基于相控模型的精细数值模拟技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
特高含水期油田具有储层动用不均衡、剩余油高度分散、局部富集的特点,油田后期开采难度越来越大,依靠常规挖潜技术很难实现油田的稳油控水。目前精细油藏描述技术已不能满足特高含水期对储层非均质性精细到微相和剩余油量化到井层的要求,为最大限度高效挖潜剩余油,需要发展现有精细油藏描述技术、精细数值模拟方法和调整挖潜技术。本文在精细沉积微相表征技术研究基础上,实现了基于相控模型的精细数值模拟,提出了砂岩油田特高含水期“提液、控水、治理、细分、测调”精细控水挖潜方法,优化了北一区断东高台子特高含水期精细调整挖潜方案和萨中开发区西区二元复合驱注入方案,为油田保持稳产提供了重要的理论和技术支持。取得的研究结果如下:
     在全面调研水驱和化学驱数学模型及相关商业软件描述的渗流机理及物化现象基础上,确定选取驱油机理完善且能实现水驱和聚合物驱一体化模拟的VIP-polymer软件进行特高含水期水驱和聚合物驱精细数值模拟研究;能实现碱、表面活性剂和聚合物任意二元复合体系的模拟且所需物化参数容易获取的FACS软件进行水驱和聚合物驱后二元复合驱精细数值模拟研究。
     基于北一区断东高台子储层精细解剖,建立了河流-三角洲沉积微相识别及划分标准和操作流程,形成了以亚相控制、成因约束、模式指导、微相表征为核心的沉积砂体精细识别与描述方法,实现了相渗赋值到微相、测试剖面到单元、剩余油量化到井层。以北一区断东高台子三维精细相控地质模型为基础,开展了精细数值模拟研究,明确了研究区各沉积单元的潜力类型。采用含水率等值图、剩余可动油比例等值图、采出程度等值图、含油饱和度等值图表征了研究区平面剩余油分布;采用精细数值模拟成果的小层含水率、产液比例、吸水比例建立辅助产液剖面和吸水剖面,表征了井和井组纵向动用差异和剩余油的分布;采用小层采出程度表征开发区块各单元储量动用程度和剩余油总量差异。
     利用储层细分沉积微相和剩余油精细研究成果,提出了以治理高关井、套损井和低效井完善注采关系,注水井细分+浅调改善动用状况,配套实施采油井“提、控”措施为主要技术手段的精细控水挖潜方法,并优化了北一区断东高台子特高含水期精细调整挖潜方案。
     建立了萨中开发区西区相控地质模型,选用VIP数模软件及FACS复合驱数模软件,结合动态监测资料开展了研究区水驱、聚合物驱和二元复合驱全过程跟踪拟合及预测,定量给出了研究区不同开发阶段剩余油分布,并优化了二元复合驱注入方案。得出结论如下:试验区聚合物驱增油33.32×104t,提高采收率11.82%;聚合物驱后化学驱合理控制条件是:界面张力10-3mN/m,阻力系数≥3;聚合物驱后二元驱试验区可提高采收率5.96%,累增原油16.48×104t;中心井区可提高采收率6.3%,累增原油4.33×104t;二元复合驱在经济和技术上都优于单一聚合物驱。
     本文对于特高含水期油田剩余油精细挖潜、二元复合驱注入方案优化及聚合物驱后油田进一步挖潜剩余油具有重要的理论价值和指导意义。
With reservoir unevenly employed and highly scattered and locally enriched description of the remaining oil in the high water cut stage, the late oilfield exploitation is more and more difficult and it is rather hard to realize the stabilizing oil production and controlling water cut by conventional redevelopment technology. Now fine reservoir numerical simulation can't meet the demand for reservoir heterogeneity fined to microfacies and residual oil quantized to layers in high water cut period. In order to tap the remaining oil ultimately, it is necessary to develop existing oil-field fine reservoir description technology, fine numerical simulation method and adjusting tapping technology. In this paper,we achieve the fine numerical simulation based on facies-controlled model, put forward the fine water control and tapping method for high water cut stage of sandstone such as "extract, control, governance, subdivision and measured tone", and optimize the fine adjustment and tapping projects in high water cut stage in Duandong,Gaotaizi of Beiyi block and optimize the binary combination flooding injection projects in West block of Sazhong developing area. All of this provides important theoretical and technical support for oilfield to keep stable production. The main research results are as follows:
     We should ensure to choose the VIP-polymer software which has perfect flooding mechanism and can realize water flooding and polymer flooding integration simulation on the basis of comprehensive research of the percolation mechanism, physical and chemical phenomena about the mathematical model of water flooding and chemical flooding and related business software. This software can complete the water flooding and polymer flooding fine numerical simulation in high water cut period and achieves the binary compound system simulation of arbitrary alkali, surfactants, and polymer. And we precede the fine reservoir numerical simulation of binary combination flooding by the FACS whose physical-chemical parameters are available after water and polymer flooding.
