近海断陷湖盆勘探早期沉积特征与成藏条件分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以北部湾盆地涠西区块为例,针对断陷盆地勘探早期资料不足、认识局限、手段单一等特征,提出了以地震相-沉积相演化为主体,以油气成藏组合为重点,围绕沉积体系发育的动力学机制和油气有机成藏的动力学过程,依托盆地模拟手段,开展重点构造的综合评价。
     在三级层序识别与划分的基础上,根据地震波阻的外部几何形态+内部反射特征+界面接触关系+地球物理属性,在工区内确定出5大类13种地震相类型。地震相与沉积相并非一一对应,但各类前积相多表现为三角洲、扇三角洲及水下扇的快速堆积;平行相、充填相与滨浅湖、半深湖的水动力条件相关性较好;杂乱相则多为断层改造作用下连续沉积体扭曲、张断的反映。
     就沉积演化而言,古新世时整个北部湾盆地处于初始断陷期,以杂乱反射为代表的近源冲积扇与红层泛滥平原大量发育。始新世是盆地断陷扩张的时期,在湖相背景下广泛发育三角洲、扇三角洲沉积。进入渐新世,整个北部湾盆地处于断陷期的尾声,盆地性质逐渐向坳陷转换,海中凹陷部分构造到渐新世末甚至发生强烈反转。结合各种沉积参数(砂岩厚度、泥岩厚度、含砂率等)建立了古近系流沙港组的沉积模式。最后探讨了盆地中沉积体系形成和发育的动力学机制,认为主要是构造动力、充填动力和气候动力共同作用的结果。
     根据油气成藏组合五大要素(源岩、储层、盖层、运移、圈闭),考虑剩余地层压力分布特征与流体势梯度趋势,在研究区内可识别出三大类成藏组合类型:完整成藏组合、运移成藏组合和不完整成藏组合。
     充分运用盆地模拟手段和道积分反演技术,针对六个重点构造进行地质风险评价。这些构造形成时期较为集中,主要形成于始新世—渐新世的喜山二幕构造运动,到渐新世末基本定型。其中,海2构造成藏条件相对较好,为Ⅰ类圈闭构造;但此构造高点偏移较大,具有一定的勘探风险;其次是海1、涠9南和涠10-10构造,多为Ⅱ类圈闭构造;封盖能力和油源问题是其制约因素;涠10-5和涠10-4构造成藏组合条件较差,较多III类圈闭构造;部分构造破碎,勘探和开发的地质经济风险很大。
Aiming at scarce information, inadequate acquaintance and simple method of faulted basins, this paper takes the evolvement of seimic facies and depositional facies as primary research contents, choosing the play for petroleum and gas as research emphases. Meanwhile, based on dynamic principles of depositional system and dynamic processes of the accumulation of hydrocarbon and supported by the analysis and simulation for basins, the paper selects six structures as significant evaluating targets: an example from Weixi survey in Beibuwan basin.
     Based on establishment of third-order sequences, in term of external geometric shape, internal reflection configuration, contact relationships of interface and characteristic properties of geophysics of such seismic impedance, there are five seimic facies and thirteen seimic sub-facies in the survey. Though seimic facies is not always accordant with depositional facies, Foreset facies usually indicates delta, fan delta and submarine fan, Parallel and Filling facies often involves in lacustrine hydrodynamic condition, Disorder facies reflects the distortion and disconnection of continuous deposits frequently by fault reconstruction.
     According to the viepoint of depositional evolvement, the whole basin experienced initial faulted phase in Palaeocene Epoch. Alluvial fans which were near provenance and showed disorder reflection in seismic profiles and flood plains with red layers developed well at that time. During Eocene Epoch, Beibuwan basin began expanding. Delta and fan delta could be found at higher position of the lacustrine area. In Oligocene Epoch, Beibuwan basin came into the evening of faulted phase. The tectonic evolutive phase of this basin transformed from faulted phase to depression phase gradually. Some stuctures in Haizhong depression even reversed at the end of Oligocene Epoch. Combined many depositional parameters(thickness of sandstone, thickness of mudstone, sandstone percent content), the depositional pattern of Liushagang formation of Palaeocene System is established. Eventually, the paper researches the dynamic principle on formation and development of depositional systems, which is co-effected by tectonic power, filling power and climatic power.
