番茄ICE1a基因的分离与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在自然界中,植物不可避免地遭受各种环境因子的刺激,例如低温,干旱和盐渍胁迫。在长期的进化过程中植物形成了响应胁迫信号和提高自身抗性的应变机制,它们通过调节抗性基因的表达来引起生理生化反应,在体内建立新的物质和能量代谢平衡,从而在环境改变后得以存活。
     低温冷害作为一种常见的非生物胁迫,它影响植物的生长,生存和时空分布。经常会对作物生长和农业生产带来负面的影响。低温冷害对于植物细胞的直接影响是使之代谢缓慢,间接影响是引起渗透胁迫和氧化胁迫等。温带植物在遭受严寒时,自身会主动引起生理生化反应,这一过程称为冷驯化或冷锻炼,进而提高其耐冷性。ICE转录因子是植物冷驯化过程中的一个关键“开关”,它响应低温信号,并通过调控CBF/DREB1转录因子进而激活下游COR(cold-regulated)基因的表达,从而调节植物的耐低温能力。
     目前关于ICE基因的研究多集中在拟南芥,小麦等耐冷植物中,对于冷敏感植物番茄的研究较少。番茄是重要的蔬菜作物,分布广泛,具有重要的经济和社会效益。本研究从番茄叶片中克隆到一个新的ICE1基因,对其进行了表达和功能分析,具体结果如下:
     (1)利用同源克隆的方法分离了番茄中一个新的MYC类的bHLH转录因子,并命名为SlICE1a,GenBank注册号为JX625139。该基因ORF为1596bp,编码一条531个氨基酸的多肽,预测分子量为58.3kDa。蛋白质结构中包含了保守的bHLH和ACT-Like结构域,以及丝氨酸富集区和潜在的SUMO结合位点。
     (2)将SlICE1a与GFP融合后在洋葱表皮细胞瞬时表达发现,SlICE1a蛋白定位于细胞核中;通过与GAL4-BD融合后在酵母中表达发现,SlICE1a具有转录激活能力,且激活结构域位于蛋白的N末端。
     (3)利用荧光定量PCR的方法对SlICE1a基因在番茄中的表达特性进行了研究。结果表明,SlICE1a基因在叶片中表达量高于其它器官;转录水平受到低温、氧化、干旱以及高盐等非生物胁迫和ABA等信号分子的诱导表达,所以我们认为SlICE1a可能在植物响应胁迫信号过程中起重要作用。
     (4)构建由35S启动子驱动SlICE1a的植物表达载体,利用农杆菌介导的方法转化烟草,转基因烟草经卡那霉素筛选后进一步RT-qPCR分析,选取了表达量不同的三个株系(L8,10,26)T3代植株进行后续试验。在正常生长条件下,转基因植株表型没有发生改变。
     (5)与野生型植株相比,过表达SlICE1a一定程度上提高了烟草的冷驯化能力,并且显著提高了抵御渗透胁迫,盐胁迫和氧化胁迫的能力。过表达SlICE1a基因烟草在胁迫处理时可以激活并提高下游CBF/DREB以及多个逆境响应基因的表达,尤其是与渗透调节物质合成相关的基因。转基因植株积累了更多的游离型脯氨酸和可溶性糖,来维持细胞渗透平衡和内环境稳态,清除了更多的活性氧物质,有利于维持细胞膜的稳定性,进而降低了环境剧变引起的渗透和氧化伤害,提高了其抗逆性。
     (6)分析发现SlICE1a可以结合下游SlCBF1和SlCBF3的启动子上的MYC特异序列,说明在冷敏感作物番茄中,同样存在重要的ICE-CBF低温信号通路。由于过表达番茄ICE1和CBF转录因子都能够提高转基因植物的耐低温能力,我们认为位于番茄CBF下游的调控网络中的基因可能是导致番茄对低温敏感的决定性因素。
     这些研究结果,不仅使我们进一步的了解了ICE转录因子在植物应答非生物胁迫中的重要作用,并且对于通过基因工程手段改良植物的抗逆性具有一定的理论和实践意义。
In the natural environment, plants are unavoidable subjected to the environmentalstresses, such as drought, high salinity and low temperature. Plants adapt to these stressesthrough the physiological and biochemical changes, including the expression of stressresponsively functional and regulatory genes, which reprogram the biological activities andestablish a new metabolism balance.