     We have establish rivers-delta depositional microfacies recognition,the division standard and operation process,formed the fine recognition and description method which takes sub phase control, causes constraints, mode guiding, microfacies characterization as the core of these sedimentary sand and realized the relative permeability assignment to microfacies, test profile subdivided to unit and the remaining oil quantized to layers.
     Base on the 3D fine facies-controlled model of Duandong,Gaotaizi of Beiyi block, we carry out the fine numerical simulation research and confirm the potential types of all the sedimentary units. It indicates the remaining oil plane distribution of research area by water cut equivalent figure, remaining and moving oil proportion equivalent figure, recovery degree equivalent figure, oil saturation equivalent figure. It also indicates the longitudinal employing difference and the distribution of remaining oil of single well and group by applying the fine numerical simulation results such as water cut ratio in small layers, liquid production proportion, water suction proportion to establish auxiliary fluid production profile and water suction profile. It also indicates the difference about reserve producing degree and the total amount of remaining oil in each unit of development blocks.
     We put forward the fine water control methods mainly according to the following technology means such as:coping with the high shut-in well, casing collapse well and deficient well, perfecting the injection-production relation, subdividing the injection wells and trimming to improve the employing condition, supporting to implement the "extract, control" oil well measures. And we also optimize the fine adjustment and tapping projects in high water cut stage in Duandong,Gaotaizi of Beiyi block.
     We have established the facies controlled geological model in West block of Sazhong development area and the VIP numerical simulation software and FACS combinational flooding software are selected. Combined with monitoring data, we carry out the entire process of tracking and prediction for water flooding, polymer flooding and binary combination flooding in the study area. The remaining oil distribution is researched and the binary combination flooding scheme is optimized. The conclusions are as follows:polymer flooding pilot area increased 333,200 tons of crude oil, enhanced oil recovery rate of 11.82%. After polymer flooding, the reasonable control of chemical flooding are required to satisfy the conditions of interfacial tension 10-3mN/m and resistance coefficient≥3. In the binary combination flooding test area after polymer flooding, oil recovery rate and cumulative crude oil can be enhanced 5.96% and 16.48×104t. In the central well Area, recovery can be improved of 6.3%, and cumulative crude oil is increased 4.33×104t. Binary flooding is superior to the single polymer flooding in both technology and economy.
     This paper provides significant theory value and guiding significance for the further research of remaining oil tapped in the ultra-high water cut stage and after polymer flooding and the optimization of the binary combination flooding injection projects.
引文
[1]黎文清,李世安.油气田开发地质基础(第二版)[M].北京.石油工业出版社.1993,379-394.
    [2]盛卫华.文79断块区剩余油研究及实施效果评价[J].内蒙古石油化工,2005,(11).
    [3]宋考平,宋洪才,吴文祥.油藏数值模拟理论基础[M].北京:石油工业出版社,1996,1-8.
    [4]计秉玉.油藏工程理论与方法研究文集[M].北京:石油工业出版社,2004.106-119.
    [5]宋付权译.油藏模拟的过去、现状和未来[J].国外油田工程,2001,17(1):40-43.
