低功耗高速流水线模数转换器的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在混合信号集成电路系统中,模数转换器(ADC)是一个关键的模块。由于流水线结构的ADC具有高吞吐率、高分辨率、低功耗、占用面积小等优点,因此研究流水线结构ADC具有非常重要的意义。
     本篇论文首先简要介绍了流水线结构模数转换器的原理和结构,分析了各种非理想误差源和误差校准技术,并探讨了低功耗设计技术。最后采用流水线结构完成了一个1.8伏10比特100兆赫兹采样频率模数转换器的设计。
     该模数转换器采用每级1.5位的9级流水线结构实现。电路最前端采用改进了的采样保持电路可以有效抑制输入信号共模电压的漂移,结合栅压自举采样开关的使用,电路的精度和线性度得到了较大的提高。单级增益自举的折叠型运算放大器保证了在获得高速、高增益的同时尽量降低其功耗。电路主要采用了以下三种方法来降低功耗:1.运放共享技术的使用可以减少近一半的运算放大器的数目,也就减少了大量的耗能元件。2.电路采用了分段的逐级电容缩减技术。3.各级的子模数转换器采用了没有直流功耗的动态比较器。
     芯片采用TSMC 0.18μm,混合信号1P6M CMOS工艺,电源电压为1.8V。整体性能仿真表明:在室温下,采样频率为100MHz时,信号噪声失真比为59.12dB@1MHz input,58.4dB@10MHz input;无杂散动态范围为79.6dB@1MHz input,74.2dB@10MHz input;在整个奈奎斯特频率输入范围内,有效位数均超过9位。其核心电路功耗仅为62.5mW。
In mixed signal systems, Analog-to-Digital Converter (ADC) is a crucial portion. Pipeline ADC has the advantages of high speed, high resolution, low power consumption and small area, so it is very important to study the structure of pipeline of ADC.
     Based on the analysis of some common architectures,this thesis presents a 1.8V 10-bit 100MHz pipelined Analog-to-Digital Converter.
     It’s composed of a sample-and-hold circuit, eight stages with 1.5 bit per stage, and a 2 bit Flash ADC as last stage. There is a modified sample and hold circuit at the input of the ADC and the DC wandering of input is suppressed. With the bootstrapped sampling switch, the resolution and linearity of the system is improved . High speed, high gain are achieved by a single stage folded cascade opamp with gain-boosted technique consuming very low power. Besides, the following technque are taken to reduce power consumption: 1. The operational amplifier sharing technique is used to reduce the number of opamp, so the power consuming components is reduced. 2. The size scalling down technique is use to reduce power. 3. Power consumption is further reduced by using of dynamic comparator.
     The ADC’s design is based on TSMC 0.18μm, mixed signal 1P6M process, which provides MIM capacitor. The simulation result shows: At the room temperature, 100MHz sampling frequency, it achieves SNDR(SINAD) of 59.12dB@1MHz input , 58.4dB@10MHz input, SFDR of 79.6dB@1MHz,74.2dB@10MHz; In the whole nyquist input frequency, the ENOB is over 9 bit. And the power consumption is 62.5mW.
引文
[1] Gordon E. Moore, Cramming more components onto integrated circuits , Electronics, 1965, 38,(8).
    [2] Philip E.Allen,Douglas R.holberg, CMOS Analog Circuit Design, Second Edition, Oxford University Press,2002
    [3] Y. Chiu, P. R. Gray, A 14-b 12-MS/s CMOS Pipeline ADC With Over 100-dB SFDR, IEEE J.Solid-State circuits, 2004, 39, pp: 2139-2151,
    [4] Lewis S H, Optimizing the stage resolution in pipelined, multistage, analog- to-digital converters for video-rate applications,IEEE Trans.Circuits Syst.II, 1992, 39(8),pp.516-523
    [5] Yu P C,Lee H S, A 2.5V,12-b,5-Msample/s pipelined CMOS ADC, IEEE J.Solid-State circuits,1996,31(12),pp: 1854-1861
    [6] 李富乐,适用于系统集成的高速高精度模数转换电路设计技术研究[学位论文],北京,清华大学,2003
    [7] Fifz T S,Yang H C,Yu J C, A family of high-swing CMOS operational amplifiers, IEEE J.Solid-State Circuits,1989,24(6),pp: 1683-1687
    [8] 谭珺, 10比特、100兆流水线模数转换器的设计和低功耗实现[学位论文], 上海,复旦大学,2006
    [9] B.M Min,P.Kim, A 69mW 10bit 80Msample/s Pipelined CMOS ADC, IEEE J.Solid- State Circuit, 2003,38(12), pp: 2031-2039
    [10] B. Hernes, A. Briskemyr, etc. A 1.2V 220MS/s 10b Pipeline ADC implemented in 0.13μm Digital CMOS, ISSCC Dig. Tech. Papers, 2004
    [11] R.E.Suarez, P.R.Gray, D.A.Hodges,An All-MOS Charge-Redistribution A/D Conversion Technique, ISSCC Dig. Tech. Papers,1974
    [12] H.S.Lee, D.A.Hodges, P.R.Gray. A Self-calibrating 12b 12 μs CMOS ADC.ISSCC Dig. Tech. Papers.,1984.
