HBV转基因小鼠肝脏纤维化的免疫学机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝脏纤维化是威胁人类健康的重大疾病。长期饮酒、脂肪肝和慢性病毒性肝炎感染是可能引起肝脏纤维化的三个重要原因。肝脏发生纤维化是许多慢性肝病发展的终末状态,严重的肝脏纤维化将导致肝硬化甚至肝癌(hepatocellular carcinoma, HCC)的发生。肝脏纤维化过程中有许多细胞参与,包括肝脏实质细胞与非实质细胞。其中最受关注的效应细胞是肝脏星形细胞(hepatic stellate cell, HSC),HSC活化后分泌大量的胶原,导致细胞外基质(extracellular matrix, ECM)的大量累积。近年也有研究发现,肝实质细胞也参与了肝脏纤维化。同时,众所周知肝脏具有天然免疫的优势状态,这些在肝脏中大量存在的天然免疫细胞或多或少影响了肝脏纤维化的发展。
     我国拥有大量的乙肝(Hepatitis B virus, HBV)携带者,乙肝病毒感染是导致患者发生肝脏纤维化的重要原因。乙肝感染如何加速肝脏纤维化,肝脏中的免疫细胞如何参与其中尚无定论,其中一个重要原因是缺少可以利用的小鼠模型。在本文研究中,我们对C57BL/6鼠和HBV转基因(HBV-tg)鼠长期用肝脏毒物四氯化碳(carbon tetrachloride,CCl4)诱导肝脏纤维化,对肝脏损伤、病理学和纤维化相关分子进行检测,在机制研究中采用细胞群体的比例和数目分析、细胞清除、纯化、转输、HSC与NKT细胞共培养、分离肝实质细胞进行原代培养等方法。通过上述研究手段,我们取得的主要结果是:
     1、HBV-tg鼠可以自发肝脏纤维化
     通过检测肝脏损伤(alanine aminotransferase ,ALT,病理HE染色),我们发现六个月大的HBV-tg鼠肝损伤明显比相同年龄的对照鼠C57BL/6严重。对肝脏切片的天狼猩红(Sirius Red)染色和纤维化相关分子的荧光定量PCR检测,发现六个月大的HBV-tg鼠与C57BL/6鼠相比明显自发肝脏纤维化。
     2、HBV-tg鼠对CCl4长期诱导的肝脏纤维化更加敏感
     每周两次注射CCl4连续注射2周-14周诱导C57BL/6鼠和HBV-tg鼠产生肝脏纤维化。发现HBV-tg鼠的肝脏纤维化更加严重。我们首次发现,HBV-tg鼠可以作为很好的模拟人的乙肝携带者发展为肝脏纤维化的小鼠模型。
     3、HBV-tg鼠NKT细胞通过活化HSC促进了肝脏纤维化
     研究发现,给Rag1-/-鼠转输来自HBV-tg鼠的淋巴细胞可以引起Rag1-/-鼠肝脏纤维化,而转输来自C57BL/6鼠的淋巴细胞则不可以。进一步研究发现,在急性或慢性CCl4诱导下,HBV-tg鼠的肝脏NK细胞和NKT细胞比例和数目均比C57BL/6鼠多。通过细胞清除、转输等实验发现,HBV-tg鼠的肝脏NKT细胞对HSC活化具有促进作用。同时NKT细胞也促进了纤维化相关分子表达,从而加重了HBV-tg鼠的肝脏纤维化。
     4、NKT细胞通过分泌细胞因子促进HSC的活化
     NKT细胞怎样活化HSC?我们发现与C57BL/6鼠相比,HBV-tg鼠在CCl_4刺激下肝脏NKT细胞总数增多,同时分泌细胞因子IFN-γ,IL-4和IL-13的NKT细胞数目增多。将HBV-tg鼠通过流式分选出的肝脏NKT细胞,与通过肝脏灌流分离出来的HSC共培养,发现NKT细胞可以活化HSC。如果在共培养体系中加入抗IL-4和IL-13的中和抗体,这种活化作用会消失;如果加入抗IFN-γ的中和抗体没有这种作用。说明NKT细胞通过分泌Th2类细胞因子(eg,IL-4,IL-13)活化HSC。
     5、HBV-tg鼠的肝实质细胞可以自发上皮间质转变(epithelial-mesenchyma-transition,EMT)
     HBV-tg鼠中除了NKT细胞对肝脏纤维化具有促进作用,我们发现其肝实质细胞也发挥了促进作用。来自六个月大的C57BL/6鼠和HBV-tg鼠的肝实质细胞通过肝脏灌流分离出来体外培养,可以明显看出来自HBV-tg鼠的肝实质细胞比来自C57BL/6鼠的肝实质细胞表现出更显著的间质细胞表型。经过定量PCR检测EMT的标志分子波形蛋白(vimentin),发现其在HBV-tg鼠的肝实质细胞中表达上调,更加证明HBV-tg鼠的肝实质细胞可以自发EMT。对两种鼠分离得到的肝实质细胞进行纤维化相关分子检测,发现这些分子在六个月大的HBV-tg鼠中表达增高,表明HBV-tg鼠肝实质细胞发生EMT对肝脏纤维化具有促进作用。
     6、HBV-tg鼠的肝实质细胞在CCl_4诱导纤维化过程中通过发生EMT促进纤维化的发生
     对CCl_4诱导肝脏纤维化的HBV-tg鼠和C57BL/6鼠原代分离肝实质细胞进行体外培养,在不同的时间点进行拍照比较,可以看出来自HBV-tg鼠的肝实质细胞具有更加典型的成纤维细胞表型,进一步通过定量PCR检测vimentin,HBV-tg鼠的肝实质细胞表达vimentin增加,说明HBV-tg鼠的肝实质细胞在诱导肝脏纤维化过程中更容易发生EMT。对纤维化相关分子检测,也发现在某些时间点这些分子表达上调。这个结果说明在CCl_4诱导肝脏纤维化过程中,肝实质细胞也起到促进作用。
     7、NK细胞具有抑制HBV-tg鼠EMT的作用
     我们发现对HBV-tg鼠注射CCl_4 24小时,肝脏EMT标志分子vimentin表达会增高。通过细胞清除实验发现NK细胞对EMT具有一定的抑制作用。推测NK细胞可能通过作用在CCl_4诱导下肝实质细胞表达上调的DR5发挥抑制作用。
     8、HBV-tg鼠发生EMT对乙肝诱发肝癌具有促进作用
     我们发现HBV-tg鼠的肝实质细胞容易发生EMT。最新的研究显示,EMT对癌症发生具有促进作用。同时我们发现HBV-tg鼠晚期会自发肝脏肿瘤;通过每周两次CCl_4注射连续诱导14周的HBV-tg鼠全部发生肝脏肿瘤。所以我们提出HBV-tg鼠也是一种研究乙肝导致肝癌的很好模型。
     结论:HBV-tg鼠是研究乙肝携带加速肝脏纤维化的重要小鼠模型。HBV-tg鼠的免疫细胞对肝脏纤维化具有促进作用,其中肝脏NKT细胞主要通过分泌细胞因子活化HSC。另一方面,HBV-tg鼠的肝实质细胞通过发生EMT参与肝脏纤维化,并对肝癌发生具有促进作用。
Liver fibrosis is huge threaten to human health. Long term alcohol drinking, fatty liver and chronic virus hepatitis infection are the three major causes of liver fibrosis. Liver fibrosis is a common end for many chronic liver diseases. Serious liver fibrosis could lead to cirrhosis or even hepatocellular carcinoma (HCC). There are many kinds of cell participate in liver fibrosis, including parenchyma and non-parenchyma cells. Among which the most significant cell is hepatic stellate cell (HSC). Upon activation, HSC secrete a lot of collagen, inducing extracellular matrix (ECM) deposition. Recent studies suggested that the hepatocyte also has a role in liver fibrosis. At the same time, liver is predominant for the innate immunity, the innate cells in the liver could affect the progress of liver fibrosis.