    [6]潘举玲,黄尚军,祝杨,等.油藏数值模拟发展现状及发展趋势[J].油气地质与采收率.2002,9(4):69-71.
    [7]蒋廷学,杨艳丽.油藏数值模拟技术发展综述[J].河南石油,5(14),19-21.
    [8]陈国良.并行计算[M].北京:高等教育出版社,1999.
    [9]杨耀忠,韩子辰,周维四,等.多层二维二相油藏数值模拟并行技术研究[J].油气地质与采收率,2001,8(6):52-54.
    [10]计秉玉,赵国忠,李洁等著.多学科集成化油藏研究方法与应用[M].北京:石油工业出版社,2009.72-101.
    [11]http://www.gridcn.net/hh/paper19087.htmL,2004-04-27.
    [12]陈兆芳,张建荣等.油藏数值模拟自动历史拟合方法研究及应用[J].石油勘探与开发,2003,30(4):82-84.
    [13]李福垲,由军,陈立生.地质模型网格粗化技术[J].石油勘探与开发,1996,23(3):76-79.
    [14]王德民,张景存.国外三次采油技术[M].上海:上海交通大学出版社,1992:57-59.
    [15]杨普华,杨承志.化学驱提高原油采收率[M].北京:石油工业出版社,1998:22-26.
    [16]张继芬,赵明国,刘中春.提高石油采收率基础[M].北京:石油工业出版社,1997:98-103.
    [17]George J Stosur. EOR:Past, Present and What the Next 25 Years May Bring [C]. SPE 84864.
    [18]王正茂,廖广志.大庆油田复合驱油技术适应性评价方法研究[J].石油学报,2008,29(4):395-398.
    [19]刘祥飞.大庆攻关油田开发核心技术[J].国外测井技术,2008,23(4):22.
    [20]鞠野.一元/二元/三元驱油体系微观驱油机理研究[D].大庆:大庆石油学院,2006.
    [21]沈平平,俞稼镛.大幅度提高原油采收率的基础研究[M].北京:石油工业出版社,2001.
    [22]廖海婴,冯文光.双河油田437_1_2聚驱效果评价和剩余油分布研究[D].2008.
    [23]杨桃,闫文华.茨78块开发效果评价及剩余油分布预测[D].2008.
    [24]R.K.Guthrie and M.H. Greenberger. The Use of Multiple Correlation Analysis for Interpreting Petroleum Engineering Data.Drill and Prod.Prac.API (1955), pp 130-137.
    [25]F. A Wright. Field Results Indicate Significant Advances in Water-flooding. JPT (OCT, 1958) PP 12.
    [26]M. Parts, C. S. Matthews. Prediction of Injection Rate and Production History for Multi-fluidFive-spot Floods. JPT (May,1959) pp 98.
    [27]秦同洛.实用油藏工程方法[M].北京:石油工业出版社,1989,23-24.
    [28]张锐.评价预测油田注水效果的一种方法[J].石油勘探与开发,1995,No.4.
    [29]张锐.评价油田注水效果的两种曲线[J].石油勘探与开发,1988,No.5.
    [30]刘成斌,孙长红.岔河集油田复杂断块合理配注方法研究[R].华北河集油田工作总结报告,1997.
    [31]廖洋贤.复杂小断块油田的配产配注方法[J].中原油气,1992,No.2.
    [32]于洪文.通过注水井分层注水量计算采油井分层采液量的方法探讨[J].石油勘探与开发,1990,No.2.
    [33]申静波,宋考平.水驱厚油层激动注水数值模拟研究[D].2009.
    [34]杨承志等.化学驱提高石油采收率[M].北京:石油工业出版社,1999:39-40.
    [35]张志辉等.算子分裂法在对流占优三维对流-弥散问题中的应用[J].计算物理,1994,11(1):78-79.
    [36]胡博仲等.聚合物驱采油工程[M].北京:石油工业出版社,1997:62.
    [37][美]W.利特马恩.聚合物驱油[M].北京:石油工业出版社,1991:69.
