干旱情景下湿地生态水文演变及综合应对
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国生态文明建设提上议事日程,如何在满足人类社会经济发展的前提下,通过水资源的合理配置,保证生态环境用水要求,这是一个重大而复杂的问题。而在气候变化影响下,频繁发生的干旱使得解决这一问题变得更加困难。由于湿地生态系统具有较高的生产力和物种多样性,同时也对环境变化特别是水文波动较敏感,是生态水文领域和变化环境影响研究的理想对象。因此,研究干旱情景下湿地的生态水文演变,完善干旱极值条件下的生态水文理论,对生态环境保护及用水调度有重要意义。
     白洋淀湿地位于华北平原,是北方典型湖泊湿地。近年来,湿地不断受到干旱威胁,虽然通过流域和跨流域补水方式缓解了这一威胁,但调水过程应当根据湿地干旱过程中的生态水文变化合理实施。本文以白洋淀湿地为研究载体,采用室内控制实验、野外调查、数值模拟,揭示干旱情景下湿地的生态水文演变特征,在此基础上通过对湿地干旱脆弱性进行评价,提出湿地维持和保护措施。本文主要研究工作如下:
     (1)在辨识湿地干旱内涵的基础上,认为白洋淀湿地从20世纪80年代后开始受到较严重的干旱威胁和影响,造成这一结果的原因主要是人类活动(大约占75%),其次是气候变化(大约占25%)。随着社会经济发展,人工取用水量增加,这使得湿地天然入淀水量基本为零。湿地维持要靠调水,而且基本是跨流域调水,这一现象在很长一段时间都不会有改变。
     (2)针对白洋淀湿地地形起伏、边界复杂、水生植物茂密等特点,构建了湿地水动力学模型,其中地形表达具有二阶精度,采用具有和谐性的近似底坡项,模型曼宁糙率在有水生植物生长区域采用等效曼宁糙率表示,而在无植物区域则采用正常曼宁糙率。采用典型算例对模型进行了验证,模拟结果较好。将模型应用于湿地,分析了湿地干旱过程中流场的变化。
     (3)整体上,芦苇比香蒲耐旱性和恢复力更强。它们的净光合速率、气孔导度、蒸腾速率和水分利用效率在对照、轻旱、中旱情景下都随着时间表现出上升趋势,但对于重旱和特旱,以上指标随着时间表现出很明显的下降趋势。芦苇和香蒲耐受干旱胁迫的阈值不同,分别为土壤含水量不低于20%、30%。补水主要使芦苇和香蒲加强了水分吸收,增加了鲜重。植物受干旱胁迫如果未超过其耐受阈值,则补水能较大程度减轻其受干旱的影响。湿地干旱使其水量减少,水质变差,从而使得湿地的沉水植物优势群落在向挺水植物优势群落转变。
     (4)基于湿地干旱过程中生态水文变化特征,构建了干旱情景下白洋淀湿地干旱脆弱性评价指标体系。在不受外界影响下,湿地干旱在不小于8.3m时脆弱性最小。进入2000年以后,湿地干旱脆弱性升高,达到4级。在分析特定外界因素对湿地干旱脆弱性评价结果后,考虑到未来社会经济可能更加发展,建议将湿地最低水位控制在7.5m以上
     (5)在明确白洋淀湿地生态功能的基础上,结合湿地干旱脆弱性评价结果,建议将湿地生态保护阈值限制为水位不小于7.5m,其对应的最小需水量为1.1亿m3。湿地干旱应对措施主要是增加湿地水量,减少湿地水量的消耗,同时保证湿地生态用地不被挤占等。
With ecological civilization construction on the agenda in China, how to guarantee the demand of ecological environment water via rational allocation of water in the premise of meeting the demand of human socio-economic development is an important and complex issue. Moreover, under the impact of climate change, drought which occurs more and more frequently has made the solution of this issue more difficult. Wetlands are perfect study objects on ecohydrology and environmental changes because their ecosystems have higher productivity and species diversity, and they are sensitive to environmental changes, particularly hydrological fluctuations. Thus, it is important to study on wetlands ecohydrological change, and to improve the ecohydrological theory against drought for ecological protection and allocation of ecological water during drought period.
