补远江流域水沙变化及预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河川径流和泥沙在塑造河流形态、提供水资源和维持区域环境及生态系统等方面起着重要作用。澜沧江-湄公河是亚洲著名的国际河流,近年来其上游澜沧江干流梯级电站开发引起的跨境水文、环境、生态和社会问题引起了国内外广泛关注。补远江作为澜沧江的主要支流之一,近年来随着澜沧江干流梯级电站的相继建成,其水文、生态效应愈发凸显,所以对该流域的过去几十年的水沙变化分析及其未来可能的演变趋势预测研究具有一定的科学与实际意义。本研究采用补远江下游曼安水文站50年的月平均流量序列,16年的月平均含沙量以及流域周边5个气象站49年的降水数据,分析该流域的水沙特征及演变趋势,并建立预报预测模型对流域径流、输沙进行中长期预报。研究得到以下主要认识:
     (1)流域径流年际变化幅度不大,1960~2008年曼安站实测年径流总量的变差系数Cv为0.21,年际极值比K为2.82;流域输沙年际变化幅度较大,1993~2008年输沙量Cv值为0.59,年际极值比K达到7.1。流域水沙年内分配比较集中,都主要来源于汛期6-11月,其中径流年内分配不均匀系数为0.87,输沙年内分配不均匀系数高达1.65,说明流域水沙的季节性变化很大。Mann-Kendall趋势检验表明,流域年径流量和年悬移质输沙量均呈现一定的下降趋势。补远江单位流量的含沙量较小,曼安站1993~2008年年均来沙系数仅为0.006kg/(s.m6)。流量与含沙量呈现明显乘幂正相关,这一时段的月均流量与月均含沙量的水沙关系回归决定系数为0.6334,月输沙量与月径流量的水沙关系的回归决定系数达到0.8137,表明其拟合程度非常高。1993~2008年输沙量过程和径流过程与降水过程变化趋势基本一致,均呈现一定的下降趋势。1996~2008年期间,曼安站的大断面变化不大,所处的河床相对稳定。
     (2)利用补远江曼安站水文资料,建立差分滑动自回归平均模型(ARIMA)对补远江汛期、枯水期的径流、泥沙序列进行建模预报。结果建立了ARMA (5,4)和ARMA(2,3)模型分别对补远江流域汛期、枯水期流量进行预测,得到2009~2013年枯水期平均流量为:316.01,174.81,288.02,342.24,283.97m3/s;汛期平均流量为:49.45,52.07,49.95,51.97,48.30m3/s;建立ARIMA(1,1,1)和ARIMA (1,1,2)模型分别对流域汛期、枯水期含沙量进行了预测,结果显示2009~2011年枯水期平均含沙量分别为:0.0179,0.0219,0.0263kg/m3;汛期平均含沙量分别为:0.8232,0.8029,0.7826kg/m3。
     (3)基于Matlab的神经网络工具箱,建立经典的3层BP神经网络分别对补远江曼安水文站的年径流和年输沙量进行建模预测。其中对于径流最终建立了两输入神经元(年降水量和雨季降水量)、一个输出神经元(年径流量)和一个包含8个节点数的隐含层的经典3层BP神经网络预报模型;而对于流域年输沙量则建立了五个输入神经元(分别为汛期流量、年均流量、7、8、9三月均流量、年降水量和雨季降水量)、一个输出神经元(年输沙量)和一个包含7个节点数的隐含层的经典3层BP神经网络预报模型。总体上,两个模型拟合程度都很高,都达到了预期效果,拟合结果不管是定性,还是定量上都符合水文情报预报规范的要求。
Runoff and sediment, key factors in a river system, play an important role in shaping fluvial morphology and fluvial geomorphology. Besides, those supplying water resources and maintaining regional environmental and ecological systems. The Lancang-Mekong River is a famous international river in Asia. Recently, the development of cascade dams on the mainstream of Lancang River has aroused widespread concern at home and abroad on cross-border hydrological, environmental, ecological and social problems. Nowadays, most dams have been built, thereupon their hydrological and ecological effects began to highlight in the Buyuanjiang River, which is one of the main tributary in the lower part of the Lancang River. So further understanding on water and sediment changes in the basin over the past few decades and the future forecasting is necessary for science and practical application.
     Used the lower reaches of Yangtze river basin the monthly average flow from1959-2008and monthly average sediment concentration from1993-2008at the Manan Gauging Station, and five meteorological stations rainfall data from1959-2007, this paper analyzed the runoff and sediment characteristics and evolution trend, then established the forecasting models for mid-long term hydrological forecasting.