     In the light of five elements of play for petroleum and gas(source rock, reservoir, caprock, migration, trap), the distrubution of residual stratic pressure and the trend of fluid potenial, three plays can be identified in the survey which are complete play($MRTS), migrating play(MRTS) and incomplete play(RTS, TS).
     In the end, the separate geological risk assessments of six structures are evaluated by the analysis and simulation for basins and reservoir inversion. These structures nearly form in the same period, which begin in Eocene and Oligocene Epoch with Xishan Movement of EpisodeⅡand finish in the end of Oligocene Epoch. Among these traps of structures, the trap of H2 belongs to typeⅠwith fine conditions of reservoir better than others. However, that the summit of such structure deviates much hazards the exploration. The second fine structures are H1, W9s and W10-10 respectively. A great number of traps of those structures belong to typeⅡwith restrained factors of source rocks and the capibility on sealing. The traps of W10-5 and W10-4 are not beneficial to reservoirs and many of them belong to typeⅢ. They risk much on exploration and development with structures broken in part.
引文
[1]徐怀大等.地震地层学解释基础.中国地质大学出版社.1990.
    [2]中国石油天然气总公司勘探局编.层序地层学原理及应用.北京:石油工业出版社.1998.
    [3]邓宏文,王洪亮,翟爱军等.中国陆源碎屑盆地层序地层与储层展布.石油与天然气地质.1999.
    [4]查明.中国石油学会石油测井学会编.地层倾角测井技术与应用.石油工业出版社.1993.
    [5]邓宏文.地层研究中的新学派——高分辨率层序地层学.石油与天然气地质.1995.
    [6]于兴河.碎屑岩系油气储层沉积学.石油工业出版社.2002.
    [7]许广明,徐怀大,孔祥言.高分辨率层序地层学在油藏数值模拟中的应用.石油与天然气地质.1999.
    [8]F.布朗,w.L 费歇尔.地震地层学解释与石油勘探.曾洪流,张万选译.张厚福校,石油工业出版杜.1988.
    [9]中国石油天然气总公司地球物理勘探局编.横向预测技术及实例.石油工业出版社.1992.
    [10]C.K.威尔格斯[美]等编.层序地层学原理(海平面变化综合分析).石油工业出版社.1990.
    [11]纪友亮,张世奇.湖盆层序地层学,石油工业出版社.1996.
    [12]刘宝君,李文汉.层序地层学研究与应用.四川科学技术出版社.1994.
    [13]覃建雄.层序地层学发展的若干重要方向.岩相古地理.1997.
    [14]康西栋.层序地层格架及其内部构成.地球科学-中国地质大学学报.1994.
    [15]胡忠良.涠西南凹陷超压系统与油气运移.地学前缘.2000.
    [16]杨木壮,梁修权等.北部湾海洋工程地质特征海洋地质与第四纪地质.2000.
    [17]邵磊,伟林等.北部湾盆地泥岩地球化学特点.同济大学学报(自然科学版).2000.
    [18]杜振川.南海涠西南凹陷涠洲组层序地层学研究.河北建筑科技学院学报 (自然科学版) 1997.
    [19]赵军,洪庆玉,董伟良.北部湾涠西南凹陷物源方向及古地理景观分析.石油勘探与开发.
    [20]赵澄林等编著.沉积学原理.石油工业出版社.2001.
    [21]徐怀大等.从地震地层学到层序地层学.石油工业出版社.1997.
    [22]康西栋,李思田,李雨梁等.北部湾盆地今古地温场特征及热史演化.长春地质学院学报.1995.
    [23]汪缉安,邓孝,陈墨香.南海北部大陆架西段地热条件与油气资源前景.地质科学.1996.
    [24]于俊吉,罗群等.北部湾盆地海南福山凹陷断裂特征及其对油气成藏的控制作用.石油实验地质.2004.
    [25]陈亮,王华,庄新国,等.涠西南凹陷 W54 构造油气成藏条件分析及成藏模式构建.河南石油.2004.
    [26]杜振川,魏魁生.北部湾盆地涠洲组复合扇体特征及油气勘探意义.石油与天然气地质.2002.
    [27]肖建华,陈至达,安里千.用地震资料进行构造地压解释的理论基础研究.石油地球物理勘探.2002.
    [28]王鸿祯主编.中国古地理图集.地图出版社.1985.