     Low temperature is an important environmental factor limiting the geographicaldistribution and growing season of plants. Cold stress often affects plant growth and cropproductivity, which causes significant crop losses. Cold stress limits the normal growth anddevelopment of plants directly by the inhibition of metabolic reactions and indirectly throughcold-induced osmotic and oxidative stresses. Temperate plants are capable of developingchilling tolerance when they are exposed to low non-freezing temperatures, a process knownas cold acclimation, which is associated with biochemical and physiological changes. ICE(inducer of CBF expression) is a key transcription factor in cold signaling pathway as well asa master regulator of cold acclimation. It regulates the expression of CBF/DREB1by bindingto MYC recognition elements and activate COR (cold-regulated) genes in turn.
     So far, researches about ICEs are mainly focus on the LT-tolerant plants, such asArabidopsis and wheat, and the information of ICE in tomato is relatively limited and hasemerged only recently. Tomato is an important vegetable around the world, while it ischilling-sensitive and incapable of cold acclimation. Thus, the research of chilling tolerancemechanism is an important theoretical and practical value. A series of studies have beenconducted on the isolation, sequence and expression analysis, function identification ofSlICE1a. The main results are as follows:
     (1) We isolated a novel MYC-type bHLH transcription factor, designated SlICE1a(JX625139), from tomato. It consists of a1596bp open reading frame (ORF) that encodes apolypeptide of531amino acids with a predicted molecular weight of58.3kDa. SlICE1acontains all conserved bHLH domain, S-rich region and ACT-domain, and a putative SUMO conjugation motif.
     (2) To observe the subcellular localization of SlICE1a, an expression cassette wasconstruct by fusing SlICE1a with the GFP reporter gene, and expressed transiently in onionepidermal cells. For transcriptional activation analysis, different coding regions of SlICE1awere constructed with the sequence of GAL4DNA-binding domain, respectively. The fusionconstructs were introduced into yeast strain Y2HGold. It is confirmed that SlICE1a localizesto the nucleus and harbors transcription-activating activity in the N-terminal.
     (3) RT-qPCR analysis showed that the expression of SlICE1a was stronger in leaves thanin other tissues. SlICE1a transcript was slightly up-regulated by cold, high salt, osmotic andoxidative stresses, and ABA can also induce the expression of SlICE1a. These results indicatethat SlICE1a may be involved in the adaptive responses to abiotic stresses.
     (4) The expression vector pBI-SlICE1a was constructed and transformed into tobaccoplant (Nicotiana benthamiana) with Agrobacterium tumefaciens-mediated leaf disc method.Transformants were evaluated by RT-qPCR after the filtering with kanamycin. Base on thevarious advanced levels of SlICE1a over-expression in transgenic lines, L8, L10and L26(T3)were chosen for further experiments. There were no obvious morphological differencesbetween WT and transgenic plants during all lifecycles under normal growth conditions.
     (5) SlICE1a conferred transgenic tobacco enhanced tolerance against cold, osmotic,oxidative and high salinity. Over-expression of SlICE1a in tobacco enhanced the induction ofCBF/DREB1and their target gene, consequently elevated the levels of proline, soluble sugarsand LEA proteins, which play important roles in stabilizing membranes of plant cells and inalleviating osmotic and oxidative injuries induced by many abiotic stresses.
     (6) SlICE1a could bind to two MYC DNA fragment in SlCBF1and SlCBF3promoter,indicating that tomato has complete ICE-CBF cold response pathways. Since both SlICE1aand SlICE1can transactive the expression of cold-responsive genes and regulate coldtolerance, suggesting that some downstream factors may be involved in chilling-sensitivity oftomato.
     These results broaden our knowledge about ICE genes in stress tolerance and provide a new clue for the application of genetic engineering in crop improvement.