     These are many Chinese hepatitis B virus (HBV) carriers, which is the main causes for later liver fibrosis. How HBV infection accelerates liver fibrosis and the immune cells function are not completed studied. One of the most important reasons is the lack of suitable mice model. In this study, we compared liver fibrosis after the long term hepatotoxin carbon tetrachloride (CCl_4) administration in C57BL/6 mice and HBV-tg mice. We tested the liver injury, pathological changes and fibrosis related molecules. To find the mechanism, we used cell counting and ratio analysis, cell depletion, purification, adoptive transfer, co-culture of HSC and NKT cells, isolate and culture primary hepatocyte etc. Through the above methods, we have these results:
     1. Spontaneous liver fibrosis in HBV-tg mice
     We found the six month old HBV-tg mice had spontaneous liver injury compared with C57BL/6 mice by detecting alanine aminotransferase(ALT)and pathology. The six month old HBV-tg mice also had much more liver fibrosis than C57BL/6 mice by liver Sirius red staining and qPCR of fibrosis related genes.
     2. HBV-tg mice are oversensitive to CCl_4-induced liver fibrosis
     C57BL/6 and HBV-tg mice were injected CCl_4 twice a week and lasted from 2 to 14 weeks. We found much more liver fibrosis in HBV-tg mice than C57BL/6 mice. For the first time, we suggest HBV-tg mice for a good mice model to study HBV related liver fibrosis.
     3. NKT cell activate HSC and aggravate liver fibrosis in HBV-tg mice
     Experiments showed that Rag1-/- mice adoptively transferred lymphocytes from HBV-tg mice could induce liver fibrosis but not the cells from C57BL/6 mice. Further studies showed the percentage and number of liver NK and NKT cells are much more in HBV-tg mice than C57BL/6 mice after CCl_4 injection. We found in HBV-tg mice NKT cells could activate HSC by using cell depletion and adoptive transfer experiments. And NKT cell could also up-regulated fibrosis related genes, thus increasing liver fibrosis in HBV-tg mice.
     4. NKT cells activate HSC through secreting of cytokines
     How NKT cells activate HSC? We found NKT cell number increased in HBV-tg mice than C57BL/6 mice after CCl_4 injection. The number of NKT cell secreting IFN-γ, IL-4 and IL-13 were also more in HBV-tg mice. NKT cell could activate HSC in an in vitro co-culture of sorted liver NKT cells and perfused liver HSC. If we added neutralizing cytokine antibodies against IL-4 or IL-13, the activation was disappeared but not the antibody against IFN-γ. These results suggested NKT cell activate HSC by the Th2 cytokines (eg, IL-4, IL-13).
     5. Hepatocyte from HBV-tg mice has spontaneous epithelial-mesenchyma-transition (EMT).
     Besides NKT cell accelerating liver fibrosis, we also found the hepatocyte promoted liver fibrosis in HBV-tg mice. When cultured and compared the hepatocyte from six months of age C57BL/6 mice and HBV-tg mice, we found more mesenchyma cell phenotype from HBV-tg mice than C57BL/6 mice. The EMT marker vimentin also increased in the hepatocyte from HBV-tg mice than C57BL/6 mice by qPCR, which is a solid evidence for the EMT in HBV-tg mice. We also found the fibrosis related genes up regulated in hepatocyte from six month old HBV-tg mice than that of C57BL/6 mice, which demonstrated that the EMT from HBV-tg mice hepatocyte could contribute to liver fibrosis.
     6. The hepatocyte from CCl_4 induced liver fibrosis has EMT and contributes to liver fibrosis
     The hepatocyte was perfused and cultured from CCl_4 induced liver fibrosis of C57BL/6 mice and HBV-tg mice, and was visualized at different time points. The hepatocyte from HBV-tg mice showed more fibroblast like phenotype. The EMT marker vimentin was increased suggested the more EMT in hepatocyte of HBV-tg mice during CCl_4 induced liver fibrosis. The fibrosis related genes were also increased more in HBV-tg mice than C57BL/6 mice at some of the time points. These results showed the hepatocyte also contribute to CCl_4 induce liver fibrosis.