     Baiyangdian Wetland is a typical northern lake wetland which is located in the North China Plain. In recent years, the wetland has been threatened constantly by drought. Although basin and inter-basin water transfer has alleviated this threat, the water transfer process should be implemented rationally based on ecohydrological changes during the wetland drought. In this paper, eco-hydrological change characteristics have been analyzed in Baiyangdian Wetland through laboratory experiments, field surveys, and numerical simulation. Based on drought vulnerability assessment in the wetland, maintenance and protection measures for the wetland have been proposed. The main works are as follows:
     (1) Connotation of wetlands drought has been discussed firstly. The results showed that the wetland has been suffering from comparatively serious drought since the1980s. The main reason causing this result is human activities (about75%), followed by climate change (about25%). With the development of socio-economy, human water consumption is bound to increase, which makes the wetland natural inflow is almost zero. Finally the wetland maintenance will rely on water transfer, particularly inter-basin water transfer, and this phenomenon will not change in a very long time.
     (2) Wetland hydrodynamic model has been established aiming at characteristics of complex topography and boundary, dense aquatic plants in wetland. In the model the topographic expression has second-order accuracy, and harmony approximate bottom slope items have been applied. Manning roughness employed equivalent Manning roughness in aquatic plants area and used normal Manning roughness in no plant area. Then the model has been verified by typical example, and presented well results. Finally flow field changes have been discussed using the model during the wetland drought.
     (3) Phragmites australis shows stronger tolerance and resilience of drought than Typha orientalis Presl in general. Their net photosynthetic rate, stomata conductance, transpiration rate and water use efficiency are on the rise with time in control, slightly drought and mild drought scenarios, while these indexes present declining trend in very drought and extremely drought. The threshold of enduring drought for Phragmites australis and Typha orientalis Presl are different, which are not less than20%,30%of soil water content respectively. Water supplement can enhance water absorption and increase fresh weight for them. If drought stress to them is not above the threshold, drought effect can be relieved by water supplement. On the other hand, when drought makes water volume decline and water quality worse in a wetland, the dominant community is transforming from submerged plants into emergent plants as a result.
     (4) Based on the wetland eco-hydrological characteristics during drought, drought vulnerability assessment index systems have been built. The wetland vulnerability is the lowest without outside influence when water level was not less than8.3m. Since2000, the wetland drought vulnerability has increased to level4. According to the results of wetland drought vulnerability assessment with specific external factor, considering the future socio-economic development will be more powerful, it is recommended that the lowest water level is over7.5m for the protection of wetland.
     (5) On the basis of ecological functions of Baiyangdian wetland, it is proposed that threshold for the wetland ecological protection is not less than7.5m combing the results of wetland drought vulnerability assessment. The corresponding lowest ecological flow was110million m3. Measures against the wetland drought are increasing wetland water and reducing wetland water consumption. Meanwhile it should be guaranteed that ecological land will not be occupied in the wetland and so on.
引文
[1]白德斌,宁振平.白洋淀干淀原因浅析[J].中国防汛抗旱,2007,(02):46-48.
    [2]鲍达明,胡波,赵欣胜,等.湿地生态用水标准确定及配置-以白洋淀湿地为例[J].资源科学,2007,29(5):110-120.
    [3]卜兆君,田讯.人为补水对扎龙河漫滩湿地植被的影响[J].湿地科学与管理,2007,3(04):44-48.
    [4]陈晶.第8届国际湿地大会在巴西科亚巴召开[J].湿地科学与管理,2008,4(04):61-62.
    [5]陈求稳,欧阳志云.生态水力学耦合模型及其应用[J].水利学报,2005,36(11):1273-1279.
    [6]陈峪.我国的干旱[J].气象知识,2006,(002):24-27.
    [7]程朝立,赵军庆,韩晓东.白洋淀湿地近10年水质水量变化规律分析[J].海河水利,2011,(3):14-15.
    [8]崔保山.湿地学[M].北京市:北京师范大学出版社,2006.
    [9]邓伟,潘响亮,栾兆擎.湿地水文学研究进展[J].水科学进展,2003,14(4):521-527.
    [10]董娜.白洋淀湿地生态干旱及两库联通补水分析[D].保定:河北农业大学,2009.
    [11]高芬.白洋淀生态环境演变及预测[D].保定:河北农业大学,2008.