引文
康国章,王正询,孙谷畴。植物的冷调节蛋白。植物学通报,2002,(19):239-246
    刘炜,孙德兰,王红等。2℃低温下抗寒冬小麦与冷敏感春小麦幼苗细胞质膜Ca2+-ATPase活性比较。作物学报,2002,28:227-9
    Agarwal P.K., Agarwal P., Reddy M., Sopory S.K.. Role of DREB transcription factors inabiotic and biotic stress tolerance in plants. Plant Cell Rep.,2006,25:1263-1274
    Aro E.-M., Virgin I., Andersson B.. Photoinhibition of photosystem II. Inactivation, proteindamage and turnover. Biochi Biophys Acta (BBA)-Bioenergetics,1993,1143:113-134
    Atchley W.R., Fitch W.M.. A natural classification of the basic helix–loop–helix class oftranscription factors. Proc. Natl. Acad. Sci. USA,1997,94:5172-5176
    Badawi M., Reddy Y.V., Agharbaoui Z., Tominaga Y., Danyluk J., Sarhan F., Houde M..Structure and functional analysis of wheat ICE (inducer of CBF expression) genes. PlantCell Physiol.,2008,49:1237-1249
    Baker S.S., Wilhelm K.S., Thomashow M.F.. The5'-region of Arabidopsis thaliana cor15a hascis-acting elements that confer cold-, drought-and ABA-regulated gene expression. PlantMol. Biol.,1994,24:701-713
    Boyce J.M., Knight H., Deyholos M., Openshaw M.R., Galbraith D.W., Warren G., KnightM.R.. The sfr6mutant of Arabidopsis is defective in transcriptional activation viaCBF/DREB1and DREB2and shows sensitivity to osmotic stress. Plant J.,2003,34:395-406
    Bunkelmann J.R., Trelease R.N.. Ascorbate peroxidase (A prominent membrane protein inoilseed glyoxysomes). Plant Physiol.,1996,110:589-598
    Carabelli M., Sessa G., Baima S., Morelli G., Ruberti I.. The Arabidopsis Athb-2and-4genesare strongly induced by far-red-rich light. Plant J.,1993,4:469-479
    Chinnusamy V., Ohta M., Kanrar S., Lee B.H., Hong X., Agarwal M., Zhu J.K.. ICE1: aregulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev.,2003,17:1043-1054
    Chinnusamy V., Schumaker K., Zhu J.K.. Molecular genetic perspectives on cross-talk andspecificity in abiotic stress signalling in plants. J. Exp. Bot.,2004,55:225-236
    Chinnusamy V., Zhu J., Zhu J.K.. Gene regulation during cold acclimation in plants. Physiol.Plant.,2006,126:52-61
    Chinnusamy V., Zhu J., Zhu J.K.. Cold stress regulation of gene expression in plants. TrendsPlant Sci.,2007,12:444-451
    Doherty C.J., Van Buskirk H.A., Myers S.J., Thomashow M.F.. Roles for ArabidopsisCAMTA transcription factors in cold-regulated gene expression and freezing tolerance.The Plant Cell,2009,21:972-984
    Donaldson R.P.. Ascorbate free-radical reduction by glyoxysomal membranes. Plant Physiol.,1990,94:531-537
    Dong C.H., Agarwal M., Zhang Y., Xie Q., Zhu J.K.. The negative regulator of plant coldresponses, HOS1, is a RING E3ligase that mediates the ubiquitination and degradation ofICE1. Proc. Natl. Acad. Sci. USA,2006,103:8281-8286
    Edwards E.A., Rawsthorne S., Mullineaux P.M.. Subcellular distribution of multiple forms ofglutathione reductase in leaves of pea (Pisum sativum L.). Planta,1990,180:278-284
    Ensminger I., Busch F., Huner N.. Photostasis and cold acclimation: sensing low temperaturethrough photosynthesis. Physiol. Plant.,2006,126:28-44
    Fedoroff N.V. Cross-talk in abscisic acid signaling.. Science Signaling,2002,2002: re10
    Ferre-D'Amare A., Pognonec P., Roeder R., Burley S.. Structure and function of the b/HLH/Zdomain of USF. The EMBO J.,1994,13:180
    Foyer C.H., Noctor G.. Tansley Review No.112. Oxygen processing in photosynthesis:Regulation and signalling. New Phytol.,2000:359-388
    Fursova O.V., Pogorelko G.V., Tarasov V.A.. Identification of ICE2, a gene involved in coldacclimation which determines freezing tolerance in Arabidopsis thaliana. Gene,2009,429:98-103
    Gillham D., Dodge A.. Hydrogen-peroxide-scavenging systems within pea chloroplasts.Planta,1986,167:246-251
    Gilmour S.J., Sebolt A.M., Salazar M.P., Everard J.D., Thomashow M.F.. Overexpression ofthe Arabidopsis CBF3transcriptional activator mimics multiple biochemical changesassociated with cold acclimation. Plant Physiol.,2000,124:1854-1865
    Gilmour S.J., Zarka D.G., Stockinger E.J., Salazar M.P., Houghton J.M., Thomashow M.F..Low temperature regulation of the Arabidopsis CBF family of AP2transcriptionalactivators as an early step in cold-induced COR gene expression. Plant J.,1998,16:433-442