    [29]田在艺等著.中国含油气沉积盆地论[M].北京:石油工业出版社.1996.
    [30]田作基,宋建国,罗志立,等.塔里木阿瓦提前陆盆地构造特征及油气远景[J].新疆石油地质.1999.
    [31]邓宏文,王红亮,李熙哲.层序地层地层基准面的识别,对比技术及应用[J].石油与天然气地质.1996.
    [32]邓宏文,王宏亮等.高分辨率层序地层学—原理及应用[M].北京:地质出版社.2002.
    [33]叶德胜,王恕一,张希明,等著.新疆塔里木盆地北部储层沉积,成岩特征及储层评价[M].成都:成都科技大学出版社.1995.
    [34]冯增昭,王英华,刘焕杰,等著.中国沉积学[M].北京:石油工业出版社.1994.
    [35]刘宝珺,曾允孚主编.岩相古地理基础和工作方法[M].北京:地质出版社.1985.
    [36]刘宝珺主编.沉积岩石学[M].北京:地质出版社.1980.
    [37]刘训.塔里木板块周缘的沉积—构造演化[M].乌鲁木齐:新疆科技卫生出版社.1997.
    [38]汤良杰著.塔里木盆地演化和构造样式[M].北京:地质出版社.1996.
    [39]纪友亮,彭传圣,张立强.新疆库鲁克塔格奥陶纪岩相古地理[J].古地理学报.2002.
    [40]邱荣华,李永林,肖学,等.塔里木盆地孔雀河区块石油地质条件与勘探前景[J].河南石油.2003.
    [41]吴国干,李华启,初宝洁,等.塔里木盆地东部大地构造演化与油气成藏[J].大地构造与成矿学.2002.
    [42]李德伦,单玄龙,梁桂香,等.塔里木盆地孔雀河斜坡地区中新生代地质特征及油气远景评价[J].长春科技大学学报.1999.
    [43]陈发景,汪新文,张光亚,等.新疆塔里木盆地北部构造演化与油气关系[M]北京:地质出版社.1996.
    [44]陈正辅.塔里木盆地北部常规原油形成机制[J].石油实验地质.1997.
    [45]陆克政主编.含油气盆地分析[M].东营:石油大学出版社.2001.
    [46]Allen P.A., Basin analysis, Oxford: Blackwell. 1990.
    [47]Ayton C.E., Seismic Stratigraphy-Applications to Hydrocarbon Exploration, 516 pp. Mem. Am. Ass. Petrol. Geol., 26, Tulsa. 1977.
    [48]Berg O.R., Seismic detection and evaluation of delta and turbidite sequences: their application to exploration for the subtle trap. Bull. Am. Ass. Petrol. Geol., 66, 1271-1288. 1982.
    [49]Bluck B.J., Structure and directional properties of some valley sandur deposits in southern Island. Sedimentology 21, 533-554. 1974.
    [50]Buch D.A., Stratigraphic traps in sandstones exploration techniques, A. A. P. G. Mem, 21. 1974.
    [51]Chum R.M. Jr, Vail P.R. & Sangree J.B., Seismic stratigrahy and global changes of sea level, Part 6: stratigraphic interpratation of seismic reflection patterns in depositional sequences. In: Seismic Stratigraphy-Applications to Hydrocarbon Exploration (Ed. by C.E. Payton), pp.117-133. Mem. Am. Ass. Petrol. Geol., 26, Tulsa. 1977.
    [52]Coleman J.M., Deltas: Processes of deposition and models for exploration, 102p. Champaign: Continuing Education Publ Comp., Inc. 1976.
    [53]Coleman J.M., Deltas 2nd, International Human Resources Development Corporation Boston. 1982.
    [54]Davis R A., Depositional systems: an introduction to sedimentology and stratigrahpy, Prentice-Hall, Inc. , Englewood Cliffs, New Jersey. 1992.
    [55]Emiliano Mutn, Turbidite sandstones, Insituto di Geologia Universita di Parma. 1992.
    [56]Fisher W.L. et al., Delta systems in the exploration for oil and gas, Bur. Econ. Univ. Texas, Austin. 1967.
    [57]Galloway W.E. Siliciclastic slope and base-of slope depositional systems: component facies: stratigraphic architecture, and classification, AAPG Bulletin, V.82, No.4 (April 1998), P.569-595. 1998.