     7. NK cells inhibit EMT in HBV-tg mice
     We found EMT marker vimentin increased in HBV-tg mice after CCl_4 injection for 24 hours. NK cells could inhibit EMT by cell depletion experiment. We hypothesis that NK cells could inhibit hepatocyte EMT through the DR5 up-regulated in CCl_4 injected hepatocyte.
     8. EMT in HBV-tg mice contribute to HBV induced HCC
     The above results suggested there is more EMT in HBV-tg mice. Recent studies showed EMT could accelerate the carcinoma. We found the old HBV-tg mice could spontaneously develop liver tumor and two times a week CCl_4 injection for 14 weeks could induce liver tumor from all of the HBV-tg mice. So we suggested HBV-tg mice as a good animal model for study HBV induced carcinoma.
     Conclusion: HBV-tg mice is an important mice model for study HBV related liver fibrosis. The immune cells could accelerate liver fibrosis, especially liver NKT cells activate HSC through secreting of cytokines. On the other hand, the hepatocyte from HBV-tg mice could undergo EMT and participate in liver fibrosis, which is a contribution for HCC.
引文
Acloque H, Adams MS, Fishwick K, et al. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 2009;119:1438-1449.
    Altekruse SF, McGlynn KA, Reichman ME. Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. J Clin Oncol 2009;27:1485-1491.
    Amann T, Bataille F, Spruss T, et al. Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma. Cancer Sci 2009;100:646-653.
    Arbuthnot P, Kew M. Hepatitis B virus and hepatocellular carcinoma. Int J Exp Pathol 2001;82:77-100.
    Arima M, Terao H, Kashima K, et al. Regression of liver fibrosis in cases of chronic liver disease type C: quantitative evaluation by using computed image analysis. Intern Med 2004;43:902-910.
    Arthur MJ. Fibrogenesis II. Metalloproteinases and their inhibitors in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2000;279:G245-249.
    Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005;115:209-218.
    Bataller R, Gines P, Nicolas JM, et al. Angiotensin II induces contraction and proliferation of human hepatic stellate cells. Gastroenterology 2000;118:1149-1156.
    Beaussier M, Wendum D, Schiffer E, et al. Prominent contribution of portal mesenchymal cells to liver fibrosis in ischemic and obstructive cholestatic injuries. Lab Invest 2007;87:292-303.
    Beckman EM, Porcelli SA, Morita CT, et al. Recognition of a lipid antigen by CD1-restricted alpha beta+ T cells. Nature 1994;372:691-694.
    Benedict CA. Viruses and the TNF-related cytokines, an evolving battle. Cytokine Growth Factor Rev 2003;14:349-357.
    Benhenda S, Cougot D, Buendia MA, et al. Hepatitis B virus X protein molecular functions and its role in virus life cycle and pathogenesis. Adv Cancer Res 2009;103:75-109.
    Benyon RC, Arthur MJ. Extracellular matrix degradation and the role of hepatic stellate cells. Semin Liver Dis 2001;21:373-384.
    Bhogal RK, Bona CA. B cells: no longer bystanders in liver fibrosis. J Clin Invest 2005;115:2962-2965.
    Biron CA, Nguyen KB, Pien GC, et al. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 1999;17:189-220.
    Bissell DM, Gores GJ, Laskin DL, et al. Drug-induced liver injury: mechanisms and test systems. Hepatology 2001;33:1009-1013.
    Blomhoff R, Green MH, Berg T, et al. Transport and storage of vitamin A. Science 1990;250:399-404.
    Boeker KH, Haberkorn CI, Michels D, et al. Diagnostic potential of circulating TIMP-1 and MMP-2 as markers of liver fibrosis in patients with chronic hepatitis C. Clin Chim Acta 2002;316:71-81.
    Bonacchi A, Romagnani P, Romanelli RG, et al. Signal transduction by the chemokine receptor CXCR3: activation of Ras/ERK, Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes. J Biol Chem 2001;276:9945-9954.
    Bonnard P, Lescure FX, Amiel C, et al. Documented rapid course of hepatic fibrosis between two biopsies in patients coinfected by HIV and HCV despite high CD4 cell count. J Viral Hepat 2007;14:806-811.
    Borkham-Kamphorst E, van Roeyen CR, Ostendorf T, et al. Pro-fibrogenic potential of PDGF-D in liver fibrosis. J Hepatol 2007;46:1064-1074.
    Braet F, Wisse E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol 2002;1:1.
    Brechot C. Pathogenesis of hepatitis B virus-related hepatocellular carcinoma: old and new paradigms. Gastroenterology 2004;127:S56-61.
    Brigl M, Bry L, Kent SC, et al. Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 2003;4:1230-1237.
    Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology 2005;42:1208-1236.
    Brun P, Castagliuolo I, Pinzani M, et al. Exposure to bacterial cell wall products triggers an inflammatory phenotype in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2005;289:G571-578.
    Canbay A, Friedman S, Gores GJ. Apoptosis: the nexus of liver injury and fibrosis. Hepatology 2004;39:273-278.
    Castera L, Vergniol J, Foucher J, et al. Prospective comparison of transient elastography, Fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C. Gastroenterology 2005;128:343-350.
    Cerundolo V, Silk JD, Masri SH, et al. Harnessing invariant NKT cells in vaccination strategies. Nat Rev Immunol 2009;9:28-38.
    Cerwenka A, Lanier LL. Natural killer cells, viruses and cancer. Nat Rev Immunol 2001;1:41-49.
    Cheever AW, Williams ME, Wynn TA, et al. Anti-IL-4 treatment of Schistosoma mansoni-infected mice inhibits development of T cells and non-B, non-T cells expressing Th2 cytokines while decreasing egg-induced hepatic fibrosis. J Immunol 1994;153:753-759.
    Chen L, Chan TH, Yuan YF, et al. CHD1L promotes hepatocellular carcinoma progression and metastasis in mice and is associated with these processes in human patients. J Clin Invest;120:1178-1191.