     Based on the data analysis and result deduction, detailed conclusions have been drawn as following:
     (1) The inter-annual variability range of runoff was low during1960to2008, the coefficient of variation of annual runoff and inter-annual extreme value proportion at the Manan Gauging Station was0.21and2.72respectively; But from1993to2008, the inter-annual variability range of annual sediment load was high, and the variation coefficient of annual sediment load was0.59, and inter-annual extreme value proportion reach to7.1. The seasonal annual distribution of runoff and sediment was fairly concentrated, mainly comes from June to November within the flood season. And the intra-annual nonuniform coefficients of runoff and sediment load were high up to0.87and1.65. Therefore, seasonal changes of runoff and sediment were obvious.
     The annual average incoming sediment coefficient is only0.006kg/(s.m6) at Manan Gauging Station from1993to2008, so the sediment concentration per unit flow of Buyuanjiang River was low. The average monthy flow and sediment concentration was significantly positive power function correlation during1993-2008; And during this period, the regression decision coefficient was0.6334, which indicated that the fitting degree was high; Compared with annual runoff and sediment load relationship, the regression decision coefficient of the relationship between month runoff and sediment load was0.8137, which indicated that the fitting degree was obvious. From1993to2008, the average annual sediment load and runoff process were showed as similar declining trends as precipitation process. During the period from1996to2008, changes in the Manan cross section is not obvious, showing relatively stable in riverbed morphology.
     (2) Based on hydrological data at Manan hydrological station, this study built two autoregressive moving average models to forecast annual discharge and sediment concentration series. As a result, ARMA (5,4) and ARMA (2,3) regression model were elected to predict average flow of flood season and dry season respectively, the results showed dry season average flow would be49.4455,52.0674,49.9494,51.9686,48.2954m3/s and flood season average flow would be316.0015,174.8079,288.0196,342.2409,283.9677m3/s from2009-2013. And ARIMA (1,1,1), ARIMA (1,1,2) regression model were chose to predict mean sediment concentration of flood season and dry season respectively, the results indicated dry season mean sediment concentration would be0.0179,0.0219,0.0263kg/m3and flood season mean sediment concentration would be0.8232,0.8029,0.7826kg/m3during2009~2013.
     (3) With Matlab's Neural Network Toolbox, two classic three-layer BP neural network models were built to simulate the annual runoff and sediment load respectively at Manan hydrological station. For Runoff forecasting model, chose annual rainfall and the rainy season precipitation as two input layer nodes. The number of hidden layer neurons, which selected base on the empirical formula and used the "trial and error" method, according to the fitting results, was set to8in the end. The output layer has one neuron:annual runoff. Sediment forecasting model ultimately preferred a classic three-layer BP network which contain the five inputs:flood seasom flow, annual flow, average monthly flow from July to September, annual precipition and Rainy season precipitation; one output:annual sediment load; and one hidden layer which contained7nodes. Overall, the fitting degrees of those two models are very high, and achieved the desired effect. The fitting results, whether qualitative or quantitative, are in accordance with requirements of "Standard for hydrological information and hydrological forecasting".
引文
[1]宋小燕.松花江流域水沙演变及其对人类活动的响应[D].中国科学院研究生院(教育部水土保持与生态环境研究中心),2010.
    [2]Milliman J D, Syvitski J P M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers[J]. The Journal of Geology.1992:525-544.
    [3]Hupp C R, Osterkamp W R. Riparian vegetation and fluvial geomorphic processes[J]. Geomorphology.1996,14(4):277-295.
    [4]Gupta A, Asher M G. Environment and the developing world: principles, policies and management.[M]. John Wiley and Sons Ltd, Chichester (United Kingdom),1998:114-143.
    [5]何用,李义天,吴道喜,等.水沙过程与河流健康[J].水利学报.2006,37(11):1354-1359.
    [6]杨宇,严忠民,乔晔.河流鱼类栖息地水力学条件表征与评述[J].河海大学学报(自然科学版).2007,35(2):125-130.
    [7]刘稳,诸葛亦斯,欧阳丽,等.水动力学条件对鱼类生长影响的试验研究[J].水科学进展.2009,20(6):812-817.
    [8]李香萍,杨吉山,陈中原.长江流域水沙输移特性[J].华东师范大学学报(自然科学版).2001(4):88-95.
    [9]Stover S C, Montgomery D R. Channel change and flooding, Skokomish River, Washington[J]. Journal of Hydrology.2001,243(3-4):272-286.