    Grandori C., Cowley S.M., James L.P., Eisenman R.N.. The Myc/Max/Mad network and thetranscriptional control of cell behavior. Ann. Rev. Cell Develop.Biol.,2000,16:653-699
    Gutha L.R., Reddy A.R.. Rice DREB1B promoter shows distinct stress-specific responses,and the overexpression of cDNA in tobacco confers improved abiotic and biotic stresstolerance. Plant Mol.Biol.,2008,68:533-555
    Guy C.L.. Cold accelimation and freezing stress tolerance: role of protein metabolism. Ann.Rev. Plant Biol.,1990,41:187-223
    Haake V., Cook D., Riechmann J., Pineda O., Thomashow M.F., Zhang J.Z.. Transcriptionfactor CBF4is a regulator of drought adaptation in Arabidopsis. Plant Physiol.,2002,130:639-648
    Hirayama T., Shinozaki K.. Perception and transduction of abscisic acid signals: keys to thefunction of the versatile plant hormone ABA. Trends plant sci.,2007,12:343-351
    Hodgson R., Orr G.R., Raison J.K.. Inhibition of photosynthesis by chilling in the light. PlantSci.,1987,49:75-79
    Hossain M.A., Asada K.. Inactivation of ascorbate peroxidase in spinach chloroplasts on darkaddition of hydrogen peroxide: its protection by ascorbate. Plant Cell Physiol.,1984,25:1285-1295
    Hsieh T.H., Lee J.T., Yang P.T., Chiu L.H., Charng Y.Y., Wang Y.C., Chan M.T.. Heterologyexpression of the Arabidopsis C-repeat/dehydration response element Bbinding factor1gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato.Plant Physiol.,2002,129:1086-1094
    Jaglo-Ottosen K.R., Gilmour S.J., Zarka D.G., Schabenberger O., Thomashow M.F..Arabidopsis CBF1overexpression induces COR genes and enhances freezing tolerance.Science,1998,280:104-106
    Jimenez A., Hernandez J.A., del Río L.A., Sevilla F.. Evidence for the presence of theascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol.,1997,114:275-284
    Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K., Shinozaki K.. Improving plantdrought, salt, and freezing tolerance by gene transfer of a single stress-inducibletranscription factor. Nat Biotechnol.,1999,17:287-291
    Kasuga M., Miura S., Shinozaki K., Yamaguchi-Shinozaki K.. A combination of theArabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-andlow-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol.,2004,45:346-350
    Knight H., Veale E.L., Warren G.J., Knight M.R.. The sfr6mutation in Arabidopsis suppresseslow-temperature induction of genes dependent on the CRT/DRE sequence motif. ThePlant Cell,1999,11:875-886
    Knight H., Zarka D.G., Okamoto H., Thomashow M.F., Knight M.R.. Abscisic acid inducesCBF gene transcription and subsequent induction of cold-regulated genes via the CRTpromoter element. Plant Physiol.,2004,135:1710-1717
    Knight M.R., Knight H.. Low-temperature perception leading to gene expression and coldtolerance in higher plants. New Phytol.,2012,195:737-751
    Lata C., Prasad M.. Role of DREBs in regulation of abiotic stress responses in plants. J. Exp.Bot.,2011,62:4731-4748
    Law M., Charles S.A., Halliwell B.. Glutathione and ascorbic acid in spinach (Spinaciaoleracea) chloroplasts. The effect of hydrogen peroxide and of Paraquat. Biochemi. J.,1983,210:899
    Ledent V., Vervoort M.. The basic helix-loop-helix protein family: comparative genomics andphylogenetic analysis. Genome Res.,2001,11:754-770
    Lee B.H., Henderson D.A., Zhu J.K.. The Arabidopsis cold-responsive transcriptome and itsregulation by ICE1. Plant Cell,2005,17:3155-3175
    Lee H., Guo Y., Ohta M., Xiong L., Stevenson B., Zhu J.K.. LOS2, a genetic locus requiredfor cold-responsive gene transcription encodes a bi-functional enolase. Science Signaling,2002a,21:2692
    Lee H., Xiong L., Gong Z., Ishitani M., Stevenson B., Zhu J.K.. The Arabidopsis HOS1genenegatively regulates cold signal transduction and encodes a RING finger protein thatdisplays cold-regulated nucleo–cytoplasmic partitioning. Genes&Development,2001,15:912-924
    Lee I., Bender E., Kadenbach B.. Control of mitochondrial membrane potential and ROSformation by reversible phosphorylation of cytochrome c oxidase. In Oxygen/NitrogenRadicals: Cell Injury and Disease: Springer,2002, pp.63-70.