    [38]王德民.国外一次采油技术[M].上海交通大学出版社,1992.
    [39]王新海.聚合物驱数值模拟主要参数的确定[J].石油勘探与开发,1990(3).
    [40]隋军,廖广志.大庆田聚合物驱油动态特征及驱油效果影响因索分析[J].大庆石油地质与开发,1999,18(5):17-20.
    [41]吕鑫,张健,姜伟.聚合物_表面活性剂二元复合驱研究进展[J].西南石油大学学报(自然科学版),2008,No.3.
    [42]闫文华.剪切聚合物对二类油层驱油效果的影响[J].大庆石油学院学报,2007(3):136-137.
    [43]吴蔚.基于聚驱控制程度的二类油层聚驱参数确定[J].大庆石油学院学报,2006(5):46-47.
    [44]李福全,佟斯琴.全隐式聚驱数值模拟软件研制[J].内蒙古石油化工,2008.
    [45]冯玉良.二类油层水聚同驱数值模拟研究[J].大庆石油学院,2007.
    [46]王德民.大庆油田“三元”“二元”“一元”驱油研究[J].大庆石油地质与开发,2003,No.3.
    [47]Uren L.C., Fahmy, EE.H., Faccters Influencing the Recovery of Petroleum from Unconsolidated Sands by Waterflooding.Trans.AIME,1927,77.
    [48]Hesselink F.T.Effect of Surfactant Phase Behavior and Interfacial Activity on the Recovery or Capillary-Trapped Residual Oil, Publication 498 Presented at Symposium on Enhanced Oil Recovery by Displacement with Saline Solution, London, England, May 1977.
    [49]Davies J.T., Ridesl E.K.Interface Phenomena, Academic Press, New York, 1961:261.
    [50]Gogary W.B., Tosoh W.C. Miscible-Type Waterflooding:Oil Recovery with MicellarSolutions. J.Pet.Tech.1968:1407-1414.
    [51]Hill H.J., Reisberg J., Stegemeier G.L.Aqueous Surfactant System for Oil Recovery.J.Pet.Tech.1973:186-198.
    [52]刘莉平,杨建军.聚/表二元复合驱油体系性能研究.断块油气田[J].2004,11(4):44-45.
    [53]郭尚平,田根林,王芳,等.聚合物驱后进一步提高采收率的四次采油问题[J].石油学报,1997,18(4):50-53.
    [54]李柏林,程杰成.二元无碱驱油体系研究[J].油气田地面工程,2004,23(6):1.
    [55]陈中华,李华斌,曹宝格.复合驱中界面张力数量级与提高采收率的关系研究[J].海洋石油,2005,25(3):53-57.
    [56]叶仲斌,刘向君,杨建军,等.聚合物与表面活性剂二元驱油体系界面性质研究[J].油气地质与采收率,2002,9(3):8-15.
    [57]夏惠芬,马文国,李丹等.聚合物_两性表面活性剂二元体系提高水驱后残余油采收率研究[J].钻采工艺,2007,No.3.
    [58]吴文祥,张玉丰,胡锦强,等.聚合物及表面活性剂二元复合体系驱油物理模拟实验[J].大庆石油学院学报,2005,No.6.
    [59]李孟涛,刘先贵,杨孝君.无碱二元复合体系驱油试验研究[J].石油钻采工艺,2004,No.5.
    [60]李朝霞,张新春,刘仁强,等.无碱二元体系提高采收率研究[J].新疆石油地质,2009,No.2.
    [61]王德民,程杰成,杨清彦,等.黏弹性聚合物溶液提高岩心的微观驱油效率[J].石油学报,2000,21(5):45-52.
    [62]Xia Huifen, Wang demin, Wu Junzheng, et al.Elasticity of HPAM solution increases displacement efficiency under mixed wettability condition[R].SPE 88456,2004:1-8.
    [63]夏惠芬,王德民,刘中春,等.黏弹性聚合物溶液提高微观驱油效率的机理研究[J].石油学报,2001,22(4):60-66.