    [13] M.W.Hauser, P.J.Hurst, R.W.Brodersen. MOS ADC-Filter Combination That Does Not Require Precision Analog Components. ISSCC.1985
    [14] S. H. Lewis, P. R. Gray, A pipelined 5-Msample/s 9-bit analog-to-digital converter, IEEE J.Solid- State Circuits, 1987, 22, pp: 954-961
    [15] Mikael Gustavsson, CMOS data converters for communication, NewYork,Kluwer academic publishers, 2000, pp:61-254
    [16] Ken Poulton, Robert Neff, Brian Setterberg etc. A 20GS/s 8b ADC with a 1MB Memory in 0.18μm CMOS, ISSCC Dig. Tech. Papers., 2003.
    [17] B.Razavi, Principles of Data Conversion System Design, New York, IEEE Press, 1995
    [18] 薛亮,10位高速流水线模数转换器的研究[学位论文],北京,清华大学,2004
    [19] Robert. H. Walden, Analog-to-Digital Converter Suervey and Analysis, IEEE Journal on selected areas in Communications, Apr 1999,17
    [20] IEEE Std 1241-2002,Dec.2002
    [21] Rudy.van, CMOS Integrated analog-to-digital and digital-to-analog converters Boston, Kluwer academic publishers,2003
    [22] S.Lewis,H.Fetterman,G.Gross,etc.A 10b 20Msample/s analog-to-digital converter, IEEE J.Solid-State Circuits, 1992,27(3), pp: 351-358
    [23] Jian Li,Xiaoyang Zeng,A 1.8V 22mW 10bit30MS/s Subsampling Pipelined CMOS ADC, IEEE 2006 Custom Intergrated Circuits Conference, 2006
    [24] 王照钢,1.8 伏 8 比特 125 兆赫兹流水线结构模数转换器[学位论文] 上海, 复旦大学,2004
    [25] 施宇峰,10 比特 1.8 伏 100 兆赫兹流水线结构模数转换器[学位论文] 上海,复旦大学,2004
    [26] Chiu Y,Inherently linear capacitor error-averaging techniques for pipelined A/D conversion, IEEE Trans.Circuits Syst.II, 2000, 47(3),pp:229-232
    [27] 李福乐,李冬梅,张春等,一种速度优化的流水线模数转换电容误差平均技术,电子学报,2002,30(9),pp: 1285-1287
    [28] Chin H.Doan,Designa and Implementation of a Highly-Integrated Low-Power CMOS Frequency Synthesizer for an Indoor Wireless Wideband-CDMA Direct-Conversion Receiver[Dissertation], California,Berkeley,2004
    [29] Behzad Razavi, Design of Analog CMOS Integrated Circuits. New York, McGraw-Hill Companies, 2001
    [30] W. b. Wilson, H. Z. Massoud, E. J. Swanson, et al, Measurement and modeling of charge feedthrough in n-channel MOS analog switches, IEEE J. Solid-State Circuits, 1985, 20, pp: 1206-1213
    [31] B. Song, M. Tompsett, K. Lakshmikumar, A 12-b 1-Msample/s capacitor error-averaging pipelined A/D converter, IEEE J. Solid-State Circuits, 1988,23, pp: 1324-1333
    [32] A N.Karanicolas,H S.Lee,L.Bacrania, A 15b 1Msample/s Digitally Self- Calibrated Pipeline ADC,IEEE J.Solid-State Circuits, 1993,28(12),pp: 1207-1215
    [33] 周高翔,10bit 80Ms/s 流水线型模数转换器设计技术研究[学位论文], 上海,上海交通大学,2006
    [34] U. Moon and B. Song, Background digital calibration techniques for pipelined ADCs, IEEE Trans. Circuits Syst. II, 1997,44, pp:102-109
    [35] J. Ingino ,B. Wooley, A continuously calibrated 12-b 10-Ms/s 3.3-V A/D converter,IEEE J. Solid-State Circuits, 1998, 33, pp: 1920-1931.
