中深层稠油油藏改善蒸汽驱效果技术及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒸汽驱是目前普遍使用的提高稠油采收率技术,但其本身还存在一些不足。首先,蒸汽重力超覆现象随油层厚度的增加而加剧,从而造成蒸汽驱的体积波及系数低;其次,蒸汽驱时指进现象严重,尤其在非均质油藏中常常发生注入蒸汽沿高渗层窜流,导致注入蒸汽大量损失和体积波及系数降低;第三,随着蒸汽驱采油进入中后期阶段,原油产量下降,汽油比明显升高,经济效益变差,大量的热能被滞留在储层岩石和流体中,如果蒸汽驱一直进行下去直到开采过程结束,那么这些留在岩石和流体中的热量将被浪费。因此,开展稠油油藏改善蒸汽驱开发效果技术及其机理研究具有重要意义。
     本文立足于辽河油田齐40块中深层稠油油藏蒸汽驱开发实际,分别对先导试验区、扩大试验区和规模汽驱井组的蒸汽驱开发效果进行评价,提出了目前各个试验区井组面临的主要问题及矛盾。生产数据显示,蒸汽驱在齐40块的应用已取得了成功,但也暴露出许多急需解决的矛盾,主要包括:先导试验区4井组目前已经处于汽驱阶段后期,高投入和低产出的矛盾日益突出,继续维持现状已经无法满足经济效益要求,需要开展蒸汽驱后期提高采收率技术研究;扩大试验区7井组在蒸汽驱过程中45%的井发生不同程度的汽窜现象,严重影响正常生产,需要开展控制汽窜技术研究;齐40块规模汽驱井组汽驱过程中由于油藏动用不均、分注效果差及蒸汽突破不断加剧等原因,造成产量出现下降趋势,需要研究新技术以扩大蒸汽波及系数、抑制蒸汽突破、改善蒸汽驱开发效果。
     针对齐40块各试验区汽驱井组所出现的主要问题及矛盾,开展了改善蒸汽驱开发效果技术及其机理研究。
     首先,着眼于缓解蒸汽驱开发中汽窜现象,对蒸汽驱汽窜开展了渗流理论分析,确定了倾斜地层驱替界面稳定的条件,分析了流度比、不同界面位置,以及不同注采井距对驱替界面稳定性的影响,从理论层面认识了启动压力梯度变化对界面稳定性的控制作用。实验研究方面,开展了蒸汽驱汽窜一维及二维物理模拟研究,并研制出适合控制汽窜的腐殖酸钠高温调堵剂,具有泵入性能良好,耐盐性良好(最高可耐NaCl浓度40000mg/L, CaCl2浓度8000mg/L),耐温性能良好(可耐290℃的高温),完全满足蒸汽驱控制汽窜的温度要求。实验结果表明,腐殖酸钠凝胶调堵体系对不同渗透率的岩心都有良好的封堵效果,封堵率在95%左右,并具有堵大不堵小的特性,最优配方为:腐殖酸钠(质量分数9%)、甲醛(质量分数1.5%)、间苯二酚(质量分数2.0%),最佳适用pH值为7-9。
     其次,研究了化学剂结晶控制蒸汽冷凝水流度提高稠油采收率技术,利用分相流动方程与Buckley-Leverett驱替理论研究了化学剂结晶法对稠油热采采收率的影响,提出了“化学剂结晶前后水油流度比可以用水相残余阻力系数的变化来表示”这一创造性思路,大大简化了室内实验测量与计算的工作量。实验研究方面,开展了MA降低水相渗透率实验和室内模拟驱油实验,实验结果表明,水相残余阻力系数随温度和注入量的增加而增加,为保证MA降低渗透率的效果,注入量应该大于1PV,注入温度应高于220℃。MA对水相渗透率的降低具有可逆性,随着注入温度的升高,可逐渐解除MA对水相渗透率的影响。油相残余阻力系数测定实验结果表明,注入MA前后不同温度的油相残余阻力系数都接近1,说明MA具有堵水不堵油的特性。驱油实验结果表明,当温度由200℃降低至160℃时,注MA饱和溶液的岩心的驱油效率为49.9%,比单纯200℃热水驱高10.1%,比160℃热水驱的驱油效率高11.7%。当温度由200℃降低至60℃时,注MA饱和溶液的岩心的驱油效率为37.1%,其效果介于200℃热水驱和60℃热水驱之间。
     最后,开展了蒸汽驱后转换开发方式研究,探讨了蒸汽驱后热水驱提高采收率机理,开展了蒸汽驱后热水驱物理模拟实验研究,设计了汽驱后继续注蒸汽、转热水驱、水汽交注三种方案,实验结果表明,转驱阶段驱油效率分别为4.42%、2.99%、3.76%,转热水驱的驱油效率略低,但其低廉的成本仍然是蒸汽驱后开采方式的首选。针对齐40块先导试验区4井组,利用多项动、静态监测资料进行了对比分析,在数模结果与微地震测试、新井测井、动态监测资料吻合较好的前提下,按照监测资料一致性的原则,利用相关公式推算出没有吸汽剖面注汽井的小层吸汽比例,确定各小层的动用程度,对非均质油藏蒸汽驱后平面、层内、层间的剩余油分布规律进行了分析,描述出汽驱后各小层剩余油分布。目前先导试验区剩余地质储量为38.3×104t,含油饱和度为33%。进行了先导试验区蒸汽驱后转热水驱油藏工程优化设计研究,对注水温度、注水量、注采比、注水层段、注水时机等参数进行了优选,数值模拟结果表明:齐40块先导试验区转热水驱合理井底注水温度为150℃,折算到地面,井口注水温度应达到180℃;合理注采比为1.2:1,合理注水量为100t/d左右;应采取笼统方式注水,且尽早转热水驱开发。
Steam flooding is the most prevalent method so far for enhancing heavy oil recovery, which also has some deficiency. First, overriding of steam makes sweep efficiency low when the thickness of layer increases. Secondly, finger advance is serious during steam flooding, especially in anisotropic layer where the injected steam often crossflows through high permeability zone, resulting in more heat loss and lower sweep efficiency. Thirdly, a reduction in oil production and an increase in steam/oil ratio can be observed at the later stage of steamflooding, which means that a large amout of heat will be left in rocks and fluids and wasted if steam is continuely injected. It is important to conduct studies on mechanism of technologies for improving steam flooding efficiency.