    Chen Y, Wei H, Sun R, et al. Increased susceptibility to liver injury in hepatitis B virus transgenic mice involves NKG2D-ligand interaction and natural killer cells. Hepatology 2007;46:706-715.
    Chen Y, Wei H, Sun R, et al. Impaired function of hepatic natural killer cells from murine chronic HBsAg carriers. Int Immunopharmacol 2005;5:1839-1852.
    Cheng F, Li Y, Feng L, et al. Hepatic stellate cell activation and hepatic fibrosis induced by ischemia/reperfusion injury. Transplant Proc 2008;40:2167-2170.
    Chiaramonte MG, Cheever AW, Malley JD, et al. Studies of murine schistosomiasis reveal interleukin-13 blockade as a treatment for established and progressive liver fibrosis. Hepatology 2001;34:273-282.
    Chiaramonte MG, Donaldson DD, Cheever AW, et al. An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J Clin Invest 1999;104:777-785.
    Chisari FV, Pinkert CA, Milich DR, et al. A transgenic mouse model of the chronic hepatitis B surface antigen carrier state. Science 1985;230:1157-1160.
    Choi SS, Diehl AM. Epithelial-to-mesenchymal transitions in the liver. Hepatology 2009;50:2007-2013.
    Chuang YH, Lian ZX, Yang GX, et al. Natural killer T cells exacerbate liver injury in a transforming growth factor beta receptor II dominant-negative mouse model of primary biliary cirrhosis. Hepatology 2008;47:571-580.
    Cicchini C, Laudadio I, Citarella F, et al. TGFbeta-induced EMT requires focal adhesion kinase (FAK) signaling. Exp Cell Res 2008;314:143-152.
    Clarke P, Meintzer SM, Gibson S, et al. Reovirus-induced apoptosis is mediated by TRAIL. J Virol 2000;74:8135-8139.
    Clouthier DE, Comerford SA, Hammer RE. Hepatic fibrosis, glomerulosclerosis, and a lipodystrophy-like syndrome in PEPCK-TGF-beta1 transgenic mice. J Clin Invest 1997;100:2697-2713.
    Connolly MK, Bedrosian AS, Mallen-St Clair J, et al. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-alpha. J Clin Invest 2009;119:3213-3225.
    Constandinou C, Henderson N, Iredale JP. Modeling liver fibrosis in rodents. Methods Mol Med 2005;117:237-250.
    Crispe IN. Hepatic T cells and liver tolerance. Nat Rev Immunol 2003;3:51-62. Czochra P, Klopcic B, Meyer E, et al. Liver fibrosis induced by hepatic overexpression of PDGF-B in transgenic mice. J Hepatol 2006;45:419-428.
    De Giorgio M, Fagiuoli S. Management of hepatocellular carcinoma. Dig Dis 2007;25:279-281. de Lalla C, Galli G, Aldrighetti L, et al. Production of profibrotic cytokines by invariant NKT cells characterizes cirrhosis progression in chronic viral hepatitis. J Immunol 2004;173:1417-1425.
    De Minicis S, Seki E, Uchinami H, et al. Gene expression profiles during hepatic stellate cell activation in culture and in vivo. Gastroenterology 2007;132:1937-1946.
    De Mitri MS, Cassini R, Bernardi M. Hepatitis B virus-related hepatocarcinogenesis: molecular oncogenic potential of clear or occult infections. Eur J Cancer;46:2178-2186.
    Diaz R, Kim JW, Hui JJ, et al. Evidence for the epithelial to mesenchymal transition in biliary atresia fibrosis. Hum Pathol 2008;39:102-115.
    Ding W, You H, Dang H, et al. Epithelial-to-mesenchymal transition of murine liver tumor cells promotes invasion. Hepatology;52:945-953.
    Dong Z, Zhang J, Sun R, et al. Impairment of liver regeneration correlates with activated hepatic NKT cells in HBV transgenic mice. Hepatology 2007;45:1400-1412.
    Dooley S, Hamzavi J, Ciuclan L, et al. Hepatocyte-specific Smad7 expression attenuates TGF-beta-mediated fibrogenesis and protects against liver damage. Gastroenterology 2008;135:642-659.
    Dubuisson L, Lepreux S, Bioulac-Sage P, et al. Expression and cellular localization of fibrillin-1 in normal and pathological human liver. J Hepatol 2001;34:514-522.
    Duffield JS, Forbes SJ, Constandinou CM, et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 2005;115:56-65.
    Dunn C, Brunetto M, Reynolds G, et al. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell-mediated liver damage. J Exp Med 2007;204:667-680.
    Dunsford HA, Sell S, Chisari FV. Hepatocarcinogenesis due to chronic liver cell injury in hepatitis B virus transgenic mice. Cancer Res 1990;50:3400-3407.
    El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007;132:2557-2576.
    Falkowski O, An HJ, Ianus IA, et al. Regeneration of hepatocyte 'buds' in cirrhosis from intrabiliary stem cells. J Hepatol 2003;39:357-364.
    Feldstein AE, Canbay A, Angulo P, et al. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology 2003;125:437-443.
    Fertin C, Nicolas JF, Gillery P, et al. Interleukin-4 stimulates collagen synthesis by normal and scleroderma fibroblasts in dermal equivalents. Cell Mol Biol 1991;37:823-829.
    Forbes SJ, Russo FP, Rey V, et al. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology 2004;126:955-963.
    Friedman SL. Mechanisms of disease: Mechanisms of hepatic fibrosis and therapeutic implications. Nat Clin Pract Gastroenterol Hepatol 2004;1:98-105.
    Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008;134:1655-1669.
    Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 2000;275:2247-2250.
    Friedman SL, Rockey DC, Bissell DM. Hepatic fibrosis 2006: report of the Third AASLD Single Topic Conference. Hepatology 2007;45:242-249.
    Fujii S, Shimizu K, Kronenberg M, et al. Prolonged IFN-gamma-producing NKT response induced with alpha-galactosylceramide-loaded DCs. Nat Immunol 2002;3:867-874.