    [10]Thorne C R, Hey R D, Newson M D. Applied fluvial geomorphology for river engineering and management.[M]. John Wiley & Sons Ltd,1997.
    [1]]李义天,李荣,邓金运.长江中游泥沙输移规律及对防洪影响研究[J].泥沙研究.2000(3):12-20.
    [12]师长兴,章典.中国洪涝灾害与泥沙关系[J].地理学报.2000(5):627-636.
    [13]Walling D E, Fang D. Recent trends in the suspended sediment loads of the world's rivers[J]. Global and Planetary Change.2003,39(1-2):111-126.
    [14]高前兆,仵彦卿.河西内陆河流域的水循环分析[J].水科学进展.2004(3):391-396.
    [15]Newson M D. Land, water and development:Sustainable management of river basin systems[M].3rd edition ed. Routledge,2008:464.
    [16]刘俊民,余新晓主编.水文与水资源学[M].北京:中国林业出版社,1999:27-29.
    [17]郭淑华,徐晓毅.水文与水资源学概论[M].北京:中国环境科学出版社,2011:350.
    [18]关业祥,陈群香,姚建文.21世纪初期我国水利发展展望[J].中国水利.2000(1):11-12.
    [19]侯奎,陈万勇.开发和建设西南能源基地的战略意义[J].自然资源学报.1992(3):258-266.
    [20]陈传友.西南地区水资源及其评价[J].自然资源学报.1992(4):312-328.
    [21]刘春蓁,杨建青.我国西南地区年径流变异及变化趋势研究[J].气候与环境研究.2002(4):415-422.
    [22]郭有安.云南省水资源演变情势分析研究[D].四川大学,2004.
    [23]朱云梅,吕喜玺,周跃,等.纵向岭谷区地表径流对气候变化的敏感性分析:以长江上游龙川江流域为例[J].科学通报.2006:73-80.
    [24]何大明,吴绍洪,彭华,等.纵向岭谷区生态系统变化及西南跨境生态安全研究[J].地球科学进展.2005(3):338-344.
    [25]Lu X X, Siew R Y. Water discharge and sediment flux changes in the Lower Mekong River[J]. Hydrology and Earth System Sciences.2005,10(2):181-195.
    [26]何大明,柳江,胡金明,等.纵向岭谷区的跨境生态安全与调控体系[J].科学通报.2007(S2):1-9.
    [27]杨君兴,陈小勇,陈银瑞.中国澜沧江(鱼芒)科鱼类种群现状及洄游原因分析[J].动物学研究.2007,28(1):63-67.
    [28]康斌,何大明.澜沧江鱼类生物多样性研究进展[J].资源科学.2007,29(5):195-200.
    [29]Kang B, Perrett L, Li Y, et al. Are the fish of the upper and lower Mekong interconnected?[J]. Chinese Journal of Oceanology and Limnology.2009,27(2):400-407.
    [30]康斌,胡文娴,祈文龙,等.补远江鱼类多样性研究[J].渔业科学进展.2010,31(3):6-14.
    [31]云南省环境保护总局.云南省澜沧江流域环境规划研究[M].昆明:云南科技出版社, 1996.
    [32]云南省国际河流与跨境生态安全重点实验室,云南大学亚洲国际河流中心,云南省西双版纳州渔政站.澜沧江橄榄坝-南腊河河口鱼类科学考察与保护规划研究[Z].2010.
    [33]Olive L J, Olley J M, Murray A S, et al. Spatial variation in suspended sediment transport in the Murrumbidgee River, New South Wales, Australia[J]. IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences.1994,224:241-250.
    [34]张章新.闽江流域水文特性分析[J].水文.2000,20(6):55-58.
    [35]Walling D E, Fang D. Recent trends in the suspended sediment loads of the world's rivers[J]. Global and Planetary Change.2003,39(1):111-126.
    [36]Lu X X, Siew R Y, Others. Water discharge and sediment flux changes over the past decades in the Lower Mekong River:possible impacts of the Chinese dams[J]. Hydrology and Earth System Sciences.2006,10(2):181-195.
    [37]Xue Z, Liu J P, Ge Q. Changes in hydrology and sediment delivery of the Mekong River in the last 50 years:connection to damming, monsoon, and ENSO[J]. Earth Surface Processes and Landforms.2011,36(3):296-308.
    [38]Gupta H, Chakrapani G J. Temporal and spatial variations in water flow and sediment load in the Narmada river [J]. Current Science.2007,92(5):679-684.
    [39]Chakrapani G J, Saini R K. Temporal and spatial variations in water discharge and sediment load in the Alaknanda and Bhagirathi Rivers in Himalaya, India[J]. Journal of Asian Earth Sciences. 2009,35(6):545-553.