    Lissarre M., Ohta M., Sato A., Miura K.. Cold-responsive gene regulation during coldacclimation in plants. Plant Signal Behav.,2010,5:948-952
    Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K., Shinozaki K..Two transcription factors, DREB1and DREB2, with an EREBP/AP2DNA bindingdomain separate two cellular signal transduction pathways in drought-andlow-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell,1998,10:1391-1406
    Long S., East T., Baker N.. Chilling damage to photosynthesis in young Zea mays L. Effectsof light and temperature variation on photosynthetic CO2assimilation. J. Exp.Bot.,1983,34:177-188
    Los D.A., Murata N.. Membrane fluidity and its roles in the perception of environmentalsignals. Biochim.Biophys.Acta,2004,1666:142-157
    Lovisolo C., Perrone I., Hartung W., Schubert A.. An abscisic acid‐related reducedtranspiration promotes gradual embolism repair when grapevines are rehydrated afterdrought. New Phytol.,2008,180:642-651
    Ma P., Rould M.A., Weintraub H., Pabo C.O.. Crystal structure of MyoD bHLH domain-DNAcomplex: perspectives on DNA recognition and implications for transcriptional activation.Cell,1994,77:451-459
    Magome H., Yamaguchi S., Hanada A., Kamiya Y., Oda K.. dwarf and delayed‐flowering1,a novel Arabidopsis mutant deficient in gibberellin biosynthesis because ofoverexpression of a putative AP2transcription factor. Plant J.,2004,37:720-729
    Mahajan S., Tuteja N.. Cold, salinity and drought stresses: an overview. Arch. Biochem.Biophys.,2005,444:139-158
    Maruyama K., Sakuma Y., Kasuga M., Ito Y., Seki M., Goda H., Shimada Y., Yoshida S.,Shinozaki K., Yamaguchi‐Shinozaki K.. Identification of cold‐inducible downstreamgenes of the Arabidopsis DREB1A/CBF3transcriptional factor using two microarraysystems. Plant J.,2004,38:982-993
    Massari M.E., Murre C.. Helix-loop-helix proteins: regulators of transcription in eucaryoticorganisms. Mol.Cell. Biol.,2000,20:429-440
    Miura K., Jin J.B., Lee J., Yoo C.Y., Stirm V., Miura T., Ashworth E.N., Bressan R.A., YunD.-J., Hasegawa P.M.. SIZ1-mediated sumoylation of ICE1controls CBF3/DREB1Aexpression and freezing tolerance in Arabidopsis. The Plant Cell,2007,19:1403-1414
    Miura K., Sato A., Shiba H., Kang S.W., Kamada H., Ezura H.. Accumulation of antioxidantsand antioxidant activity in tomato, Solanum lycopersicum, are enhanced by thetranscription factor SlICE1. Plant Biotech.,2012a,29:261-269
    Miura K., Shiba H., Ohta M., Kang S.W., Sato A., Yuasa T., Iwaya-Inoue M., Kamada H.,Ezura H.. SlICE1encoding a MYC-type transcription factor controls cold tolerance intomato, Solanum lycopersicum. Plant Biotech.,2012b,29:253-260
    Mu oz-Bertomeu J., Bermúdez M.A., Segura J., Ros R.. Arabidopsis plants deficient inplastidial glyceraldehyde-3-phosphate dehydrogenase show alterations in abscisic acid(ABA) signal transduction: interaction between ABA and primary metabolism. J. Exp.Bot.,2011,62:1229-1239
    Murre C., McCaw P.S., Baltimore D.. A new DNA binding and dimerization motif inimmunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell,1989,56:777-783
    Nair K.K., Stephen K., Burley S.K.. Functional genomics: recognizing DNA in the library.Nature,2000,404:715-718
    Nakashima K., Ito Y., Yamaguchi-Shinozaki K.. Transcriptional regulatory networks inresponse to abiotic stresses in Arabidopsis and grasses. Plant Physiol.,2009,149:88-95