     Based on the practical production situation of Block Qi40 in Liaohe mid-depth heavy oilfield, the development efficiency of steam flooding in pilot test area, enlarged test area and extended were evaluated in the paper, respectively, proposing the main problems. Production data showed that steam flooding applied successfully in Block Qi40, however, a lot of problems exposed in this process have been in need of proposal. These problems included that the 4 well groups in pilot test had been in the period of later stage of steam flooding and that the situation of more investment and less production was so serious that it should be coverted to other development methods. And steam breakthrough control techniques should be studied in that the breakthrough happened in a percentage of 45% of 7 well groups in enlarged test area causing many problems in the process of production. Oil production also declined in the extended test area because of unequal employment of reservoir, poor effects of laying injection, and breakthrough, which demenstrated new techniques should be studied to improve development effect of steam flooding.
     On the basis of main problems in every well group, research on mechanism of new techniques for improving steamflooding efficiency is conducted in this paper.
     First, in order to control the breakthrough in the process of steam flooding, filtration theory of breakthrough was studied to determine the main factors of maintaining the stable displacement, including the effects of mobility ratio, locations of different interface and spacing between injecting and producing wells on the stability of displacement interface, which showed in theory that kickoff pressure gradient exerted an effect on displacement stability. On the other hand, in experiments 1-dimensional and 2-dimensional physical simulations were conducted and a new breakthrough control system, sodium humate, was developed which was characterized by easiness to be pumped, a good tolerance of salinity(NaCl concentration could be up to 40000mg/L and CaCl2 concentration up to 8000mg/L), and a good temperature tolerance(290℃). Experiment results showed that the system had a good impact on cores of various permeability, the plugging ratio could achieve 95% and it also could not plug low permeability strata but high permeability strata. The optimization of formula was determined to be sodium humate(concentration of 9%)、aldehyde(concentration of 1.5%)、resorcin(concentration of 2.0%), optmical pH value range (7-9).