    [40]Chikita K A, Wada T, Kudo I, et al. The Intra-Annual Variability of Discharge, Sediment Load and Chemical Flux from the Monitoring:The Yukon River, AIaska[J]. Journal of Water Resource and Protection.2012,4(4):173-179.
    [41]Molisani M M, Kjerfve B, Silva A P, et al. Water discharge and sediment load to Sepetiba Bay from an anthropogenically-altered drainage basin, SE Brazil[J]. Journal of Hydrology.2006,331(3): 425-433.
    [42]高亚军,赫晓慧,徐建华.秃尾河流域水沙特性变化分析[J].水资源与水工程学报.2006,17(3):68-71.
    [43]Zhang Q, Xu C, Becker S, et al. Sediment and runoff changes in the Yangtze River basin during past 50 years[J]. Journal of Hydrology.2006,331(3):511-523.
    [44]Zhang Q, Xu C Y, Singh V P, et al. Multiscale variability of sediment load and streamflow of the lower Yangtze River basin:Possible causes and implications[J]. Journal of Hydrology.2009, 368(1-4):96-104.
    [45]张志玲,范昊明,郭成久,等.柳河流域径流、泥沙时变过程研究[J].水土保持研究.2008,22(1):229-231.
    [46]王渺林,夏成阳,卢春生,等.金沙江流域水沙变化趋势分析[J].人民长江.2008,39(19):15-16.
    [47]Wang H, Yang Z, Saito Y, et al. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005):Impacts of climate change and human activities[J]. Global and Planetary Change. 2007,57(3-4):331-354.
    [48]Miao C, Ni J, Borthwick A G L. Recent changes of water discharge and sediment load in the Yellow River basin, China[J]. Progress in Physical Geography.2010,34(4):541-561.
    [49]Gao P, Zhang X, Mu X, et al. Trend and change-point analyses of streamflow and sediment discharge in the Yellow River during 1950--2005[J]. Hydrological Sciences Journal--Journal des Sciences Hydrologiques.2010,55(2):275-285.
    [50]Panda D K, Kumar A, Mohanty S. Recent trends in sediment load of the tropical (Peninsular) river basins of India[J]. Global and Planetary Change.2011,75(3):108-118.
    [51]Wang J J, Lu X X, Kummu M. Sediment load estimates and variations in the Lower Mekong River[J]. River Research and Applications.2011,27(1):33-46.
    [52]何大明.澜沧江-湄公河水文特征分析[J].云南地理环境研究.1995,7(1):58-74.
    [53]邹宁,王政祥,吕孙云.澜沧江流域水资源量特性分析[J].人民长江.2008(17):67-70.
    [54]尤联元.澜沧江流域河流泥沙发展趋势初步研究[J].地理学报.1999,54(B06):93-100.
    [55]尤联元.澜沧江河道冲淤变化特征及发展趋势[J].地理研究.2001(2):178-183.
    [56]傅开道,何大明,李少娟.澜沧江干流水电开发的下游泥沙响应[J].科学通报.2006,51(B07):100-105.
    [57]傅开道,何大明.澜沧江干流水库拦沙效应分析与预测[J].科学通报.2007,52(A02): 117-122.
    [58]傅开道,何大明,陈武,等.电站建设对澜沧江—湄公河泥沙年内分配的影响[J].地理学报.2007,62(1):14-21.
    [59]Kummu M, Varis O. Sediment-related impacts due to upstream reservoir trapping, the Lower Mekong River[J]. Geomorphology.2007,85(3-4):275-293.
    [60]Fu K, He D. Analysis and prediction of sediment trapping efficiencies of the reservoirs in the mainstream of the Lancang River[J]. Chinese Science Bulletin.2007,52(S2):134-140.
    [61]黄江成,傅开道,何大明.澜沧江中下游河流泥沙特性分析[J].四川大学学报:工程科学版.2010(3):112-120.
    [62]郭宗锋,马友鑫,李红梅,等.流沙河流域土地利用变化研究[J].水土保持研究.2006,13(1):144-147.
    [63]郭宗锋,马友鑫,李红梅,等.1959~2000年流沙河流域降水与径流变化研究[J].水土保持研究.2006,13(4):150-153.
    [64]傅开道,王波,黄启胜,等.流沙河气候变化与人类活动导致的泥沙变化[J].兰州大学学报:自然科学版.2008,44(6):19-24.