    [12]宫兆宁,宫辉力,赵文吉.北京湿地生态演变研究:以野鸭湖湿地自然保护区为例[M].北京市:中国环境科学出版社,2007.
    [13]龚新梅,汪溪远,潘晓玲,等.新疆塔里木河下游(上段)地区天然草地生态脆弱性研究[J].干旱区地理,2006,29(2):230-236.
    [14]何池全,赵魁义,余国营,等.湿地生态过程研究进展[J].地球科学进展,2000,15(02):165-171.
    [15]胡珊珊,郑红星,刘昌明,等.气候变化和人类活动对白洋淀上游水源区径流的影响[J].地理学报,2012,67(1):62-70.
    [16]华祖林,邢领航,顾莉,等.非结构网格计算格式研究及环境湍流模拟[M].北京:科学出版社,2010.
    [17]蒋卫国,李京,李加洪,等.辽河三角洲湿地生态系统健康评价[J].生态学报,2005,25(3):408-414.
    [18]李峰,谢永宏,杨刚,等.白洋淀水生植被初步调查[J].应用生态学报,2008,19(7):1597-1603.
    [19]李胜男,王根绪,邓伟.湿地景观格局与水文过程研究进展[J].生态学杂志,2008,27(6):1012-1020.
    [20]李旭,谢永宏,黄继山,等.湿地植被格局成因研究进展[J].湿地科学,2009,7(3):280-288.
    [21]刘二伟.水资源配置中生态环境需水问题探析[J].现代商贸工业,2009,3:158.
    [22]刘厚田.湿地生态环境[J].生态学杂志,1996,15(1):75-78.
    [23]刘儒勋,舒其望.计算流体力学的若干新方法[M].北京市:科学出版社,2003.
    [24]刘永,郭怀成,周丰,等.湖泊水位变动对水生植被的影响机理及其调控方法[J].生态学报,2006,26(9):3117-3126.
    [25]栾金花.干旱胁迫下三江平原湿地毛苔草光合作用日变化特性研究[J].湿地科学,2008,(02):223-228.
    [26]吕晨旭,贾绍凤,季志恒.近30年来自洋淀流域平原区地下水位动态变化及原因分析[J].南水北调与水利科技,2010,8(1):65-68.
    [27]倪晋仁,殷康前.湿地综合分类研究:Ⅰ.分类[J].自然资源学报,1998,13(3):214-221.
    [28]潘存鸿,于普兵,鲁海燕.浅水动边界的干底Riemann解模拟[J].水动力学研究与进展:A辑,2009,24(3):305-312.
    [29]潘存鸿.浅水间断流动数值模拟研究进展[J].水利水电科技进展,2010,30(5):77-84.
    [30]乔青.川滇农牧交错带景观格局与生态脆弱性评价[D].北京:北京林业大学,2005.
    [31]冉圣宏,金建君,薛纪渝.脆弱生态区评价的理论与方法[J].自然资源学报,2002,1(01):117-122.
    [32]商彦蕊.自然灾害综合研究的新进展——脆弱性研究[J].地域研究与开发,2000,19(2):73-77.
    [33]石勇,许世远,石纯,等.自然灾害脆弱性研究进展[J].自然灾害学报,2011,20(2):131-137.
    [34]舒展.火烧与缺水对扎龙湿地植被群落的影响[J].环境科学与管理,2010,35(001):135-139.
    [35]宋利祥.溃坝洪水数学模型及水动力学特性研究[D].武汉:华中科技大学,2012.
    [36]宋新山,邓伟.基于连续性扩散流的湿地表面水流动力学模型[J].水利学报,2007,(10):1166-1171.
    [37]宋长春.湿地生态系统对气候变化的响应[J].湿地科学,2003,1(2):122-127.
    [38]谭维炎.计算浅水动力学--有限体积法的应用[M].北京市:清华大学出版社,1998.
    [39]谭学界,赵欣胜.水深梯度下湿地植被空间分布与生态适应[J].生态学杂志,2006,25(12):1460-1464.
    [40]田玉梅,张义科.白洋淀水生植被[J].河北大学学报:自然科学版,1995,15(4):59-66.
    [41]王朝华,王子璐,乔光建.跨流域调水对恢复白洋淀生态环境重要性分析[J].南水北调与水利科技,2011,9(3):138-141.