    Noctor G., Foyer C.H.. Ascorbate and glutathione: keeping active oxygen under control. Ann.Rev. Plant Biol.,1998,49:249-279
    Okamuro J.K., Caster B., Villarroel R., Van Montagu M., Jofuku K.D.. The AP2domain ofAPETALA2defines a large new family of DNA binding proteins in Arabidopsis. PNAS,1997,94:7076-7081rvar B.L., Sangwan V., Omann F., Dhindsa R.S.. Early steps in cold sensing by plant cells:the role of actin cytoskeleton and membrane fluidity. Plant J.,2000,23:785-794
    Powles S.B. Photoinhibition of photosynthesis induced by visible light. Annu. Rev. PlantPhysiol.,1984,35:15-44
    Saibo N.J., Lourenco T., Oliveira M.M.. Transcription factors and regulation ofphotosynthetic and related metabolism under environmental stresses. Ann. Bot.,2009,103:609-623
    Sangwan V., Foulds I., Singh J., Dhindsa R.S.. Cold‐activation of Brassica napus BN115promoter is mediated by structural changes in membranes and cytoskeleton, and requiresCa2+influx. Plant J.,2001,27:1-12
    Satoh R., Nakashima K., Seki M., Shinozaki K., Yamaguchi-Shinozaki K.. ACTCAT, a novelcis-acting element for proline-and hypoosmolarity-responsive expression of the ProDHgene encoding proline dehydrogenase in Arabidopsis. Plant Physiol.,2002,130:709-719
    Shinozaki K., Yamaguchi-Shinozaki K., Seki M.. Regulatory network of gene expression inthe drought and cold stress responses. Curr. Opin. Plant Biol.,2003,6:410-417
    Shukla R.K., Raha S., Tripathi V., Chattopadhyay D.. Expression of CAP2, anAPETALA2-family transcription factor from chickpea, enhances growth and tolerance todehydration and salt stress in transgenic tobacco. Plant Physiol.,2006,142:113-123
    Smirnoff N.. Ascorbate biosynthesis and function in photoprotection. Biol. Sci.,2000,355:1455-1464
    Stockinger E.J., Gilmour S.J., Thomashow M.F.. Arabidopsis thaliana CBF1encodes an AP2domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-actingDNA regulatory element that stimulates transcription in response to low temperature andwater deficit. Proc. Natl. Acad. Sci. USA,1997,94:1035-1040
    Takahashi S., Murata N.. How do environmental stresses accelerate photoinhibition? TrendsPlant Sci.,2008,13:178-182
    Thomashow M.F.. Plant cold acclimation: freezing tolerance genes and regulatorymechanisms. Annu. Rev. Plant Biol.,1999,50:571-599
    Tran L.S., Nakashima K., Sakuma Y., Simpson S.D., Fujita Y., Maruyama K., Fujita M., SekiM., Shinozaki K., Yamaguchi-Shinozaki K.. Isolation and functional analysis ofArabidopsis stress-inducible NAC transcription factors that bind to a drought-responsivecis-element in the early responsive to dehydration stress1promoter. Plant Cell,2004,16:2481-2498
    Vaultier M.N., Cantrel C., Vergnolle C., Justin A.M., Demandre C., Benhassaine-Kesri G.,i ek D., Zachowski A., Ruelland E.. Desaturase mutants reveal that membranerigidification acts as a cold perception mechanism upstream of the diacylglycerol kinasepathway in Arabidopsis cells. FEBS Lett.,2006,580:4218-4223
    Vergnolle C., Vaultier M.N., Taconnat L., Renou J.P., Kader J.C., Zachowski A., Ruelland E..The cold-induced early activation of phospholipase C and D pathways determines theresponse of two distinct clusters of genes in Arabidopsis cell suspensions. Plant Physiol.,2005,139:1217-1233
    Verslues P.E., Agarwal M., Katiyar‐Agarwal S., Zhu J., Zhu J.K.. Methods and concepts inquantifying resistance to drought, salt and freezing, abiotic stresses that affect plant waterstatus. Plant J.,2006,45:523-539