    Gall SA. Immunology update: hepatitis B virus immunization today. Infect Dis Obstet Gynecol 2001;9:63-64.
    Gao B, Jeong WI, Tian Z. Liver: An organ with predominant innate immunity. Hepatology 2008;47:729-736.
    Geerts A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin Liver Dis 2001;21:311-335.
    Germani G, Hytiroglou P, Fotiadu A, et al. Assessment of fibrosis and cirrhosis in liver biopsies: an update. Semin Liver Dis;31:82-90.
    Gines P, Cardenas A, Arroyo V, et al. Management of cirrhosis and ascites. N Engl J Med 2004;350:1646-1654.
    Godfrey DI, Kronenberg M. Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest 2004;114:1379-1388.
    Godfrey DI, MacDonald HR, Kronenberg M, et al. NKT cells: what's in a name? Nat Rev Immunol 2004;4:231-237.
    Gotzmann J, Fischer AN, Zojer M, et al. A crucial function of PDGF in TGF-beta-mediated cancer progression of hepatocytes. Oncogene 2006;25:3170-3185.
    Goubier A, Dubois B, Gheit H, et al. Plasmacytoid dendritic cells mediate oral tolerance. Immunity 2008;29:464-475.
    Grabstein KH, Eisenman J, Shanebeck K, et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 1994;264:965-968.
    Grisham JW. A morphologic study of deoxyribonucleic acid synthesis and cell proliferation inregenerating rat liver; autoradiography with thymidine-H3. Cancer Res 1962;22:842-849.
    Guarner C, Soriano G, Tomas A, et al. Increased serum nitrite and nitrate levels in patients with cirrhosis: relationship to endotoxemia. Hepatology 1993;18:1139-1143.
    Guidotti LG, Chisari FV. Cytokine-induced viral purging--role in viral pathogenesis. Curr Opin Microbiol 1999;2:388-391.
    Guidotti LG, Ishikawa T, Hobbs MV, et al. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity 1996;4:25-36.
    Gutierrez-Reyes G, Gutierrez-Ruiz MC, Kershenobich D. Liver fibrosis and chronic viral hepatitis. Arch Med Res 2007;38:644-651.
    Hache C, Villeneuve JP. Lamivudine treatment in patients with chronic hepatitis B and cirrhosis. Expert Opin Pharmacother 2006;7:1835-1843.
    Han LH, Sun WS, Ma CH, et al. Detection of soluble TRAIL in HBV infected patients and its clinical implications. World J Gastroenterol 2002;8:1077-1080.
    Herr I, Schemmer P, Buchler MW. On the TRAIL to therapeutic intervention in liver disease. Hepatology 2007;46:266-274.
    Herzer K, Sprinzl MF, Galle PR. Hepatitis viruses: live and let die. Liver Int 2007;27:293-301.
    Hinz B, Phan SH, Thannickal VJ, et al. The myofibroblast: one function, multiple origins. Am J Pathol 2007;170:1807-1816.
    Housset CN, Rockey DC, Friedman SL, et al. Hepatic lipocytes: a major target for endothelin-1. J Hepatol 1995;22:55-60.
    Huo TI, Wang XW, Forgues M, et al. Hepatitis B virus X mutants derived from human hepatocellular carcinoma retain the ability to abrogate p53-induced apoptosis. Oncogene 2001;20:3620-3628.
    Ikegami T, Zhang Y, Matsuzaki Y. Liver fibrosis: possible involvement of EMT. Cells Tissues Organs 2007;185:213-221.
    Iredale JP. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J Clin Invest 2007;117:539-548.
    Jaeschke H. Inflammation in response to hepatocellular apoptosis. Hepatology 2002;35:964-966.
    Janeway CA, Jr., Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002;20:197-216.
    Jeong WI, Gao B. Innate immunity and alcoholic liver fibrosis. J Gastroenterol Hepatol 2008;23 Suppl 1:S112-118.
    Jeong WI, Park O, Gao B. Abrogation of the antifibrotic effects of natural killer cells/interferon-gamma contributes to alcohol acceleration of liver fibrosis. Gastroenterology 2008;134:248-258.
    Jeong WI, Park O, Radaeva S, et al. STAT1 inhibits liver fibrosis in mice by inhibiting stellate cell proliferation and stimulating NK cell cytotoxicity. Hepatology 2006;44:1441-1451.
    Jin Z, Sun R, Wei H, et al. Accelerated liver fibrosis in hepatitis B virus transgenic mice: involvement of natural killer T cells. Hepatology;53:219-229.
    Johansson N, Ahonen M, Kahari VM. Matrix metalloproteinases in tumor invasion. Cell Mol Life Sci 2000;57:5-15.
    Kaimori A, Potter J, Kaimori JY, et al. Transforming growth factor-beta1 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro. J Biol Chem 2007;282:22089-22101.
    Kakimi K, Guidotti LG, Koezuka Y, et al. Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J Exp Med 2000;192:921-930.
    Kalluri R. EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest 2009;119:1417-1419.
    Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009;119:1420-1428.
    Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer 2006;6:392-401.
    Kasahara A, Hayashi N, Mochizuki K, et al. Circulating matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-1 as serum markers of fibrosis in patients with chronic hepatitis C. Relationship to interferon response. J Hepatol 1997;26:574-583.
    Kawai T, Akira S. Innate immune recognition of viral infection. Nat Immunol 2006;7:131-137.
    Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell;141:52-67.
    Kim CM, Koike K, Saito I, et al. HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 1991;351:317-320.
    Kim J, Hong SJ, Park JY, et al. Epithelial-mesenchymal transition gene signature to predict clinical outcome of hepatocellular carcinoma. Cancer Sci;101:1521-1528.
    Kim K, Kim KH, Cheong J. Hepatitis B virus X protein impairs hepatic insulin signaling through degradation of IRS1 and induction of SOCS3. PLoS One;5:e8649.
    Kimura K, Ando K, Ohnishi H, et al. Immunopathogenesis of hepatic fibrosis in chronic liver injury induced by repeatedly administered concanavalin A. Int Immunol 1999;11:1491-1500.