    [42]王海梅,李政海,宋国宝,等.黄河三角洲植被分布,土地利用类型与土壤理化性状关系的初步研究[J].内蒙古大学学报(自然科学版),2006,37(1):69-75.
    [43]王浩,严登华,秦大庸,等译.水文生态学与生态水文学:过去、现在和未来[M].北京:中国水利水电出版社,2009.
    [44]王华,逢勇,刘申宝,等.沉水植物生长影响因子研究进展[J].生态学报,2008,28(8):3958-3968.
    [45]王介勇,赵庚星,王祥峰,等.论我国生态环境脆弱性及其评估[J].山东农业科学,2004,(2):9-11.
    [46]王丽,胡金明,宋长春,等.水位梯度对三江平原典型湿地植物根茎萌发及生长的影响冰[J]. 应用生态学报,2007,18(11).
    [47]王仁卿,刘纯慧,晁敏.从第五届国际湿地会议看湿地保护与研究趋势[J].生态学杂志,1997,16(5):72-76.
    [48]王苏民,窦鸿身.中国湖泊志[M].北京市:科学出版社,1998.
    [49]王文圣,张翔金,菊良,等.水文学不确定性分析方法[M].北京:科学出版社,2011.
    [50]王西琴,李力.辽河三角洲湿地退化及其保护对策[J].生态环境,2006,15(3):650-653.
    [51]王焱,刘国东,秦远清,等.基于水分运移的若尔盖湿地SPAC模型研究[J].四川大学学报(工程科学版),2007,39(05):16-20.
    [52]王志力.基于Godunov和Semi-Lagrangian法的二,三维浅水方程的非结构化网格离散研究[D].大连:大连理工大学,2005.
    [53]魏凤英.现代气候统计诊断与预测技术(第2版)[M].北京市:气象出版社,2007.
    [54]吴春笃,孟宪民,储金宇,等.北固山湿地水文情势与湿地植被的关系[J].江苏大学学报(自然科学版),2005,(04):331-335.
    [55]吴建国,吕佳佳,艾丽.气候变化对生物多样性的影响:脆弱性和适应[J].生态环境学报,2009,18(2):693-703.
    [56]谢涛,杨志峰.水分胁迫对黄河三角洲河口湿地芦苇光合参数的影响[J].应用生态学报,2009,20(3):562-568.
    [57]邢开成,龚宇.干旱对沧州东部滨海湿地价值的影响[J].中国农学通报,2005,(12):363-366.
    [58]徐广才,康慕谊,贺丽娜,等.生态脆弱性及其研究进展[J].生态学报,2009,29(5):2578-2588.
    [59]徐治国,何岩,闫百兴,等.营养物及水位变化对湿地植物的影响[J].生态学杂志,2006,25(1):87-92.
    [60]严登华,何岩,邓伟,等.生态水文学研究进展[J].地理科学,2001,21(5):467-473.
    [61]杨涛,宫辉力,胡金明,等.水分胁迫对三江平原典型湿地植物种群高度与密度的影响[J].西北植物学报,2010,30(9):1887-1894.
    [62]杨学斌.波、流联合作用下二维水流、泥沙数学模型研究[D].天津:天津大学,2008.
    [63]姚成,万树文,孙东林,等.盐城自然保护区海滨湿地植被演替的生态机制[J].生态学报,2009,29(05):2203-2210.
    [64]叶飞,陈求稳,吴世勇,等.空间显式模型模拟河流岸边带植被在水库运行作用下的演替[J].生态学报,2008,28(6):2604-2613.
    [65]殷康前,倪晋仁.湿地研究综述[J].生态学报,1998,18(5):539-546.
    [66]殷康前,倪晋仁.湿地综合分类研究:Ⅱ.模型[J].自然资源学报,1998,13(4):312-319.
    [67]於琍,曹明奎,陶波,等.基于潜在植被的中国陆地生态系统对气候变化的脆弱性定量评价[J].植物生态学报,2008,32(3):521-530.
    [68]岳志远,曹志先,李有为,等.基于非结构网格的非恒定浅水二维有限体积数学模型研究[J].水动力学研究与进展:A辑,2011,26(3):359-367.