    [65]姚景龙,陈毅峰,丁城志,等.补远江流域鱼类多样性及其时空变化[Z].中国江西南昌:2008107-108.
    [66]路斌,仝向荣,王德斌,等.云南西双版纳罗梭江的鱼类物种组成及现状[J].昆明学院学报.2009,31(6):60-63.
    [67]路斌,沈放,仝向荣,等.澜沧江—湄公河及部分支流鱼类多样性与水文特征的关系[J].昆明学院学报.2010,32(3):58-61.
    [68]杨春明,杨海梅,李晓琳.灰色拓扑预测方法在补远江年径流量预测上的应用[J].人民珠江.2011(3):27-30.
    [69]李季人,刘德平.水文时间序列模型及预报方法[M].南京:河海大学出版社,1991.
    [70]黄强,赵雪花等.河川径流时间序列分析预测理论与方法[M].郑州:黄河水利出版社,2008.
    [71]王文圣,丁晶,金菊良.随机水文学[M].北京:中国水利水电出版社,2008.
    [72]赵利红.水文时间序列周期分析方法的研究[D].河海大学,2007.
    [73]汤成友,官学文,张世明.现代中长期水文预报方法及其应用[M].中国水利水电出版社,2008.
    [74]王富强.中长期水文预报及其在平原洪水资源利用中的应用研究[D].大连理工大学,2008.
    [75]王富强.中长期水文预报成因分析方法及其应用[M].郑州:黄河水利出版社,2010.
    [76]王文,马骏.若干水文预报方法综述[J].水利水电科技进展.2005,25(1):56-60.
    [77]黄忠恕,金兴平.水文气候预测基础理论与应用技术[M].中国水利水电出版社,2005.
    [78]刘文卿,何晓群.应用回归分析第2版[M].北京:中国人民大学出版社,2007.
    [79]秦国民.非汛期径流预报方法的应用研究[D].河海大学,2007.
    [80]邵年华.水文时间序列几种预测方法比较研究[D].西安理工大学,2010.
    [81]Massy W F. Principal components regression in exploratory statistical research[J]. Journal of the American Statistical Association.1965,60(309):234-256.
    [82]Hoerl A E, Kennard R W. Ridge regression: applications to nonorthogonal problems[J]. Technometrics.1970,12(1):69-82.
    [83]王国丽,陈晓飞,刘刊,等.回归分析在水科学中的应用综述[J].中国农村水利水电.2004(11):40-44.
    [84]王惠文,吴载斌,孟洁.偏最小二乘回归的线性与非线性方法[M].北京:国防工业出版社,2006.
    [85]黄嘉佑.气象统计分析与预报方法第3版[M].北京:气象出版社,2007:298.
    [86]李茂贵,郭生练.酒埠江水库中长期预报方案研制与应用[J].湖南水利水电.2001(1):16-18.
    [87]张利平,王德智,夏军.白山水库径流中长期预报研究与应用[J].水电能源科学.2002,20(1):18-20.
    [88]Goldstein R M, Carlisle D M, Meador M R, et al. Can basin land use effects on physical characteristics of streams be determined at broad geographic scales?[J]. Environmental monitoring and assessment.2007,130(1):495-510.
    [89]汤成友,郭丽娟,王瑞.水文时间序列逐步回归随机组合预测模型及其应用[J].水利水电技术.2007(6):1-4.
    [90]高祥涛,李士进.基于经验模态分解的水文时间序列预测研究[J].水文.2009(3):66-68.
    [91]张树京,齐立心.时间序列分析简明教程[M].北京:北方交通大学出版社,2003.
    [92]Box G. E. P., Jenkins G. M., Reinsel G. C.时间序列分析:预测与控制[M].北京:中国统计出版社,1997.
    [93]Box G E P, Jenkins G M, Reinsel G C. Time series analysis:forecasting and control[M].4th ed. John Wiley & Sons Inc.,2008.
    [94]徐淑升,冯彦,傅开道.大盈江泥沙时间序列预测模型[J].人民长江.2008,39(1):43-45.
    [95]王红瑞,康健,林欣,等.水文序列ARIMA模型应用中存在的问题与改进方式[J].系统工程理论与实践.2008(10):166-176.
    [96]郑鹏辉.基于ARIMA模型的组合模型研究[D].燕山大学,2009.
    [97]Burn D H, Hag Elnur M A. Detection of hydrologic trends and variability[J]. Journal of Hydrology.2002,255(1-4):107-122.
    [98]金菊良,杨晓华.门限回归模型在年径流预测中的应用[J].冰川冻土.2000,22(003):230-234.