    [58]Galloway W.E., Process framework for describing the morphologic and stratigraphic . 1975.
    [59]Galloway W.E., Sediments and stratigraphic framework of the Copper River fan-delta, Alaska. J. sedim. Petrol., 1976,46.
    [60]Galloway W.E. & Hobday D.K., Terrigenous clastic depositional systems, Springer- Verlag New York. 1983.
    [61]Gerhard Einsele, Sedimentary Basins: evolution, facies, and sediment budget, Springer- Verlag Berlin Heidelberg. 1992.
    [62]Harms J.C. et al., Depositional environments as interpreted from primary sedimentary structures and stratification sequence, S.E. P.M. short course №.2 Dallas Texas. 1975.
    [63]Heward A.P., Alluvial fan sequence and mega sequence models: with examples from Westphalian D-Stephanian B coalfields, Northern Spain. In: Fluvial Sedimentology (Ed. by A.D. Miall), pp.669-702. Mem. Can. Soc. Petrol., 5, Calgary. 1978.
    [64]John G. Mcpherson, et al., Fan deltas and braid deltas: conceptual problems, In: Nemec W, Steel R. J. eds. Fan deltas, Springer-Verlag. 1988.
    [65]Klein G. der., Sandstone depositional models for exploration for fossil fuels 3rd. D. Reidel publishing company. 1985.
    [66]Miall A.D. A review of the braided-river depositional environment. Earth Sci. Rev, 1977, 13 1-62.
    [67]Miall A.D., Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. In: Recognition of fluvial depositional systems and their resource potential (ed by Flores), R.S.P.M. short course №. 9. Copyright, SEPM. 1985.
    [68]Miall A.D., Principles of sedimentary basin analysis, Springer-Verlag New York Inc. 1990.
    [ 69 ] Morgan J.P., ed., Deltaic sedimentation modern and ancient. Soc. Econ. Paleontologists Mineralogists, Spec. Publ. 1970, 15, 312p.
    [70]Nemec W. and Steel R.J. ed. Fan delta, Blckie and Son Ltd. 1988.
    [71]Nemec W. and Steel R.J., What is a fan delta and how do we recognize it, Fan deltas: Sedimentology and Tectonic Settings, eds. Nemec W. and Steel, R. J., P3-13. 1988.
    [72]Nilsen T.H., Alluvial fan deposits, in: Sandstones depositional environments, 1981, P49-85.
    [73]Orton G.J., a spectrum of Middle Ordovician fan deltas and braid-plain deltas North Wales: a consequence of varying fluvial clastic input. In: Fan Deltas: Sedimentology and Tectonic Settings (Ed. by W. Nemec and R.J. Steel), pp. 23-49. Blackie, London. 1988.
    [74]Pettijohn F.J. et al., Sand and sandstones 2nd, Springer-Werlag, Berlin, Haidelberg, New York., 1987.
    [75]Postma G., Depositional architecture and facies of river and fan deltas: a synthesis. In: Coarse-grained Deltas (Ed. by A. Colella and D.B. Prior), pp.13-27.Spec. Publ. Int. Ass. Sediment., 1990.
    [76]Reading H.G. (ed), Sedimentary environments: processes, facies and stratigraphy 3rd, Blackwell Scientific Publications. 1996.
    [77]Reading H.G. and Marcus Richards, Turbidite systems in deep-water basin margins classified by grain size and freeder system, The American Association of Petroleum Geologists, 1994, P792-821.
    [78]Reinek H.E., Singh I.B., Depositional sedimentary environments with reference to terrigenous clastic 2nd, Springer-VeHag Berlin Heidelberg New York. 1980.
    [79]Roger G. Walker and Noel P. James, Facies models: response to sea level change, Geological Association of Canada. 1992.
    [80]Scholle P.A. and Spearing, D.R. (ed), Sandstone depositional environments, Mem. №. 31. A.A.P.G. Tulas, Oklahoma. 1982.
    [81]Selly R.C., Ancient sedimentary environments 3rd, Chapman & Hall, London. 1985.
    [82]Serra O. & Sulpice L., Sedimentological analysis of shale-sand series from well logs. Trans. Soc. Prof. Well Log Analysts, W1-W23. 16th Annual Logging Symp., New Orleans. 1975.
    [83]Tanker M.E., Sedimentary petrology introduction, Blackwell Scientific Publ. 1981.