     Secondly, a technique for controling fluid mobility of condensed water by adding chemical agent was discussed by means of fractional flow formula and Buckley-Leverett displacement theory. And a new method, using RRF(residual resistance factor) to demenstrate the change of mobility ratio with and without adding chemical agents, was proposed to simplify the calculation load in the experiment. MA was screened to carry out the oil displacement experiments and the results showed that RRFw increased as temperature and injection amount went up. On purpose of maintaining the displacement efficiency, the temperature should be as high as 220℃or more and injection amount should not be lower than 1PV. Water relative permeability was reversible with the temperature declining. The fact that RRFo approached to be 1 with or without MA injection showed MA plugged not oil but water. Oil displacement results showed that displacement efficiency was 49.9% after injecting saturated solution of MA when temperature decreased from 200℃to 160℃, which was 10.1% higher than pure hot water flooding at 200℃and 11.7% higher than that of 160℃. When temperature lowered to be 60℃,37.1% of displacement efficiency could be attained which was less than 200℃pure hot water flooding and more than 60℃.
     Thirdly, mechanism of converting from steamflooding to hot water flooding was disscused. Experiments were carried out in which 3 programs, were designed to be continuous steamflooding, converting to hot water flooding and gas-water alternating injection. And the displacement efficiency was 4.42%,2.99% and 3.76%, respectively, which showed that hot water flooding was the best choice for a post steamflooding project because of its low costs. According to monitoring data of static and dynamic which is fitting well to the results of numerical simulation, microseismic test and new well test, the resident oil distribution in internal layer and interlayer was calculated and analyzed after steam flooding. And steam absorption in oil layers without testing data is determined by formula. The results showe that remaining oil in place in pilot test area is determined to be 38.3×104t and oil saturation to be 33%. The designing optimazation of petroleum for converting steam flooding to hot water flooding in pilot test area is also conducted in this paper. The parameters are optimized in numerical simulation to be 150℃of injecting temperature in down hole (equal to 180 in well head),1.2:1 of rational injecting/producting ratio, 100t/d of rational water injection and commingled water injection as soon as possible, respectively.
引文
[1]万仁溥,罗英俊.采油技术手册(八)——稠油热采工程技术[M].北京:石油工业出版社,1996.
    [2]吴川,陈艳玲,王元庆,等.胜利超稠油催化水热裂解改质降黏研究[J].油田化学,2009,26(2):121-124.
    [3]陈月明.注蒸汽热力采油[M].东营:石油大学出版社,1996.
    [4]刘文章.稠油注蒸汽热采工程[M].北京:石油工业出版社,1997.
    [5]岳清山,李平科.对蒸汽驱几个问题的探讨[J].特种油气藏,1997,4(2):10-13.
    [6]陈加华,覃青松.齐40块蒸汽驱11井组开发后期间歇注汽研究与试验[J].石油地质与工程,2010,24(2):104-107.
    [7]牛雅丹.辽河油田齐40块蒸汽驱地面建设研究[J].应用技术,2010,9(下):129-139.
    [8]张剑锋.齐40块蒸汽驱技术指标探讨[J].石油地质与工程,2010,24(2):82-86.
    [9]符永江.齐40块蒸汽驱先导试验见效技术指标界定[J].中国高新技术企业,2010,19:48-50.
    [10]王中元.齐40块蒸汽驱蒸汽波及规律研究[J].特种油气藏,2007,14(4):65-69.
    [11]付崇清.齐40块微地震监测汽驱前缘分析[J].特种油气藏,2008,15(5):60-64.
    [12]武俊学.稠油油藏蒸汽驱末期注热水和间歇注汽的物理模拟研究[J].新疆石油科技,1997,12(3):13-21.
    [13]陆福刚,贾晓明,沈铁矛.齐40块蒸汽驱先导试验后续水驱方式优选[J].特种油气藏,2006,13(4):94-96.
    [14]韦涛.孤东九区西稠油油藏蒸汽驱后开发方式优化研究[J].中国科技信息,2008:19-21.