    Kinnman N, Hultcrantz R, Barbu V, et al. PDGF-mediated chemoattraction of hepatic stellate cells by bile duct segments in cholestatic liver injury. Lab Invest 2000;80:697-707.
    Kisseleva T, Uchinami H, Feirt N, et al. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J Hepatol 2006;45:429-438.
    Kojiro M, Roskams T. Early hepatocellular carcinoma and dysplastic nodules. Semin Liver Dis 2005;25:133-142.
    Kokkinos MI, Wafai R, Wong MK, et al. Vimentin and epithelial-mesenchymal transition in human breast cancer--observations in vitro and in vivo. Cells Tissues Organs 2007;185:191-203.
    Koulentaki M, Valatas V, Xidakis K, et al. Matrix metalloproteinases and their inhibitors in acute viral hepatitis. J Viral Hepat 2002;9:189-193.
    Krizhanovsky V, Yon M, Dickins RA, et al. Senescence of activated stellate cells limits liver fibrosis. Cell 2008;134:657-667.
    Kudo-Saito C, Shirako H, Takeuchi T, et al. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell 2009;15:195-206.
    Lanier LL. NK cell receptors. Annu Rev Immunol 1998;16:359-393.
    Lawson JA, Fisher MA, Simmons CA, et al. Parenchymal cell apoptosis as a signal for sinusoidal sequestration and transendothelial migration of neutrophils in murine models of endotoxin and Fas-antibody-induced liver injury. Hepatology 1998;28:761-767.
    Lee JM, Dedhar S, Kalluri R, et al. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 2006;172:973-981.
    Lee TK, Poon RT, Yuen AP, et al. Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition. Clin Cancer Res 2006;12:5369-5376.
    Lee WM. Hepatitis B virus infection. N Engl J Med 1997;337:1733-1745.
    Leroy V, Monier F, Bottari S, et al. Circulating matrix metalloproteinases 1, 2, 9 and their inhibitors TIMP-1 and TIMP-2 as serum markers of liver fibrosis in patients with chronic hepatitis C: comparison with PIIINP and hyaluronic acid. Am J Gastroenterol 2004;99:271-279.
    Levrero M, Pollicino T, Petersen J, et al. Control of cccDNA function in hepatitis B virus infection. J Hepatol 2009;51:581-592.
    Lian RH, Kumar V. Murine natural killer cell progenitors and their requirements for development. Semin Immunol 2002;14:453-460.
    Lin CL, Liao LY, Wang CS, et al. Basal core-promoter mutant of hepatitis B virus and progression of liver disease in hepatitis B e antigen-negative chronic hepatitis B. Liver Int 2005;25:564-570.
    Llovet JM, Di Bisceglie AM, Bruix J, et al. Design and endpoints of clinical trials inhepatocellular carcinoma. J Natl Cancer Inst 2008;100:698-711.
    Luan F, Liu H, Gao L, et al. Hepatitis B virus protein preS2 potentially promotes HCC development via its transcriptional activation of hTERT. Gut 2009;58:1528-1537.
    Luedde T, Trautwein C. A molecular link between inflammation and fibrogenesis: the bacterial microflora influences hepatic fibrosis via toll-like receptor 4-dependent modification of transforming growth factor-beta signaling in hepatic stellate cells. Hepatology 2008;47:1089-1091.
    Lum JJ, Pilon AA, Sanchez-Dardon J, et al. Induction of cell death in human immunodeficiency virus-infected macrophages and resting memory CD4 T cells by TRAIL/Apo2l. J Virol 2001;75:11128-11136.
    Malhi H, Gores GJ. Cellular and molecular mechanisms of liver injury. Gastroenterology 2008;134:1641-1654.
    Mantovani A, Allavena P, Sica A, et al. Cancer-related inflammation. Nature 2008;454:436-444. Marra F, Romanelli RG, Giannini C, et al. Monocyte chemotactic protein-1 as a chemoattractant for human hepatic stellate cells. Hepatology 1999;29:140-148.
    Marra F, Valente AJ, Pinzani M, et al. Cultured human liver fat-storing cells produce monocyte chemotactic protein-1. Regulation by proinflammatory cytokines. J Clin Invest 1993;92:1674-1680.
    Martin-Vilchez S, Sanz-Cameno P, Rodriguez-Munoz Y, et al. The hepatitis B virus X protein induces paracrine activation of human hepatic stellate cells. Hepatology 2008;47:1872-1883.
    Matsuo N, Shiraha H, Fujikawa T, et al. Twist expression promotes migration and invasion in hepatocellular carcinoma. BMC Cancer 2009;9:240.
    Mazzocca A, Fransvea E, Dituri F, et al. Down-regulation of connective tissue growth factor by inhibition of transforming growth factor beta blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma. Hepatology;51:523-534.
    Melhem A, Muhanna N, Bishara A, et al. Anti-fibrotic activity of NK cells in experimental liver injury through killing of activated HSC. J Hepatol 2006;45:60-71.
    Michalopoulos GK, DeFrances MC. Liver regeneration. Science 1997;276:60-66.
    Miller JS, Verfaillie C, McGlave P. The generation of human natural killer cells from CD34+/DR- primitive progenitors in long-term bone marrow culture. Blood 1992;80:2182-2187.
    Miyamoto K, Miyake S, Yamamura T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 2001;413:531-534.
    Mohammadzadeh Ghobadloo S, Yaghmaei B, Allameh A, et al. Polymorphisms of glutathione S-transferase M1, T1, and P1 in patients with HBV-related liver cirrhosis, chronic hepatitis,and normal carriers. Clin Biochem 2006;39:46-49.
    Mookerjee RP, Lackner C, Stauber R, et al. The role of liver biopsy in the diagnosis and prognosis of patients with acute deterioration of alcoholic cirrhosis. J Hepatol.
    Morishima C, Paschal DM, Wang CC, et al. Decreased NK cell frequency in chronic hepatitis C does not affect ex vivo cytolytic killing. Hepatology 2006;43:573-580.