    [36] I.Mehr, L.Singer, A 55mW 10bit 40Msample/s Nyquist-rate CMOS ADC IEEE J.Solid-State Circuits, 2000,35,pp: 318-326
    [37] Jian Li,Jianyun Zhang etc,A 10bit 30MS/s CMOS A/D Converter For High Performance Video Applications, Proceedings of ESSCIRC, 2005
    [38] 张剑云,应用于数字视频接收器的低功耗高速流水线模数转换器的研究[学位论文],上海,复旦大学, 2006
    [39] K. Nagaraj, H. Fetterman, J. Anidjar,et al, A250-mW, 8-b, 52-Msamples/s parallel-pipelined A/D converter with reduced number of amplifiers, IEEE J.Solid-State Circuits, 1997, 32, pp: 312–320
    [40] Taehee Cho,Sandor L.Barna et al, Sharing operational amplifier between two stages of pipelined ADC and/or two channels of signal processing circuitry United States Patent,Dec.12,2006
    [41] D.W. Cline, P.R. Gray, A power optimized 13-b, 5Msamples/s pipelined analog to digital converter in 1.2 μm CMOS, IEEE J.Solid-State Circuits, 1996, 31, pp: 294 – 303
    [42] T. B. Cho, P. R. Gray, A 10b 20MS/s 35mW Pipeline A/D Converter, IEEE J.Solid-State Circuits, 1995 ,30, pp: 166-172
    [43] Lauri Sumanen, Pipeline Analog-to-Digital Converters for WideBand Wireless Communications[Dissertation], Helsinki University of Technology,2002
    [44] M. J. Chen, Y. B. Gu, T. Wu, et al, Weak inversion charge injection in analog MOS switches, IEEE J.Solid-State Circuits, 1995, 30, pp: 604- 606.
    [45] D. J. Allstot, W. C. Black, Technological Design Considerations for Monolithic MOS Switched-Capacitor Filtering Systems, Proc. IEEE, 1983, pp: 967-986
    [46] K.L. Lee, R. G. Meyer, Low-Distortion Switched-Capacitor Filter Design Techniques, IEEE J.Solid-State Circuits, 1985, pp: 1103-1113
    [47] A.M. Abo, P. R. Gray, A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog to digital converter, IEEE J.Solid-State Circuits, 1999, 34, pp:599-606
    [48] L. Sumanen, M. Waltari, K. A. I. Halonen, A 10-bit 200-MS/s CMOS parallel pipeline A/D converter, IEEE J.Solid-State Circuits, 2001,36,pp: 1048-1055
    [49] K.Bult,G.Geelen, A fast-settling CMOS opamp for SC circuits with 90-dB DC gain, IEEE J.Solid-State Circuits, 1990,25(6),pp: 1379-1384
    [50] O. Choksi, L. R. Carley, Analysis of Switched Capacitor Common-mode Feedback Circuits, IEEE TCS II, 2003,50, pp: 906-917
    [51] P. R. Gray, R. G. Meyer, Analysis and Design of Analog Integrated Circuits(Fourth Edition), John Wiley & Sons Ins, 2001
    [52] Behzad Razavi, B. A. Wooley, Design Techniques for High Speed, High Resolution Comparators, IEEE J.Solid-State Circuits, 1992, 27, pp: 1916-1926
    [53] L. Sumanen, M.Waltari, K. Halonen, CMOS Dynamic Comparators for PipelineA/D Converters, Proceedings of the IEEE Int. Symposium on Circuits and Systems (ISCAS’02), 2002, pp: 157–160
    [54] Pedro M.Figueiredo, Joao C.Vital, Low kickback noise techniques for CMOS latched comparators, IEEE ISCAS 2004,2004, I-537
    [55] M. Waltari, L. Sumanen, T. Korhonen, A Self-Calibrated Pipeline ADC with 200MHz IF-Sampling Frontend, ISSCC Dig. Tech. Papers, 2002 pp:314–315
    [56] Min Pan, C.C.N.Chu, J.M. Chang, Transition time bounded low-power clock tree construction, IEEE ISCAS 2005, 2005, pp: 2445-2448
    [57] Alan Hastings, The Art of analog Layout, Prentice Hall, 2001
    [58] J. Doernberg, H.S. Lee, D. A. Hodges, Full Speed Testing of A/D Converters, IEEE J.Solid-State Circuits, 1984, 19(6), pp:820–827
    [59] IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters, Standard, Measurements, IEEE Standard 1241-2000, 2000
    [60] Peter Bogner,Franz Kuttner et al,A 14b 100MS/s Digitally Self-Calibrated Pipelined ADC in 0.13μm CMOS ,ISSCC Dig. Tech. Papers. 2006
    [61] B. Yeshwant, Robert G. Meyer, P.R.Gray, Relationship Between Frequency Response and Settling Time of Operational Amplifiers, IEEE J.Solid-State Circuits, 1974, 9
    [62] David Johns, Ken Maytin,Analog Integrated Circuit Design,United States, John Wiley & Sons inc,1997