    [15]郭万奎,廖广志,邵振波,等.注汽提高采收率技术[M].北京:石油工业出版社,2003.
    [16]帕拉茨M.热力采油.王弥康等译[M].北京:石油工业出版社,1989:166-170.
    [17]凌建军,宋振宇,王钰,等.蒸汽吞吐阶段的“汽窜”现象实质研究[J].江汉石油学院学报,1996,18(1):58-61.
    [18]杨守奎,林荣丽.汽窜井浅析[J].胜利学刊,1998,12(2):10-13.
    [19]张豆娟,郭海敏,戴家才,等.稠油油藏蒸汽驱阶段汽窜的研究[J].中国测试技术,2004,30(3):45-47.
    [20]蒲均.锦91块汽窜特征及其防治措施研究[D].大庆石油学院,2006.
    [21]张勇,孙玉环,孙旭东.杜84断块超稠油蒸汽吞吐汽窜机理分析及防窜措施初探[J].特种油气藏,2002,9(6):31-35.
    [22]张素宏.利用恒量配汽工艺技术防止稠油蒸汽“汽窜”[J].科技创新导报,2008,8:128.
    [23]程欣.利用投球选注技术防止稠油蒸汽汽窜[J].内蒙古石油化工,2009,23:97-98.
    [24]鄢旭.曙一区杜84兴隆台油层汽窜研究及实施效果[J].西部探矿工程,2005,增:132-134.
    [25]黄青松,赵长喜,冯士杰,等.利用暂堵方法实现汽窜通道选择性封堵研究[J].江汉石油学院学报,2004,26(3):113-114.
    [26]牛淑芳.注蒸汽气化氮碳泡沫封堵汽窜技术及应用[J].油气地质与采收率,2005,12(1):78-81.
    [27]张安平.泌阳凹陷新浅45区汽窜治理研究[J].石油地质与工程,2009,23(6):116-118.
    [28]宋春红,赵长喜,吴荷香,等.泌浅10断块蒸汽驱整体调剖堵窜技术应用研究[J].石油地质与工程,2010,24(1):101-104.
    [29]张守军.超稠油汽窜综合治理技术的研究与应用[J].中外能源,2010,15(7):41-45.
    [30]绳德强,张丽虹,白燕.用表面活性剂控制蒸汽驱时注入蒸汽的流度[J].石油钻采工艺,1996,18(3):83-89.
    [31]Eson R.L., Cooke R.W.. A comprehensive analysis of steam foam diverters and application methods[R]. SPE 18785.
    [32]Tad W.Patzek. Field application of steam foam for mobility improvement and profile control[J]. SPE Reservoir Engineering, May,1996.
    [33]Kasraie M., Farouq S.M.. Role of foam, non-Newtonian flow, and thermal upgrading in steam injection[J]. SPE 18784.
    [34]Andrew H.Falls, Jimmie B.Lawson, George J. Hirasaki. The role of noncondensable gas in steam foams[J]. JPT,1988.
    [35]廖广志,李立众,孔繁华,等.常规泡沫驱油技术[M].北京:石油工业出版社,1999.
    [36]Ploeg J.F., Duerksen J.H.. Two successful steam/foam field tests, Sections 15A and 26C, Midway-Sunset Field[J]. SPE 13609.
    [37]Ransoboff J.C., Radke C.J.. Mechanisms of foam generation in glass bead packs. SPE Reservoir Engineering [J].1988:121-169.
    [38]Ettinger R.A., Radke C.J.. Influence of texture oil steady foam flow in Berea sandstone[J]. SPE Reservoir Engineering.1992:169-268.
    [39]Schramm L.L, Turta A.T., Novosad J.J.. Microvisual and coreflood studies of foam Interactions with a light crude oil[J]. SPE Reservoir Engineering,1993:245-257.
    [40]Osterloh W.T., Jante Jr.M.J.. Effects of gas and liquid velocity on steady-state foam flow at high temperature[R]. SPE 24179.
    [41]羊争鸣,张建,赵郭平.一个实用的注蒸汽加泡沫过程的油藏数值模型[J].石油学报,1994,15(2):99-108.