    [99]王文圣,袁鹏.门限自回归模型及其在水文随机模拟中的应用[J].四川水力发电.2001,20(B07):47-50.
    [100]冯国章,王双银.自激励门限自回归模型在枯水径流预报中的应用[J].西北农业大学学报.1995,23(4):78-83.
    [101]李亚娇.基于现代分析技术的水文时间序列预测方法研究[D].西安理工大学,2007.
    [102]蒋宗礼.人工神经网络[M].北京:高等教育出版社,2001.
    [103]杨行峻,清华大学,郑君里.人工神经网络[M].北京:高等教育出版社,1992.
    [104]闻新MATLAB(?)神经网络仿真与应用[M].北京:科学出版社,2003.
    [105]张青贵.人工神经网络导论[M].北京:中国水利水电出版社,2004.
    [106]朱凯.精通MATLAB神经网络[M].北京:电子工业出版社,2010.
    [107]胡铁松,袁鹏,丁晶.人工神经网络在水文水资源中的应用[J].水科学进展.1995,6(1):76-82.
    [108]French M N, Krajewski W F, Cuykendall R R. Rainfall forecasting in space and time using a neural network[J]. Journal of hydrology.1992,137(1-4):1-31.
    [109]Sajikumar N, Thandaveswara B S. A non-linear rainfall-runoff model using an artificial neural network[J]. Journal of Hydrology.1999,216(1):32-55.
    [110]Hsu K, Gupta H V, Sorooshian S. Artificial neural network modeling of the rainfall-runoff process[J]. Water resources research.1995,31(10):2517-2530.
    [111]吴超羽,张文.水文预报的人工神经网络方法[J].中山大学学报(自然科学版).1994,33(1):79-90.
    [112]钟登华,王仁超,皮钧.水文预报时间序列神经网络模型[J].水利学报.1995(2):69-75.
    [113]丁晶,邓育仁.人工神经前馈(BP)网络模型用作过渡期径流预测的探索[J].水电站设计.1997,13(2):69-74.
    [114]冯国章,李佩成.人工神经网络结构对径流预报精度的影响分析[J].自然资源学报.1998,13(2):73-78.
    [115]刘国东,丁晶.BP网络用于水文预测的几个问题探讨[J].水利学报.1999(1):66-71.
    [116]苑希民.神经网络和遗传算法在水科学领域的应用[M].北京:中国水利水电出版社,2002:175.
    [117]Huang W, Xu B, Chan-Hilton A. Forecasting flows in Apalachicola River using neural networks[J]. Hydrological processes.2004,18(13):2545-2564.
    [118]李存军,邓红霞,朱兵,等.BP神经网络预测日径流序列的数据适应性分析[J].四川大学学报(工程科学版).2007,39(2):25-29.
    [119]丁文荣.云南省盘龙河流域河流悬移质输移变化及其对环境变化的响应[D].昆明理工大学,2008.
    [120]朱道清.中国水系词典[M].青岛:青岛出版社,2007.
    [121]景洪县地方志编纂委员会.景洪县志[G].昆明:云南人民出版社,1999.
    [122]江城县志编纂委员会.江城县志[G].昆明:云南人民出版社,1997.
    [123]思茅地区行政公署水利水电局.思茅地区水利志水利志[G].昆明:云南民族出版社,1997.
    [124]云南大学亚洲国际河流中心,云南省西双版纳州渔政站.澜沧江下游珍稀鱼类多样性科学考察与保护规划研究[Z].2010.
    [125]思茅地区行政公署土地管理局.云南省思茅地区土地资源[Z].1997.
    [126]勐腊县水利局.勐腊水利志[G].评审稿,2010.
    [127]云南省水利厅,云南省水利水电科学研究院.云南省土壤侵蚀遥感调查报告[R].,2006.
    [128]马雅丽.鱼类生物多样性保护跨境环境服务补偿(PESTA):补远江案例[D].云南大学,2007.
    [129]赵明.澜沧江下游(补远江)跨境洄游鱼类栖息地保护研究[D].云南大学,2011.
    [130]杨君兴,陈小勇,陈银瑞.中国澜沧江(鱼芒)科鱼类种群现状及洄游原因分析[J].动物学研究.2007(1):63-67.
    [131]黄锡荃.水文学[M].北京:高等教育出版社,1993.
    [132]雷志栋,杨诗秀,许志荣,等.土壤特性空间变异性初步研究[J].水利学报.1985(9):10-21.
    [133]熊亚兰,张科利,杨光檄,等.乌江流域水沙特性变化分析[J].生态环境.2008,17(5):1942-1947.
    [134]周红,秦嘉轮,卫江益.人类活动对塔里木河年径流影响量的估算[J].干旱区地理.2002,25(1):70-74.
    [135]GB/T 22482-2008.水文情报预报规范[S].北京:中国标准出版社,2008.
    [136]陈仁升,康尔泗,杨建平,等.甘肃省河西地区近50年气象和水文系列的变化趋势[J].兰州大学学报(自然科学版).2008,38(2):163-170.
    [137]穆兴民,李靖,王飞,等.黄河天然径流量年际变化过程分析[J].干旱区资源与环境.2003,17(2):1-5.
    [138]魏凤英.现代气候统计诊断与预测技术第2版[M].北京:气象出版社,2007:296.
    [139]周俊菊,师玮,石培基,等.石羊河上游1956-2009年出山径流量特征及其对气候变化的响应[J].兰州大学学报(自然科学版).2012,48(1):27-34.
    [140]Hirsch R M, Slack J R, Smith R A. Techniques of trend analysis for monthly water quality data.[J]. Water resources research.1982,18(1):107-121.
    [141]Hirsch R M, Slack J R. A nonparametric trend test for seasonal data with serial dependence[J]. Water Resources Research.1984,20(6):727-732.
    [142]Helsel D R, Hirsch R M. Statistical methods in water resources[M]. Elsevier Science,1992: 323-356.
    [143]张璐,周跃.Mann-Kendall检验及其在河流悬沙浓度时间序列分析中的运用[J].亚热带水土保持.2007,19(4):13-16.
    [144]Yue S, Pilon P, Phinney B, et al. The influence of autocorrelation on the ability to detect trend in hydrological series[J]. Hydrological Processes.2002,16(9):1807-1829.
    [145]von Storch H, Navarra A. Analysis of climate variability:applications of statistical techniques: proceedings of an autumn school organized by the Commission of the European Community on Elba from October 30 to November 6,1993[M]. Springer Verlag,1999.
    [146]Yue S, Wang C Y. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test[J]. Water resources research.2002,38(6):1068.
    [147]Yue S, Pilon P, Phinney B, et al. The influence of autocorrelation on the ability to detect trend in hydrological series[J]. Hydrological Processes.2002,16(9):1807-1829.
    [148]Bayazit M, onoz B. To prewhiten or not to prewhiten in trend analysis?[J]. Hydrological Sciences Journal.2007,52(4):611-624.
    [149]陈莹,陈兴伟,尹义星.1960-2006年闽江流域径流演变特征[J].自然资源学报.2011,26(8):1401-1411.
    [150]杨远东.河川径流年内分配的计算方法[J].地理学报.1984,39(2):218-227.
    [151]冯光扬.水文年内不均匀系数的探讨[J].山地研究.1991(1):27-32.
    [152]郑红星,刘昌明.黄河源区径流年内分配变化规律分析[J].地理科学进展.2003,22(6):585-590.
    [153]施嘉炀.水资源综合利用[M].北京:中国水利水电出版社,1996:376.
    [154]汤奇成,程天文,李秀云.中国河川月径流的集中度和集中期的初步研究[J].地理学报.1982,37(4):383-393.
    [155]刘贤赵,李嘉竹,宿庆,等.基于集中度与集中期的径流年内分配研究[J].地理科学.2007,27(6):791-795.
    [156]冯艳.变化条件下小理河流域产汇流特性研究[D].河海大学,2007.
    [157]胡娜,阎玉伟,宫安.太子河流域辽阳站径流序列年内分布特性分析[J].科技信息.2011(23):844.
    [158]陈贤光,王龙,张玉龙.龙川江径流年内分配及变化趋势研究[J].云南农业大学学报(自然科学版).2011,26(5):712-716.
    [159]孙佳,何丙辉.流域面雨量计算方法探讨[J].水土保持应用技术.2007(1):42-45.
    [160]Shumway R H, Stoffer D S. Time Series Analysis and Its Applications with R Examples[M]. 3rd ed. Springer Verlag,2011:83-161.
    [161]Box George E. P., Jenkins Gwilym M., Reinsel Gregory C.时间序列分析-预测与控制[Z].机械工业出版社,2011.
    [162]胡军华,唐德善.时间序列模型在径流长期预报中的应用研究[J].人民长江.2006,37(2):40-41.
    [163]王富强,霍风霖.中长期水文预报方法研究综述[J].人民黄河.2010,32(03):25-28.
    [164]唐启义,冯明光.DPS数据处理系统—实验设计、统计分析及模型优化[M].北京:科学出版社,2006.
    [165]张德丰编著MATLAB神经网络应用设计[M].北京:机械工业出版社,2009.
    [166]张德丰等编MATLAB神经网络仿真与应用[M].北京:电子工业出版社,2009.
    [167]雷文娟.疏勒河流域水资源优化配置研究[D].兰州大学,2011.
    [168JMATLAB数据归一化汇总 (最全面的归一化介绍) [EB/OL].http://www.matlabsky.com/thread-9268-1-1.html,2010.
    [169]Zweiri Y H, Seneviratne L D, Althoefer K. Stability analysis of a three-term backpropagation algorithm[J]. Neural networks.2005,18(10):1341-1347.
    [170]沈花玉,王兆霞,高成耀,等.BP神经网络隐含层单元数的确定[J].天津理工大学学报.2008,24(5):13-15.
    [171]Beale M H, Hagan M T, Demuth H B. Neural Network Too lboxTM User's Guide (R2011b)[Z]. The MathWorks, Inc.,2011.
    [172]左其亭.水资源学教程[M].北京:中国水利水电出版社,2008.
    [173]宋小燕,穆兴民,高鹏,等.松花江流域哈尔滨站降雨径流历史演变及其驱动力分析[J].中国水土保持科学.2010(2):46-51.
    [174]李义天,邓金运,孙昭华.河流水沙灾害及其防治[M].武汉:武汉大学出版社,2004:284.
    [175]Fu K D, He D M, Lu X X. Sedimentation in the Manwan reservoir in the Upper Mekong and its downstream impacts[J]. Quaternary International.2008,186(1):91-99.
    [176]吴保生,申冠卿.来沙系数物理意义的探讨[J].人民黄河.2008,30(4):15-16.
    [177]曹文洪.黄河下游水沙复杂变化与河床调整的关系[J].水利学报.2004(11):1-6.
    [178]郭庆超.天然河道水流挟沙能力研究[J].泥沙研究.2006(5):45-51.
    [179]Lu X, Higgitt D L. Sediment yield variability in the Upper Yangtze, China[J]. Earth Surface Processes and Landforms.1999,24(12):1077-1093.
    [180]Lu X X. Spatial variability and temporal change of water discharge and sediment flux in the lower Jinsha tributary:impact of environmental changes[J]. River research and applications.2005, 21(2-3):229-243.
    [181]何大明,冯彦,甘淑,等.澜沧江干流水电开发的跨境水文效应[J].科学通报.2006,51(S2):14-20.
    [182]徐宪立,马克明,傅伯杰,等.植被与水土流失关系研究进展[J].生态学报.2006,26(9):3137-3143.
    [183]丁文荣,周跃,吕喜玺.河流输沙率变化规律研究:小波分析在红河支流盘龙河的应用[J].科学通报.2007(S2):148-154.
    [184]吴传钧.中国经济地理[M].北京:科学出版社,1998.
    [185]任敬,何大明,傅开道,等.气候变化与人类活动驱动下的元江-红河流域泥沙变化[J].科学通报.2007,52(S2):142-147.
    [186]叶长青,甘淑,王文玲,等.元江—红河干流径流时序特性及突变分析[J].长江流域资源与环境.2008,17(6):886-891.
    [187]代兴兰,李华仙.红河流域泥沙演变趋势分析[J].水土保持应用技术.2008(2):18-20.
    [188]李运刚,何大明,叶长青.云南红河流域径流的时空分布变化规律[J].地理学报.2008,63(1):41-49.
    [189]西双版纳自治州地方志编委会.西双版纳傣族自治州水利志[G].昆明:云南民族出版社,1997.
    [190]中国水电顾问集团昆明勘测设计研究院.云南省小黑江回龙山水电站环境影响报告书[R].昆明,2011.
    [191]张子贤,拜存有.工程水文及水利计算[M].北京:中国水利水电出版社,2008..
    [192]陈集中.应用人工神经网络BP模型预测乌江流域年平均含沙量[J].水文.2005,25(04):6-9.
    [193]Thorp J H, Mantovani S. Zooplankton of turbid and hydrologically dynamic prairie rivers[J]. Freshwater Biology.2005,50(9):1474-1491.
    [194]Kemp P, Sear D, Collins A, et al. The impacts of fine sediment on riverine fish[J]. Hydrological Processes.2011,25(11):1800-1821.
    [195]张伟.基于人工神经网络的径流预测研究[D].石河子大学,2008.
    [196]包为民.水文预报(第四版)[M].北京:中国水利水电出版社,2009.