    [69]张丽丽,殷峻暹,侯召成.基于模糊隶属度的白洋淀生态干旱评价函数研究[J].河海大学学报:自然科学版,2010,38(003):252-257.
    [70]赵慧霞,吴绍洪,姜鲁光.自然生态系统响应气候变化的脆弱性评价研究进展[J].应用生态学报,2007,18(02):445-450.
    [71]赵慧颖,乌力吉,郝文俊.气候变化对呼伦湖湿地及其周边地区生态环境演变的影响[J].生态学报,2008,3(03):1064-1071.
    [72]赵翔,崔保山,杨志峰.白洋淀最低生态水位研究[J].生态学报,2005,25(5):1034-1040.
    [73]中国应对气候变化的政策与行动白皮书.http://www.gov.cn/zwgk/2008-10/29/content_1134378.htm.2008.
    [74]衷平,杨志峰,崔保山,等.白洋淀湿地生态环境需水量研究[J].环境科学学报,2005,25(8):1119-1126.
    [75]左平,宋长春,钦佩.从第七届国际湿地会议看全球湿地研究热点及进展[J].湿地科学,2005,1(01):66-73.
    [76]Acuna V, Munoz I, Giorgi A, et al. Drought and postdrought recovery cycles in an intermittent Mediterranean stream:structural and functional aspects[J]. JOURNAL OF THE NORTH AMERICAN BENTHOLOGICAL SOCIETY,2005,24(4):919-933.
    [77]Ahn C, White D C, Sparks R E. Moist-Soil Plants as Ecohydrologic Indicators for Recovering the Flood Pulse in the Illinois River[J]. Restoration Ecology,2004,12(2):207-213.
    [78]alvarez-Rogel J, Martinez-Sanchez J J, Blazquez L C, et al. A conceptual model of salt marsh plant distribution in coastal dunes of southeastern Spain[J]. Wetlands,2006,26(3):703-717.
    [79]Apaydin Z, Kutbay H G, Ozbucak T, et al. Relationships between vegetation zonation and edaphic factors in a salt-marsh community (Black Sea Coast)[J]. Polish Journal of Ecology,2009, 57(1):99-112.
    [80]Arthington A H, Balcombe S R, Wilson G A, et al. Spatial and temporal variation in fish-assemblage structure in isolated waterholes during the 2001 dry season of an arid-zone floodplain river, Cooper Creek, Australia[J]. Marine and Freshwater Research,2005,56(1): 25-35.
    [81]Baxter C V, Fausch K D, Carl Saunders W. Tangled webs:reciprocal flows of invertebrate prey link streams and riparian zones[J]. Freshwater Biology,2005,50(2):201-220.
    [82]Begnudelli L, Sanders B F. Unstructured grid finite-volume algorithm for shallow-water flow and scalar transport with wetting and drying[J]. Journal of hydraulic engineering,2006,132(4): 371-384.
    [83]Bostic E M, White J R. Soil phosphorus and vegetation influence on wetland phosphorus release after simulated drought[J]. SOIL SCIENCE SOCIETY OF AMERICA JOURNAL,2007,71(1): 238-244.
    [84]Boulton A J. Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages[J]. Freshwater Biology,2003,48(7):1173-1185.
    [85]Brock M A, Nielsen D L, Shiel R J, et al. Drought and aquatic community resilience:the role of eggs and seeds in sediments of temporary wetlands[J]. Freshwater Biology,2003,48(7): 1207-1218.
    [86]Bullock A, Acreman M. The role of wetlands in the hydrological cycle[J]. Hydrology and Earth System Sciences Discussions,2003,7(3):358-389.
    [87]Chauvelon P, Tournoud M G, Sandoz A. Integrated hydrological modelling of a managed coastal Mediterranean wetland (Rhone delta, France):initial calibration[J]. Hydrology and Earth System Sciences,2003,7(1):123-131.
    [88]Cheng N S. Representative roughness height of submerged vegetation[J]. Water Resources Research,2011,47(8).
    [89]Cowx I G, Young W O, Hellawell J M. The influence of drought on the fish and invertebrate populations of an upland stream in Wales[J]. Freshwater Biology,1984,14(2):165-177.