    [42]刘艳波,刘东亮.氮气在乐安稠油油田开采中的应用[J].石油钻采工艺,2004,26(3):69-71.
    [43]袁士义,刘尚奇,张义堂,等.热水添加氮气泡沫驱提高稠油采收率研究[J].石油学报,2004,25(1):57-65.
    [44]王富民,马传忠,隋建国,等.氮化泡沫高温调剖在热采区水侵治理中的应用[J].油气田地面工程,2003,(7):69.
    [45]姚凯,王志刚,郭洪全.蒸汽泡沫调剖技术在稠油开采中的试验研究及应用[J].特种油气藏,1996,3(3):44-58.
    [46]齐宁,李金发,温庆志,等.稠油油藏蒸汽泡沫驱渗流机理[J].辽宁石油化工大学学报,2009,29(4):34-38.
    [47]郭东红,辛浩川,崔晓东.改善蒸汽驱效果的高温泡沫剂研究[J].精细与专用化学品,2010,18(11):41-44.
    [48]汪庐山,曹嫣镔,刘冬青,等.泡沫改善间歇蒸汽驱开发效果[J].石油钻采工艺,2007,29(1):79-82.
    [49]蒋龙.蒸汽泡沫驱方案优化的新方法[J].油气地质与采收率,2005,12(2):55-58.
    [50]Tore Blake.高贵生译.利用泡沫控制Snorre油田的气体流度[J].石油勘探与开发,2002,30(1):108.
    [51]谢尚贤,颜五和,韩培慧.泡沫对二氧化碳驱的流度控制[J].油田化学,1990,7(3):289-294.
    [52]张弦,刘永建,车洪昌,等.蒸汽+烟道气+化学剂复合驱提高稠油采收率研究[J].科学技术与工程,2010,10(10):2445-2449.
    [53]张弦,刘永建,车洪昌.伴注非凝气体和化学剂提高汽驱采收率实验研究[J].岩性油气藏,2010,22(2):116-119.
    [54]庞占喜,程林松,李春兰.热力泡沫复合驱提高稠油采收率研究[J].西南石油大学学报,2007,29(6):71-74.
    [55]黄翔,张凤丽.稠油油藏高温泡沫调剖体系室内实验研究[J].西南石油大学学报,2007,29(5):116-118.
    [56]R.G.Dornan. Hot Waterflood in a Post Steamflood Reservoir:A Case History in the Kern River Field, California,1990 SPE20050, California Regional Meeting, California, USA, pp.329-339, April 4-8,1990.
    [57]K.C.Hong. Guidelines for Converting Steamflood to Waterflood[J], SPE136054 California Regional Meeting,California, pp.67-77, March 17-19,1987.
    [58]I.S. Bousaid. Hot-water and Steamflood Studies using Kern River Oil,1991 SPE21543 International Thermal Operations Symposium, Barkersfield, California, pp.187-200, February 7-8,1991.
    [59]S.M. Farouq Ali. Steam Injection Theories-A Unified Approach,1982 SPE10746 California Regional Meting of Society of Petrolium Engineers, San Francisco, USA, pp.309-321, March 24-26,1982.
    [60]成士兴,孙碟徽,杨其平,等.孤东九区稠油块开采状况及开发方式转换探讨[J].江汉石油学院学报,2003,25(增):70-72.
    [61]张方礼,刘其成,刘宝良,等.稠油开发实验技术与应用[M].石油工业出版社,2007.
    [62]唐豪,路春明,穆俊祥,等译.印度尼西亚苏门答腊Duri蒸汽驱油田防砂完井方法评价[J].国外油田工程,2008,24(11):37-38,52.
    [63]R.G.Dornan, Hot Waterflood in a Post Steamflood Reservoir:A Case History in the Kern River Field, California,1990 SPE20050, California Regional Meeting, California, USA, pp.329-339, April 4-8,1990.
    [64]刘立成,姜试桥,刘同敬.一种解释注蒸汽井井间强汽窜的新方法[J].西安石油大学学报(自然科学版),2007,22(s1):62-64.
    [65]ZahediA, JohnsonR, RuedaC, et al. Heatmanagement in Coalinga-new insight tomanage heat in an old field[J]. SPE 86984,2004.