    [64]夏惠芬,王德民,侯吉瑞,等.聚合物溶液的黏弹性对驱油效率的影响[J].大庆石油学院学报,2002,26(2):109-111.
    [65]夏惠芬,孔凡顺,吴军政,等.聚合物溶液的弹性效应对驱油效率的作用[J].大庆石油学院学报,2004,28(6):29-31.
    [66]夏惠芬,王德民,王刚,等.聚合物溶液在驱油过程中对盲端类残余油的弹性作用 [J].石油学报,2006,27(2),72-76.
    [67]郭尚平.物理化学渗流微观机理[M].北京:科学出版社,1990,67-72.
    [68]黄延章,于大森.微观渗流实验力学及其应用[M].北京:石油工业出版社,2001,59-79.
    [69]杨清彦,宫文超,贾忠伟.大庆油田三元复合驱驱油机理的研究[J].大庆石油地质与开发,1999,18(3):24-26.
    [70]S.M.Holley, J.L.Caylas, Design, Operation and Evaluation of a Surfactant/Polymer Field Pilot Test[J].SPE 20232,1992.
    [71]C.S.Chivu, GE.Kellerhals.Polymer/Surfactant Transport in Micellar Flooding[J].SPE 9354.
    [72]孙俊平,贾黎,刘礼亚.孤东七区西5_4_6_1二元复合试验区效果初步评价[J].内江科技,2005,No.6.
    [73]张爱美,曹绪龙,李秀兰.胜利油田孤东七区Ng54-61区块聚表二元复合驱矿场实验[J].新疆石油学院学报,2004,16(3):40-43.
    [74]张贤松.孤岛油田复合驱油扩大试验区试验方案研究和实施[R].山东东营:胜利石油管理局,1999.
    [75]廖炜,胡明伟,曹江,等.河南油田_4_5层系聚合物驱后二元复合驱技术可行性研究[J].内蒙古石油化工,2008,(8).
    [76]袁海玲,张秀琼,杨希翡,等.濮83块油田二元复合驱油体系研究[J].内蒙古石油化工,2003,(29).
    [77]Burdyn R F, Cheng H L, et al. Rcovery by alkaline-surfactant water flood [P]. US: 4006638,1997-01-25.
    [78]Holm L W, Robertson S D. Improved micellar-polymer flooding with high pH chemicals[C]. SPE7583,1978:1-15.
    [79]Hawkins B F, Taylor K C, et al. Mechanisms of surfactant and polymer enhanced alkaline flooding:Application to David lloydmin-ster and wainwright sparky fields [J]. The Jo ural of Canadian Petroleum Technology,1994,33 (4):52-63.
    [80]Mojdeh Delshad, Choongyong Han, Faiz Koyassan Veedu, and Gary A. Pope. A Simplified Model for Simulations of Alkaline-Surfactant-Polymer Floods. [C]. SPE142105,2011:1-17.
    [81]Youssef T, Vladimir H, et al. Mechanisms for the interactions between acidic oils and surfactant-enhanced alkaline solutions [J]. Journal of Colloid and Interface science, 1996,177:446-455.
    [82]叶仲斌,彭克宗,吴小玲,等.克拉玛依油田三元复合驱相渗曲线研究[J].石油学报,2000,20(6):49-54.
    [83]杨振宇,陈广宇.国内外复合驱技术研究现状及发展方向[J].大庆石油地质与开发, 2004,23(5):94-96.
    [84]杨清彦,宫文超,贾忠伟,等.大庆油田三元复合驱驱油机理研究[J].大庆石油地质与开发,1999,18(3):24-26.
    [85]刘中春,岳湘安.聚合物及二元复合体系驱替盲端油的微观机理[J].油气地质与采收率,2002,9(6):58-61.
    [86]潘一山,宋义敏,高迎伏,等.三元复合驱驱油机理及乳液渗流规律NMRI研究[J].辽宁工程技术大学学报,2003,22(2):199-201.
    [87]刘卫东,李立众,童正新,等.大庆油田ASP复合驱油体系微观渗流机理[J].重庆大学学报(自然科学版),2000,23(增刊):119-121.