    [90]Cucherousset J, Paillisson J M, Carpentier A, et al. Fish emigration from temporary wetlands during drought:the role of physiological tolerance[J]. Fundamental and Applied Limnology Archiv fur Hydrobiologie,2007,168(2):169-178.
    [91]Dahm C N, Baker M A, Moore D I, et al. Coupled biogeochemical and hydrological responses of streams and rivers to drought[J]. Freshwater Biology,2003,48(7):1219-1231.
    [92]Dall'O M, Kluge W, Bartels F. FEUWAnet:a multi-box water level and lateral exchange model for riparian wetlands[J]. Journal of Hydrology,2001,250(1):40-62.
    [93]Davey A, Kelly D J. Fish community responses to drying disturbances in an intermittent stream: a landscape perspective[J]. Freshwater Biology,2007,52(9):1719-1733.
    [94]De Lamonica Freire E M, Heckman C W. The Seasonal Succession of Biotic Communities in Wetlands of the Tropical Wet-and-Dry Climatic Zone:Ⅲ. The Algal Communities in the Pantanal of Mato Grosso, Brazil, with a Comprehensive List of the Known Species and Revision of two Desmid Taxa[J]. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 1996,81(2):253-280.
    [95]de Vicente I, Moreno-Ostos E, Amores V, et al. Low predictability in the dynamics of shallow lakes:implications for their management and restoration[J]. Wetlands,2006,26(4):928-938.
    [96]Dent C L, Grimm N B, Fisher S G. Multiscale effects of surface-subsurface exchange on stream water nutrient concentrations[J]. Journal of the North American Benthological Society,2001, 20(2):162-181.
    [97]Do Prado A L, Heckman C W, Martins F R. The Seasonal Succession of Biotic Communities in Wetlands of the Tropical Wet-and-Dry Climatic Zone:Ⅱ. The Aquatic Macrophyte Vegetation in the Pantanal of Mato Grosso, Brazil.[J]. Internationale Revue der gesamten Hydrobiologie und Hydrographie,1994,79(4):569-589.
    [98]Dorn N J, Trexler J C. Crayfish assemblage shifts in a large drought-prone wetland:the roles of hydrology and competition[J]. Freshwater Biology,2007,52(12):2399-2411.
    [99]Douglas M R, Brunner P C, Douglas M E. Drought in an evolutionary context:molecular variability in Flannelmouth Sucker (Catostomus latipinnis) from the Colorado River Basin of western North America[J]. Freshwater Biology,2003,48(7):1254-1273.
    [100]Dow C L. Assessing regional land-use/cover influences on New Jersey Pinelands streamflow through hydrograph analysis[J]. Hydrological processes,2007,21(2):185-197.
    [101]Dube S, Plamondon A P, Rothwell R L. Watering up after clear-cutting on forested wetlands of the St. Lawrence lowland[J]. Water Resources Research,1995,31(7):1741-1750.
    [102]Dwire K A, Kauffman J B, Baham J E. Plant species distribution in relation to water-table depth and soil redox potential in montane riparian meadows[J]. Wetlands,2006,26(1):131-146.
    [103]Eimers M C, Watmough S A, Buttle J M, et al. Drought-induced sulphate release from a wetland in south-central Ontario[J]. ENVIRONMENTAL MONITORING AND ASSESSMENT,2007, 127(1-3):399-407.
    [104]Einfeldt B, Munz C, Roe P L, et al. On Godunov-type methods near low densities[J]. Journal of computational physics,1991,92(2):273-295.
    [105]Einfeldt B. On Godunov-type methods for gas dynamics[J]. SIAM Journal on Numerical Analysis,1988,25(2):294-318.
    [106]Fan Y, Miguez-Macho G. A simple hydrologic framework for simulating wetlands in climate and earth system models[J]. Climate dynamics,2011,37(1-2):253-278.
    [107]Fang X, Pomeroy J W. Drought impacts on Canadian prairie wetland snow hydrology[J]. Hydrological Processes,2008,22(15):2858-2873.
    [108]Fennessy M S, Jacobs A D, Kentula M E. Review of rapid methods for assessing wetland condition[R]. Washington, D.C:U.S. Environmental Protection Agency,2004.
    [109]Foster I, Walling D E. The effects of the 1976 drought and autumn rainfall on stream solute levels[J]. Earth Surface Processes,1978,3(4):393-406.