    [66]Shouliang Z, Yitang Z, ShuhongW, et al. Status of heavy-oil development in China[J]. SPE 97844,2005.
    [67]刘慧卿,范玉平,赵东伟.热力采油技术原理与方法[M].石油大学出版社,2000:82-85.
    [68]邵明记,王厉强,刘慧卿,等.宾汉型稠油单斜油藏热凝析带启动压力梯度对汽窜的影响[J].油气地质与采收率,2009,16(1):90-94.
    [69]Philip J. Closeman. Steam Zone Growth in Cylindrical Channels[C]. SPE 11873,1984: 481-483.
    [70]Godderij R R Johannes Bruining. A New Model to Predict Steam Override and Viscous Fingering in Heterogeneous Oil Reservoirs[C]. SPE 29661,1995:459-471.
    [71]Chang X.J., Liu X.J., Wang Q.Y. and Gao S.S. Researchon the AM/Cr3+ gel for deep profile control. Petroleum Science,2004,1(1):65-69.
    [72]李远林,赵玲莉,马立华,等.KZ高温调堵剂在稠油开采中的应用[J].新疆石油天然气,2006,2(3):72-77.
    [73]李彦平,杨志斌,刘新福,等.间歇蒸汽驱技术及其在河南油田的应用[J].成都理工学院学报,2001,28(4):405-408.
    [74]刘新福,宋鹏瑞.间歇注汽法——提高蒸汽驱效果的重要方法[J].新疆石油地质,1997,18(1):18-20.
    [75]张锋,凌建军,黄海波,等.间歇注汽改善齐40块蒸汽驱开发效果研究[J].江汉石 油学院学报,2002,24(2):70-72.
    [76]Ploeg J.F., Duerksen J.H.Two successful steam/foam field tests, Sections 15A and 26C, Midway-Sunset Field[J]. SPE 13609.
    [77]Ransoboff J.C., Radke C.J.. Mechanisms of foam generation in glass bead packs. SPE Reservoir Engineering[J].1988:121-169.
    [78]Ettinger R.A., Radke C.J.. Influence of texture oil steady foam flow in Berea sandstone [J]. SPE Reservoir Engineering.1992:169-268.
    [79]Schramm L.L, Turta A.T., Novosad J.J.. Microvisual and coreflood studies of foam Interactions with a light crude oil[J]. SPE Reservoir Engineering,1993:245-257.
    [80]Osterloh W.T., Jante Jr.M.J.. Effects of gas and liquid velocity on steady-state foam flow at high temperature[R]. SPE 24179.
    [81]刘艳波,刘东亮.氮气在乐安稠油油田开采中的应用[J].石油钻采工艺,2004,26(3):69-71.
    [82]袁士义,刘尚奇,张义堂,等.热水添加氮气泡沫驱提高稠油采收率研究[J].石油学报.2004,25(1):57-65.
    [83]姚凯,王志刚,郭洪全.蒸汽泡沫调剖技术在稠油开采中的试验研究及应用[J].特种油气藏.1996,3(3):44-58.
    [84]王尤富,黄宏度.石油羧酸盐三元复合体系的流度与驱油效率的关系[J].油田化学,1996,13(3):253-255.
    [85]刘延彪,林桂英,常志坚,等.无机凝胶流度控制技术室内研究[J].钻采工艺,2001,24(4): 71-73.
    [86]J H Duerkson. Laboratory Study of Foaming Surfaetants as Steam-Diverting Additives[J]. SPE(Reservoir Engineering),1986:44-52.
    [87]R D Stoll, H W Gudenau, M W Lupki. Mobility Control for Steamflooding with High Temperature-resistant Additives[J]. SPE 1993:281-284.
    [88]刘文涛,王洪辉,王学立,等.多层非均质低流度油藏稳油控水技术研究与应用[J].成都理工大学学报(自然科学版),2008,35(5):518-513.
    [89]于得水,王宏宇.聚丙烯酰胺驱替液的流度控制[J].油气田地面工程,1993,12(5):20-23.