    Muhanna N, Doron S, Wald O, et al. Activation of hepatic stellate cells after phagocytosis of lymphocytes: A novel pathway of fibrogenesis. Hepatology 2008;48:963-977.
    Muhanna N, Horani A, Doron S, et al. Lymphocyte-hepatic stellate cell proximity suggests a direct interaction. Clin Exp Immunol 2007;148:338-347.
    Mundt B, Kuhnel F, Zender L, et al. Involvement of TRAIL and its receptors in viral hepatitis. FASEB J 2003;17:94-96.
    Murakami Y, Saigo K, Takashima H, et al. Large scaled analysis of hepatitis B virus (HBV) DNA integration in HBV related hepatocellular carcinomas. Gut 2005;54:1162-1168.
    Murphy FR, Issa R, Zhou X, et al. Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition: implications for reversibility of liver fibrosis. J Biol Chem 2002;277:11069-11076.
    Nakamoto Y, Guidotti LG, Kuhlen CV, et al. Immune pathogenesis of hepatocellular carcinoma. J Exp Med 1998;188:341-350.
    Nathan C, Ding A. Nonresolving inflammation. Cell;140:871-882.
    Neubauer K, Knittel T, Aurisch S, et al. Glial fibrillary acidic protein--a cell type specific marker for Ito cells in vivo and in vitro. J Hepatol 1996;24:719-730.
    Nieto N. Oxidative-stress and IL-6 mediate the fibrogenic effects of [corrected] Kupffer cells on stellate cells. Hepatology 2006;44:1487-1501.
    Ning BF, Ding J, Yin C, et al. Hepatocyte nuclear factor 4 alpha suppresses the development of hepatocellular carcinoma. Cancer Res;70:7640-7651.
    Nitta T, Kim JS, Mohuczy D, et al. Murine cirrhosis induces hepatocyte epithelial mesenchymal transition and alterations in survival signaling pathways. Hepatology 2008;48:909-919.
    Notas G, Kisseleva T, Brenner D. NK and NKT cells in liver injury and fibrosis. Clin Immunol 2009;130:16-26.
    Novobrantseva TI, Majeau GR, Amatucci A, et al. Attenuated liver fibrosis in the absence of B cells. J Clin Invest 2005;115:3072-3082.
    Ochi M, Ohdan H, Mitsuta H, et al. Liver NK cells expressing TRAIL are toxic against self hepatocytes in mice. Hepatology 2004;39:1321-1331.
    Ogata I, Mochida S, Tomiya T, et al. Minor contribution of hepatocytes to collagen production in normal and early fibrotic rat livers. Hepatology 1991;14:361-367.
    Oki S, Chiba A, Yamamura T, et al. The clinical implication and molecular mechanism of preferential IL-4 production by modified glycolipid-stimulated NKT cells. J Clin Invest 2004;113:1631-1640.
    Park O, Jeong WI, Wang L, et al. Diverse roles of invariant natural killer T cells in liver injury and fibrosis induced by carbon tetrachloride. Hepatology 2009;49:1683-1694.
    Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002. CA Cancer J Clin 2005;55:74-108.
    Perz JF, Armstrong GL, Farrington LA, et al. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 2006;45:529-538.
    Pineau P, Marchio A, Battiston C, et al. Chromosome instability in human hepatocellular carcinoma depends on p53 status and aflatoxin exposure. Mutat Res 2008;653:6-13.
    urohit V, Brenner DA. Mechanisms of alcohol-induced hepatic fibrosis: a summary of the RonThurman Symposium. Hepatology 2006;43:872-878.
    Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology 2006;43:S54-62.
    Radaeva S, Sun R, Jaruga B, et al. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 2006;130:435-452.
    Riordan SM, Skinner N, Nagree A, et al. Peripheral blood mononuclear cell expression of toll-like receptors and relation to cytokine levels in cirrhosis. Hepatology 2003;37:1154-1164.
    Rippe RA, Brenner DA. From quiescence to activation: Gene regulation in hepatic stellate cells. Gastroenterology 2004;127:1260-1262.
    Rivera CA, Bradford BU, Hunt KJ, et al. Attenuation of CCl(4)-induced hepatic fibrosis by GdCl(3) treatment or dietary glycine. Am J Physiol Gastrointest Liver Physiol 2001;281:G200-207.
    Roberts AB, Russo A, Felici A, et al. Smad3: a key player in pathogenetic mechanisms dependent on TGF-beta. Ann N Y Acad Sci 2003;995:1-10.
    Roskams TA, Libbrecht L, Desmet VJ. Progenitor cells in diseased human liver. Semin Liver Dis 2003;23:385-396.
    Rousselet MC, Michalak S, Dupre F, et al. Sources of variability in histological scoring of chronic viral hepatitis. Hepatology 2005;41:257-264.
    Safadi R, Ohta M, Alvarez CE, et al. Immune stimulation of hepatic fibrogenesis by CD8 cells and attenuation by transgenic interleukin-10 from hepatocytes. Gastroenterology2004;127:870-882.
    Sangiovanni A, Del Ninno E, Fasani P, et al. Increased survival of cirrhotic patients with a hepatocellular carcinoma detected during surveillance. Gastroenterology 2004;126:1005-1014.
    Sato K, Hida S, Takayanagi H, et al. Antiviral response by natural killer cells through TRAIL gene induction by IFN-alpha/beta. Eur J Immunol 2001;31:3138-3146.
    Schmieg J, Yang G, Franck RW, et al. Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand alpha-Galactosylceramide. J Exp Med 2003;198:1631-1641.
    Schuppan D, Ruehl M, Somasundaram R, et al. Matrix as a modulator of hepatic fibrogenesis. Semin Liver Dis 2001;21:351-372.
    Sebastiani G, Vario A, Ferrari A, et al. Hepatic iron, liver steatosis and viral genotypes in patients with chronic hepatitis C. J Viral Hepat 2006;13:199-205.