    [88]徐晖,秦积舜,姜汉桥,等.三元复合驱提高石油采收率宏观渗流机理的三维油藏物理模拟研究[J].石油天然气学报(江汉石油学院学报),2006,28(6):94-97.
    [89]杨普华.提高采收率研究的现状及近期发展方向[J].油气采收率技术,1999,6(4):1-5.
    [90]王景良,孙岩,宋育贤.ASP复合驱机理的研究与展望[J].国外油田工程,2001,17(8):15-19.
    [91]郭万奎,程杰成,廖广志.大庆油田三次采油技术研究现状及发展方向[J].大庆石油地质与开发,2002,21(3):1-6.
    [92]陈忠.三元复合驱强化采油技术[J].西南石油学院学报,1997.11,19(4).
    [93]谢俊,武英利,梁会珍.应用流动单元寻找油田有利挖潜区的新思路[J].西北地质,2004,37(4):44-49.
    [94]关振良,杨庆军,段成刚.油藏数值模拟技术现状分析[J].地质科技情报,2000,19(1):73-75.
    [95]石油科技进展[C].东营:石油大学出版社,1995.
    [96]陈月明.油藏数值模拟基础[M].东营:石油大学出版社,1989.
    [97]Maria Aparecida de Melo, Ivonete P.G. da Silva, Geraldo M.R. de Godoy, Agda N. Sanmartim. Polymer injection projects in Brazil:dimensioning, field application and evaluation. SPE 75194,2002:1-10.
    [98]袁士义,杨普华.碱复合驱数学模型[J].石油学报,1994,15(2):23-27.
    [99]A, John, C.Han, M.Delshad, GA.PoPe. A New Generation Chemieal Flooding Simulator, SPE89436:53-60.
    [100]Carlson, F.M.Simulation of Relative Permeability Hysteresis to the Non-Wetting Phase SPE10157, San Antonio,1981:83-90.
    [101]鲜成钢,郎兆新,程浩.三元复合驱数学模型及其应用[J].石油大学学报(自然科学版,2000,24(02):61-69.
    [102]魏钢.聚合物表面活性剂二元驱数值模拟研究[D].中国石油大学(华东),东营,2007.
    [103]孙焕泉,张以根,曹绪龙.聚合物驱油技术[M].石油大学出版社,2002,41-45.
    [104]胡博仲.聚合物驱采油工程[M].石油工业出版社,1997,60-62.
    [105]YIN Dai-yin, PU Hui Numerical simulation and field implementation of surfaetant flooding.Journal of Hydrodynamics Ser.B,2006,18 (1):109-117.
    [106]陈国,赵刚,马远乐.粘弹性聚合物驱油的数学模型[J].清华大学学报(自然科学版),2006,46(6):53-56.
    [107]穆文志.粘弹性聚合物驱数值模拟研究[D].大庆石油学院,2005.
    [108]侯健.提高采收率潜力分析的基础研究[D],中国石油大学,2002.
    [109]陈涛平,胡靖邦.石油工程[M].北京:石油工业出版社,2000:42-44.
    [110]康晓东,冯国智,张贤松,等.聚合物物化性质描述与数值模拟参数确定[M].油藏地质建模与数值模拟技术文集,2007:100-105.
    [111]霍进,彭通曙.CMG软件应用于稠油油藏的全油藏数值模拟[M].稠油热采技术论文集,2006:82-91.
    [112]沈平平.聚合物驱提高采收率技术[M].北京:石油工业出版社,2006:191-202.
    [113]芦文生.绥中36-1油田聚合物驱数值模拟研究[J].中国海上油气(地质),2002,16(5):333-340.
    [114]王兴峰,葛家理,陈福明,等.三次采油指标预测及开发最优接替模型研究[J].石油学报,2001,22(5):43-47.
    [115]雷富强.化学驱及其数值模拟方法.http://www.rdcps.ac.cn/shouye/paper/tr2002/tr2002-leifq.pdf.