    [90]Van Meurs P. and Van Der Poe C.. A Theoretical Description of Water-Drive Processes Involving Viscous Fingering. Trans. AIME,1958,213,103-112.
    [91]Peters E.J. and Flock D.J.. The Onset of Instability During Two-Phase Immiscible Displacement in Porous Media. SPEJ,1981,249-258.
    [92]Chuoke R.L., Van Meurs P. and Van Der Poe C.. The Instability of Slow Immiscible, Viscous Liquid-liquid Displacement in Permeable Media. Trans. AIME,1959,216, 188-194.
    [93]Buckley S.E. and Leverett M.C.. Mechanism of Fluid Displacement in Sands[J]. Trans. AIME,1942,146,107-116.
    [94]张继芬,张明国,刘中春等.提高石油采收率基础[M].北京:石油工业出版社,1997,21-22.
    [95]Muskat, M.. Flow of Homogeneous Fluids. Mcgraw Hill, New York,1937.
    [96]Stavland A., Nilsson S. Segregated flow is the Governing Mechanism of Disproportionate Permeability Reduction in Water and Gas Shutoff[R]. SPE 71510,2001.
    [97]Liang J., Seright R.S. Further Investigations of Why Gels Reduce Water Permeability More Than Oil Permeability[R]. SPE 37249,1997.
    [98]Nilsson S., Stavland A., Jonesbraten H.C.. Mechanistic Study of Disproportionate Permeability Reduction[R]. SPE 39635,1998.
    [99]叶仲斌.提高采收率原理[M].北京:石油工业出版社,2007.
    [100]杨盛林,黄思玲.三聚氰胺的性质检测方法及毒理学[J].食品与药品,2008,10(11):66-69.
    [101]汪家铭.我国三聚氰胺产业发展概况及其前景[J].化学工业,2008,26(2):4-8.
    [102]林祥梅,王建锋,贾广乐,等.三聚氰胺的毒性研究[J].毒理学杂志,2008,22(3),216-218.
    [103]胡绍彬.注蒸汽采油流度控制剂研制与室内评价[D].东北石油大学,2011.
    [104]吕广忠,陆先亮.热水驱驱油机理研究[J].新疆石油学院学报,2004,16(4):37-41.
    [105]徐明海,任瑛,王弥康,等.沈阳油田高含蜡高凝固点油藏注热水开发可行性研究[J].石油学报,1991,12(4):63-75.
    [106]石晓渠,李胜彪,郭晓芳,等.普通稠油吞吐开采后转热水驱技术研究[J].河南石油,2004,18(增):44-46.
    [107]马新明,王丽荣.不同注水方式对九1区三井组蒸汽驱后热水驱效果的影响[J].新疆石油科技,1994,4(4):50-55.
    [108]薄芳,高小鹏,胡龙胜,等.应用热水驱技术提高孤岛油田渤21断块采收率[J].国外油田工程,2005,21(1):43-44.
    [109]J.W.AuIt, W.M. Johnson, and GN.Kamilos. Conversion of Mature Steamflood to Low-Quality Steam and/or Hot-Water Injection Projects[J]. SPE (Society of Petroleum Engineer),1985, SPE 13604:2,3.
    [110]C-W. Shen. Laboratory Hot Waterfloods Prior To and Following Steamfloods[J]. SPE (Society of Petroleum Engineer),1989, SPE18754:4.
    [111]孙川生,彭顺龙.克拉玛依九区热采稠油油藏[M].北京:石油工业出版社,1995:10-17.
    [112]陈振琦,杨生榛,喻克全.浅层稠油注蒸汽开发过程中剩余油分布规律[J].测井技 术,1998,22(增刊):40-43.
    [113]马春宝.蒸汽吞吐水平井调整吸汽剖面技术[J].内蒙古石油化工,2010,(12):99-100.
    [114]薛世峰,王海静,朱桂林.改善水平井吸汽剖面的计算模型[J].特种油气藏,2008,15(5): 94-96.
    [115]K.D.Oglesby, T.R.Blevines, E.E.Rogers. Status of 10-Pattern Steamflood, Kern River Field, California[J], SPE(Society of Petroleum Engineer),1982, SPE 8833:2252-2254.