    [110]Franzen L G. Can Earth Afford to Lose the Wetlands in the Battle Against the Increasing Greenhouse Effect. IPC Proceedings of the 9th International Peat Congress,1992.
    [111]Franzle O, Kluge W. Typology of water transport and chemical reactions in groundwater/lake ecotones[J]. INT. HYDROL. SER.,1997:127-134.
    [112]Gagnon P M, Golladay S W, Michener W K, et al. Drought responses of freshwater mussels (Unionidae) in coastal plain tributaries of the Flint River Basin, Georgia[J]. Journal of Freshwater Ecology,2004,19(4):667-679.
    [113]Gold A J, Kellogg D Q. Modelling internal processes of riparian buffer zones[J]. Buffer Zones: Their Processes and Potential in Water Protection. Quest Environment, Harpenden (UK),1996: 192-207.
    [114]Griswold M W, Berzinis R W, Crisman T L, et al. Impacts of climatic stability on the structural and functional aspects of macroinvertebrate communities after severe drought[J]. Freshwater Biology,2008,53(12):2465-2483.
    [115]Hall R I, Leavitt P R, Quinlan R, et al. Effects of agriculture, urbanization, and climate on water quality in the northern Great Plains[J]. Limnology and Oceanography,1999,44(3):739-756.
    [116]Hamlin L, Pietroniro A, Prowse T, et al. Application of indexed snowmelt algorithms in a northern wetland regime[J]. Hydrological Processes,1998,12(10-11):1641-1657.
    [117]Hardoim E L, Heckman C W. The Seasonal Succession of Biotic Communities in Wetlands of the Tropical Wet-and-Dry Climatic Zone:IV. The Free-Living Sarcodines and Ciliates of the Pantanal of Mato Grosso, Brazil[J]. Internationale Revue der Gesamten Hydrobiologie und Hydrographie,1996,81(3):367-384.
    [118]Harper D M, Zalewski M. Ecohydrology:processes, models and case studies:an approach to the sustainable management of water resources[M]:Cabi,2008.
    [119]Hattermann F F, Krysanova V, Habeck A, et al. Integrating wetlands and riparian zones in river basin modelling[J]. Ecological modelling,2006,199(4):379-392.
    [120]Heckman C W. The Seasonal Succession of Biotic Communities in Wetlands of the Tropical Wet-and-Dry Climatic Zone:I. Physical and Chemical Causes and Biological Effects in the Pantanal of Mato Grosso, Brazil[J]. Internationale Revue der gesamten Hydrobiologie und Hydrographie,1994,79(3):397-421.
    [121]Heckman C W. The Seasonal Succession of Biotic Communities in Wetlands of the Tropical Wet-and-Dry Climatic Zone:V. Aquatic Invertebrate Communities in the Pantanal of Mato Grosso, Brazil[J]. International review of hydrobiology,1998,83(1):31-63.
    [122]Heniche M, Secretan Y, Boudreau P, et al. A two-dimensional finite element drying-wetting shallow water model for rivers and estuaries[J]. Advances in Water Resources,2000,23(4): 359-372.
    [123]Hoerling M, Eischeid J, Perlwitz J, et al. On the increased frequency of Mediterranean drought[J]. Journal of Climate,2011,25:2146-2161.
    [124]Huckelbridge K H, Stacey M T, Glenn E P, et al. An integrated model for evaluating hydrology, hydrodynamics, salinity and vegetation cover in a coastal desert wetland[J]. Ecological Engineering,2010,36(7):850-861.
    [125]Humphries P, Baldwin D S. Drought and aquatic ecosystems:an introduction[J]. Freshwater Biology,2003,48(7):1141-1146.
    [126]Jasper K, Calanca P, Fuhrer J. Changes in summertime soil water patterns in complex terrain due to climatic change[J]. Journal of Hydrology,2006,327(3):550-563.
    [127]Jawahar P, Kamath H. A high-resolution procedure for Euler and Navier-Stokes computations on unstructured grids[J]. Journal of Computational Physics,2000,164(1):165-203.
    [128]Jolly I D, Rassam D W. A review of modelling of groundwater-surface water interactions in arid/semi-arid floodplains[C],2009.