    Voetberg G.S., Sharp R.E.. Growth of the maize primary root at low water potentials III. Roleof increased proline deposition in osmotic adjustment. Plant Physiol.,1991,96:1125-1130
    Vogel J.T., Zarka D.G., Van Buskirk H.A., Fowler S.G., Thomashow M.F.. Roles of the CBF2and ZAT12transcription factors in configuring the low temperature transcriptome ofArabidopsis. Plant J.,2005,41:195-211
    Wang W., Vinocur B., Altman A.. Plant responses to drought, salinity and extremetemperatures: towards genetic engineering for stress tolerance. Planta,2003,218:1-14
    Wise R.R., Naylor A.W. Chilling-enhanced photooxidation evidence for the role of singletoxygen and superoxide in the breakdown of pigments and endogenous antioxidants. PlantPhysiol.,1987,83:278-282
    Xin Z.. Cold comfort farm: the acclimation of plants to freezing temperatures. Plant CellEnviron.,2000,23:893-902
    Xiong L., Gong Z., Rock C.D., Subramanian S., Guo Y., Xu W., Galbraith D., Zhu J.K..Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein inArabidopsis. Dev. Cell,2001,1:771-781
    Xiong L., Lee H., Huang R., Zhu J.K.. A single amino acid substitution in the ArabidopsisFIERY1/HOS2protein confers cold signaling specificity and lithium tolerance. Plant J.,2004,40:536-545
    Xiong L., Schumaker K.S., Zhu J.K.. Cell signaling during cold, drought, and salt stress.Plant Cell,2002,14: S165-S183
    Yamaguchi-Shinozaki K., Shinozaki K.. A novel cis-acting element in an Arabidopsis gene isinvolved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell,1994,6:251-264
    Yamaguchi-Shinozaki K., Shinozaki K.. Transcriptional regulatory networks in cellularresponses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol.,2006,57:781-803
    Yamaguchi K., Mori H., Nishimura M.. A novel isoenzyme of ascorbate peroxidase localizedon glyoxysomal and leaf peroxisomal membranes in pumpkin. Plant Cell Physiol.,1995,36:1157-1162
    Yoshiba Y., Kiyosue T., Nakashima K., Yamaguchi-Shinozaki K., Shinozaki K. Regulation oflevels of proline as an osmolyte in plants under water stress. Plant Cell Physiol.,1997,38:1095-1102
    Zarka D.G., Vogel J.T., Cook D., Thomashow M.F. Cold induction of Arabidopsis CBF genesinvolves multiple ICE (inducer of CBF expression) promoter elements and acold-regulatory circuit that is desensitized by low temperature. Plant Physiol.,2003,133:910-918
    Zhang X., Fowler S.G., Cheng H., Lou Y., Rhee S.Y., Stockinger E.J., Thomashow M.F..Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulonthat differs from that of freezing-tolerant Arabidopsis. Plant J.,2004,39:905-919
    Zhang Y.J., Yang J.S., Guo S.J., Meng J.J., Zhang Y.L., Wan S.B., He Q.W., Li X.G.. Over‐expression of the Arabidopsis CBF1gene improves resistance of tomato leaves to lowtemperature under low irradiance. Plant Biol.,2011,13:362-367
    Zhao M., Wang J., Shan W., Fan J., Kuang J., Wu K., Li X., Chen W., He F., Chen J. Inductionof jasmonate signalling regulators MaMYC2s and their physical interactions withMaICE1in methyl jasmonate-induced chilling tolerance in banana fruit. Plant, CellEnviron.,2012,
    Zheng Y., Schumaker K.S., Guo Y.. Sumoylation of transcription factor MYB30by the smallubiquitin-like modifier E3ligase SIZ1mediates abscisic acid response in Arabidopsisthaliana. Proc. Natl. Acad. Sci. USA,2012,109:12822-12827
    Zhu J.K.. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol.,2002,53:247-273