    Secchiero P, Mirandola P, Zella D, et al. Human herpesvirus 7 induces the functional up-regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) coupled to TRAIL-R1 down-modulation in CD4(+) T cells. Blood 2001;98:2474-2481.
    Seeger C, Mason WS. Hepatitis B virus biology. Microbiol Mol Biol Rev 2000;64:51-68.
    Seki E, De Minicis S, Osterreicher CH, et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 2007;13:1324-1332.
    Severi T, Vander Borght S, Libbrecht L, et al. HBx or HCV core gene expression in HepG2 human liver cells results in a survival benefit against oxidative stress with possible implications for HCC development. Chem Biol Interact 2007;168:128-134.
    Sieling PA, Chatterjee D, Porcelli SA, et al. CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 1995;269:227-230.
    Stanic AK, Shashidharamurthy R, Bezbradica JS, et al. Another view of T cell antigen recognition: cooperative engagement of glycolipid antigens by Va14Ja18 natural T(iNKT) cell receptor [corrected]. J Immunol 2003;171:4539-4551.
    Stephensen CB. Vitamin A, infection, and immune function. Annu Rev Nutr 2001;21:167-192. Stetson DB, Mohrs M, Reinhardt RL, et al. Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J Exp Med 2003;198:1069-1076.
    Sugiyama M, Tanaka Y, Kurbanov F, et al. Direct cytopathic effects of particular hepatitis B virus genotypes in severe combined immunodeficiency transgenic with urokinase-type plasminogen activator mouse with human hepatocytes. Gastroenterology 2009;136:652-662 e653.
    Szabo G, Dolganiuc A, Mandrekar P. Pattern recognition receptors: a contemporary view on liver diseases. Hepatology 2006;44:287-298.
    Tanabe J, Izawa A, Takemi N, et al. Interferon-beta reduces the mouse liver fibrosis induced by repeated administration of concanavalin A via the direct and indirect effects. Immunology 2007;122:562-570.
    Taura K, Miura K, Iwaisako K, et al. Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice. Hepatology;51:1027-1036.
    Teoh NC. Pre-"EMT"ing key processes in liver carcinogenesis: Growing evidence for how malignant hepatocytes invade and conquer. Hepatology;52:384-388.
    Thirunavukkarasu C, Watkins SC, Gandhi CR. Mechanisms of endotoxin-induced NO, IL-6, and TNF-alpha production in activated rat hepatic stellate cells: role of p38 MAPK. Hepatology 2006;44:389-398.
    Tsui LV, Guidotti LG, Ishikawa T, et al. Posttranscriptional clearance of hepatitis B virus RNA by cytotoxic T lymphocyte-activated hepatocytes. Proc Natl Acad Sci U S A 1995;92:12398-12402.
    Tsukamoto H, Matsuoka M, French SW. Experimental models of hepatic fibrosis: a review. Semin Liver Dis 1990;10:56-65.
    van Zijl F, Zulehner G, Petz M, et al. Epithelial-mesenchymal transition in hepatocellular carcinoma. Future Oncol 2009;5:1169-1179.
    Venkov CD, Link AJ, Jennings JL, et al. A proximal activator of transcription in epithelial-mesenchymal transition. J Clin Invest 2007;117:482-491.
    Vilarinho S, Ogasawara K, Nishimura S, et al. Blockade of NKG2D on NKT cells prevents hepatitis and the acute immune response to hepatitis B virus. Proc Natl Acad Sci U S A 2007;104:18187-18192.
    Watanabe A, Hashmi A, Gomes DA, et al. Apoptotic hepatocyte DNA inhibits hepatic stellate cell chemotaxis via toll-like receptor 9. Hepatology 2007;46:1509-1518.
    Wells RG. The epithelial-to-mesenchymal transition in liver fibrosis: here today, gone tomorrow? Hepatology;51:737-740.
    Williams R. Global challenges in liver disease. Hepatology 2006;44:521-526.
    Winau F, Hegasy G, Weiskirchen R, et al. Ito cells are liver-resident antigen-presenting cells for activating T cell responses. Immunity 2007;26:117-129.
    Winau F, Quack C, Darmoise A, et al. Starring stellate cells in liver immunology. Curr Opin Immunol 2008;20:68-74.
    Witz IP. The tumor microenvironment: the making of a paradigm. Cancer Microenviron 2009;2Suppl 1:9-17.
    Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol 2004;4:583-594.
    Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol 2008;214:199-210.
    Wynn TA, Cheever AW, Jankovic D, et al. An IL-12-based vaccination method for preventing fibrosis induced by schistosome infection. Nature 1995;376:594-596.
    Xia S, Guo Z, Xu X, et al. Hepatic microenvironment programs hematopoietic progenitor differentiation into regulatory dendritic cells, maintaining liver tolerance. Blood 2008;112:3175-3185.
    Xiao F, Wei H, Song S, et al. Polymorphisms in the promoter region of the angiotensinogen gene are associated with liver cirrhosis in patients with chronic hepatitis B. J Gastroenterol Hepatol 2006;21:1488-1491.
    Yang J, Liu Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am J Pathol 2001;159:1465-1475.
    Yang MH, Chen CL, Chau GY, et al. Comprehensive analysis of the independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma. Hepatology 2009;50:1464-1474.
    Yang SZ, Zhang LD, Zhang Y, et al. HBx protein induces EMT through c-Src activation in SMMC-7721 hepatoma cell line. Biochem Biophys Res Commun 2009;382:555-560.
    Zavadil J, Bottinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 2005;24:5764-5774.
    Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 2009;119:1429-1437.
    Zeisberg M, Yang C, Martino M, et al. Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem 2007;282:23337-23347.
    Zheng Y, Chen WL, Louie SG, et al. Hepatitis B virus promotes hepatocarcinogenesis in transgenic mice. Hepatology 2007;45:16-21.
    Zurawski SM, Vega F, Jr., Huyghe B, et al. Receptors for interleukin-13 and interleukin-4 are complex and share a novel component that functions in signal transduction. EMBO J 1993;12:2663-2670.