    [129]Joris I, Feyen J. Modelling water flow and seasonal soil moisture dynamics in analluvial groundwater-fed wetland[J]. Hydrology and Earth System Sciences Discussions,2003,7(1): 57-66.
    [130]Kauffman G J, Vonck K J. Frequency and intensity of extreme drought in the Delaware Basin, 1600-2002[J]. Water Resources Research,2011,47(5):W5521.
    [131]Kazezyilmaz-Alhan C M, Medina M A, Richardson C J. A wetland hydrology and water quality model incorporating surface water/groundwater interactions[J]. Water Resources Research,2007, 43(4):W4434.
    [132]Kershaw P, Moss P, Van Der Kaars S. Causes and consequences of long-term climatic variability on the Australian continent[J]. Freshwater Biology,2003,48(7):1274-1283.
    [133]Kim S Y, Lee S H, Freeman C, et al. Comparative analysis of soil microbial communities and their responses to the short-term drought in bog, fen, and riparian wetlands[J]. Soil Biology & Biochemistry,2008,40(11):2874-2880.
    [134]Kingsford R T, Jenkins K M, Porter J L. Imposed hydrological stability on lakes in arid Australia and effects on waterbirds[J]. Ecology,2004,85(9):2478-2492.
    [135]Kluge W, Muller-Buschbaum P, Theesen L. Parameter acquisition for modelling exchange processes between terrestrial and aquatic ecosystems[J]. Ecological modelling,1994,75: 399-408.
    [136]Lafleur P M, Mccaughey J H, Joiner D W, et al. Seasonal trends in energy, water, and carbon dioxide fluxes at a northern boreal wetland[J]. Journal of Geophysical Research:Atmospheres (1984-2012),1997,102(D24):29009-29020.
    [137]Lake P S. Ecological effects of perturbation by drought in flowing waters[J]. Freshwater Biology, 2003,48(7):1161-1172.
    [138]Lake P S. Ecological effects of perturbation by drought in flowing waters[J]. Freshwater biology, 2003,48(7):1161-1172.
    [139]Leberfinger K, Bohman I, Herrmann J. Drought impact on stream detritivores:experimental effects on leaf litter breakdown and life cycles[J]. HYDROBIOLOGIA,2010,652(1):247-254.
    [140]Ledger M E, Edwards F K, Brown L E, et al. Impact of simulated drought on ecosystem biomass production:an experimental test in stream mesocosms[J]. Global Change Biology,2011,17(7): 2288-2297.
    [141]Lee J H, Kim C J. A multi-model assessment of the climate change effect on the drought severity-duration-frequency relationship[J]. Hydrological Processes,2012.
    [142]Li L J, Zhang L, Wang H, et al. Assessing the impact of climate variability and human activities on streamflow from the Wuding River basin in China[J]. Hydrological Processes,2007,21(25): 3485-3491.
    [143]Li X, Jongman R H, Hu Y, et al. Relationship between landscape structure metrics and wetland nutrient retention function:A case study of Liaohe Delta, China[J]. Ecological Indicators,2005, 5(4):339-349.
    [144]Liang Q, Borthwick A G. Adaptive quadtree simulation of shallow flows with wet-dry fronts over complex topography[J]. Computers & Fluids,2009,38(2):221-234.
    [145]Lien F S. A pressure-based unstructured grid method for all-speed flows[J]. International Journal for Numerical Methods in Fluids,2000,33(3):355-374.
    [146]Liu Y, Yang W, Wang X. Development of a SWAT extension module to simulate riparian wetland hydrologic processes at a watershed scale[J]. Hydrological Processes,2008,22(16): 2901-2915.
    [147]Lucassen E C, Smolders A J, Lamers L P, et al. Water table fluctuations and groundwater supply are important in preventing phosphate-eutrophication in sulphate-rich fens:consequences for wetland restoration[J]. Plant and Soil,2005,269(1-2):109-115.
    [148]Magoulick D D, Kobza R M. The role of refugia for fishes during drought:a review and synthesis[J]. Freshwater biology,2003,48(7):1186-1198.
    [149]Mansell R S, Bloom S A, Sun G. A model for wetland hydrology:description and validation[J]. Soil Science,2000,165(5):384-397.
    [150]Milly P, Dunne K A. Macroscale water fluxes 2. Water and energy supply control of their interannual variability[J]. