. Semin Neurol,2012,32(4):466-475.
    [75] Binder JR. Functional MRI is a valid noninvasive alternative toWada testing [J]. Epilepsy Behav,2011,20(2):214-222.
    [76] Van Houdt PJ, de Munck JC, Leijten FS, et al. EEG-fMRIcorrelation patterns in the presurgical evaluation of focal epilepsy:a comparison with electrocorticographic data and surgicaloutcome measures[J]. Neuroimage,2013,75(6):238-248.
    [77] Zhang Z, Liao W, Wang Z, et al. Epileptic dischargesspecifically affect intrinsic connectivity networks during absenceseizures [J]. J Neurol Sci,2014,336(1-2):138-145.
    [78] Lidzba K, Ebner K, Hauser TK, et al. Complex visual search inchildren and adolescents: effects of age and performance onFMRI activation [J]. PLoS One,2013,8(12):e85168.
    [79] Rubia K. Functional brain imaging across development [J]. EurChild Adolesc Psychiatry,2013,22(12):719-731.
    [80] Gao W, Zhu H, Giovanello KS, et al. Evidence on the emergenceof the brain's default network from2-week-old to2-year-oldhealthy pediatric subjects[J]. Proc Natl Acad Sci USA,2009,106(16):6790-6795.
    [81] Fair DA, Cohen AL, Dosenbach NU, et al. The maturingarchitecture of the brain's default network[J]. Proc Natl Acad SciU S A,2008,105(10):4028-4032.
    [82] Cao M, Wang JH, Dai ZJ, et al. Topological organization of thehuman brain functional connectome across the lifespan[J]. DevCogn Neurosci,2014,43(7):76-93.
    [83] Meunier D, Achard S, Morcom A, et al. Age-related changes inmodular organization of human brain functional networks[J].Neuroimage,2009,44(3):715-723.
    [84] Andrews-Hanna JR, Snyder AZ, Vincent JL, et al. Disruption oflarge-scale brain systems in advanced aging. Neuron,2007,56(5):924-935.
    [85] Greicius MD, Srivastava G, Reiss AL, et al. Default-modenetwork activity distinguishes Alzheimer's disease from healthyaging: evidence from functional MRI[J]. Proc Natl Acad Sci U SA,2004,101(13):4637-4642.
    [86] Zhang HY, Wang SJ, Liu B, et al. Resting brain connectivity:changes during the progress of Alzheimer disease[J]. Radiology,2010,256(2):598-606.
    [87] Fleisher AS, Sherzai A, Taylor C, et al. Resting-state BOLDnetworks versus task-associated functional MRI fordistinguishing Alzheimer's disease risk groups [J]. Neuroimage,2009,47(4):1678-1690.
    [88] Breakthrough of the year. Areas to watch [J]. Science,2012,338(6114):1528-1529.
    [89] Liu B, Song M, Li J, et al. Prefrontal-related functionalconnectivities within the default network are modulated byCOMT val158met in healthy young adults [J]. J Neurosci,2010,30(1):64-69.
    [90] Fox MD, Snyder AZ, Vincent JL, et al. The human brain isintrinsically organized into dynamic, anticorrelated functionalnetworks [J]. Proc Natl Acad Sci U S A,2005,102(27):9673-8.
    [91] Pfefferbaum A, Chanraud S, Pitel Al, et al. Cerebral blood flowin posterior cortical nodes of the default mode network decreaseswith task engagement but remains higher than in most brainregions [J]. Cereb Cortex,2011,21(1):233-44.
    [92] Raichle ME, Macleod AM, Snyder AZ, et al. A default mode of brainfunction [J]. Proc Natl Acad Sci U S A,2001,98(2):676-82.
    [93] Iacoboni M, Lieberman MD, Knowlton BJ, et al. Watching socialinteractions produces dorsomedial prefrontal and medial parietalBOLD fMRI signal increases compared to a resting baseline [J].Neuroimage,2004,21(3):1167-73.
    [94] Kompus K. Default mode network gates the retrieval oftask-irrelevant incidental memories [J]. Neurosci Lett,2011,487(3):318-21.
    [95] Fox MD, Zhang D, Snyder AZ, et al. The global signal andobserved anticorrelated resting state brain networks [J]. JNeurophysiol,2009,101(6):3270-83.
    [96] Weissman DH, Roberts KC, Visscher KM, et al. The neuralbases of momentary lapses in attention [J]. Nat Neurosci,2006,9(7):971-8.
    [97] Kelly AM, Uddin LQ, Biswal BB, et al. Competition betweenfunctional brain networks mediates behavioral variability [J].Neuroimage,2008,39(1):527-37.
    [98] Sonuga-Barke EJ, Castellanos FX. Spontaneous attentionalfluctuations in impaired states and pathological conditions: aneurobiological hypothesis [J]. Neurosci Biobehav Rev,2007,31(7):977-86.
    [99] Andrews-Hanna JR, Reidler JS, Sepulcre J, et al.Functional-anatomic fractionation of the brain's default network[J].Neuron,2010,65(4):550-62.
    [100] Andrews-Hanna JR, Snyder AZ, Vincent JL, et al. Disruption oflarge-scale brain systems in advanced aging [J]. Neuron,2007,56(5):924-35.
    [101] Lustig C, Snyder AZ, Bhakta M, et al. Functional deactivations:change with age and dementia of the Alzheimer type [J]. ProcNatl Acad Sci U S A,2003,100(24):14504-9.
    [102] Grady CL, Protzner AB, Kovacevic N, et al. A multivariateanalysis of age-related differences in default mode andtask-positive networks across multiple cognitive domains [J].Cereb Cortex,2010,20(6):1432-47.
    [103] Esposito F, Aragri A, Pesaresi I, et al. Independent componentmodel of the default-mode brain function: combiningindividual-level and population-level analyses in resting-statefMRI [J]. Magn Reson Imaging,2008,26(7):905-13.
    [104] Wu T, Zang Y, Wang L, et al. Normal aging decreases regionalhomogeneity of the motor areas in the resting state [J]. NeurosciLett,2007,423(3):189-93.
    [105] Wu T, Zang Y, Wang L, et al. Aging influence on functionalconnectivity of the motor network in the resting state [J].Neurosci Lett,2007,422(3):164-8.
    [106] De Luca M, Beckmann CF, De Stefano N, et al. fMRI restingstate networks define distinct modes of long-distance interactionsin the human brain [J]. Neuroimage,2006,29(4):1359-67
    [107] Oakes TR, Fox AS, Johnstone T, et al. Integrating VBM into theGeneral Linear Model with voxelwise anatomical covariates [J].Neuroimage,2007,34(2):500-8.
    [108] Corbetta M, Shulman GL. Control of goal-directed andstimulus-driven attention in the brain [J]. Nat Rev Neurosci,2002,3(3):201-15.
    [109] Mckiernan KA, Kaufman JN, Kucera-Thompson J, et al. Aparametric manipulation of factors affecting task-induceddeactivation in functional neuroimaging [J]. J Cogn Neurosci,2003,15(3):394-408.
    [110] Fox MD, Corbetta M, Snyder AZ, et al. Spontaneous neuronalactivity distinguishes human dorsal and ventral attention systems[J]. Proc Natl Acad Sci U S A,2006,103(26):10046-51.
    [111] Braver TS, Barch DM. A theory of cognitive control, agingcognition, and neuromodulation [J]. Neurosci Biobehav Rev,2002,26(7):809-17.
    [112] Hedden T, Gabrieli JD. Healthy and pathological processes inadult development: new evidence from neuroimaging of theaging brain [J]. Curr Opin Neurol,2005,18(6):740-7.
    [113] West RL. An application of prefrontal cortex function theory tocognitive aging [J]. Psychol Bull,1996,120(2):272-92.
    [114] Tankus A, Yeshurun Y, Flash T, et al. Encoding of speed anddirection of movement in the human supplementary motor area[J]. J Neurosurg,2009,110(6):1304-16.
    [115] Dolcos F, Rice HJ, Cabeza R. Hemispheric asymmetry and aging:right hemisphere decline or asymmetry reduction [J]. NeurosciBiobehav Rev,2002,26(7):819-25.
    [116] Hommet C, Destrieux C, Constans T, et al. Aging andhemispheric cerebral lateralization [J]. Psychol NeuropsychiatrVieil,2008,6(1):49-56.
    [117] Li Z, Moore AB, Tyner C, et al. Asymmetric connectivityreduction and its relationship to "HAROLD" in aging brain [J].Brain Res,2009,1295(149-58.
    [118] Sorg C, Riedl V, Muhlau M, et al. Selective changes ofresting-state networks in individuals at risk for Alzheimer'sdisease [J]. Proc Natl Acad Sci U S A,2007,104(47):18760-5.
    [119] Murphy K, Birn RM, Handwerker DA, et al. The impact ofglobal signal regression on resting state correlations: areanti-correlated networks introduced?[J]. Neuroimage,2009,44(3):893-905.
    [120] Kannurpatti SS, Motes MA, Rypma B, et al. Neural and vascularvariability and the fMRI-BOLD response in normal aging [J].Magn Reson Imaging,2010,28(4):466-76.
    [121] Handwerker DA, Gazzaley A, Inglis BA, et al. Reducingvascular variability of fMRI data across aging populations usinga breathholding task [J]. Hum Brain Mapp,2007,28(9):846-59.
    [122] Seeley WW, Menon V, Schatzberg AF, et al. Dissociableintrinsic connectivity networks for salience processing andexecutive control[J]. J Neurosci,2007,27(9):2349-56.
    [123] Silver H, Goodman C, Bilker W. Age in high-functioning healthymen is associated with nonlinear decline in some 'executive'functions in late middle age[J]. Dement Geriatr CognDisord,2009,27(3):292-300.
    [124]Hampson M, Driesen NR, Skudlarski P, et al. Brain connectivityrelated to working memory performance[J]. J Neurosci,2006,26(51):13338-13343.
    [125] Li SJ, Biswal B, Li Z, et al. Cocaine administration decreasesfunctional connectivity in human primary visual and motorcortex as detected by functional MRI[J]. Magn Reson Med,2000,43(1):45-51.
    [126] Spreng RN, Stevens WD, Chamberlain JP, et al. Default networkactivity, coupled with the frontoparietal control network,supports goal-directed cognition[J]. Neuroimage,2010,53(1):303-317.
    [127] Vincent JL, Kahn I, Snyder AZ, et al. Evidence for afrontoparietal control system revealed by intrinsic functionalconnectivity[J].J Neurophysiol,2008,100(6):3328-3342.
    [128] Seeley WW, Crawford RK, Zhou J, et al. Neurodegenerativediseases target large-scale human brain networks[J] Neuron,2009,62(1):42-52.
    [129] Zhou J, Greicius MD, Gennatas ED, et al. Divergent networkconnectivity changes in behavioural variant frontotemporaldementia and Alzheimer's disease[J]. Brain,2010,133(Pt5):1352-1367.
    [130] Seeley WW. Selective functional, regional, and neuronalvulnerability in frontotemporal dementia[J]. Curr Opin Neurol,2008,21(6):701-707.
    [131] Gotz J, Schonrock N, Vissel B, et al. Alzheimer's diseaseselective vulnerability and modeling in transgenic mice[J].JAlzheimers Dis,2009,18(2):243-251.
    [132] Woodward ND, Rogers B, Heckers S. Functional resting-statenetworks are differentially affected in schizophrenia[J].SchizophrRes,2011,130(1-3):86-93.
    [133] Grady CL. Cognitive neuroscience of aging[J]. Ann N Y AcadSci,2008,1124:127-144.
    [134] Ansado J, Monchi O, Ennabil N, et al. Load-dependentposterior-anterior shift in aging in complex visual selectiveattention situations[J].Brain Res,2012,1454:14-22
    [135] Goh JO. Functional Dedifferentiation and Altered Connectivityin Older Adults: Neural Accounts of Cognitive Aging[J]. AgingDis,2011,2(1):30-48.
    [136] Wang L, Laviolette P, O'Keefe K, et al. Intrinsic connectivitybetween the hippocampus and posteromedial cortex predictsmemory performance in cognitively intact older individuals[J].Neuroimage,2010,51(2):910-917.
    [137] Wang L, Li Y, Metzak P, et al. Age-related changes intopological patterns of large-scale brain functional networksduring memory encoding and recognition[J]. Neuroimage,2010,50(3):862-872.
    [138] Sambataro F, Murty VP, Callicott JH, et al. Age-relatedalterations in default mode network: impact on working memoryperformance[J].Neurobiol Aging,2010,31(5):839-852.
    [139] Konishi S, Wheeler ME, Donaldson DI, et al. Neural correlatesof episodic retrieval success[J]. Neuroimage,2000,12(3):276-286.
    [140] Buckner RL, Andrews-Hanna JR, Schacter DL. The brain'sdefault network: anatomy, function, and relevance to disease[J].Ann N Y Acad Sci,2008,1124:1-38.
    [141] Park DC, Polk TA, Hebrank AC, et al. Age differences in defaultmode activity on easy and difficult spatial judgment tasks[J].Front Hum Neurosci,2010,3:75.
    [142] Zhang HY, Wang SJ, Xing J, et al. Detection of PCC functionalconnectivity characteristics in resting-state fMRI in mildAlzheimer's disease[J]. Behav Brain Res,2009,197(1):103-108.
    [143] Oh H, Mormino EC, Madison C, et al.(2011) beta-Amyloidaffects frontal and posterior brain networks in normal aging.Neuroimage54:1887-1895.
    [144] Wang Z, Yan C, Zhao C, et al. Spatial patterns of intrinsic brainactivity in mild cognitive impairment and Alzheimer's disease: aresting-state functional MRI study[J]. Hum BrainMapp,2011,32(10):1720-1740.
    [145] Li S, Xia M, Pu F, et al. Age-related changes in the surfacemorphology of the central sulcus[J]. Neuroimage,2011,58(2):381-390.
    [146] Bressler SL, Kelso JA. Cortical coordination dynamics andcognition[J]. Trends Cogn Sci,2001,5(1):26-36.
    [147] Ongur D, Price JL. The organization of networks within theorbital and medial prefrontal cortex of rats, monkeys andhumans[J].Cereb Cortex,2000,10(3):206-219.
    [148] Menon V, Levitin DJ.The rewards of music listening: responseand physiological connectivity of the mesolimbic system[J].Neuroimage,2005,28(1):175-184.
    [149] Zezula J, Cortes R, Probst A, et al. Benzodiazepine receptor sitesin the human brain: autoradiographic mapping[J]. Neuroscience,1988,25(3):771-795.
    [150] La Fougere C, Grant S, Kostikov A, et al. Where in-vivo imagingmeets cytoarchitectonics: the relationship between corticalthickness and neuronal density measured with high-resolution[18F]flumazenil-PET[J]. Neuroimage,2011,56(3):951-960.
    [151] Gianaros PJ, Hariri AR, Sheu LK, et al. Preclinicalatherosclerosis covaries with individual differences in reactivityand functional connectivity of the amygdala[J]. Biol Psychiatry,2009,65(11):943-950.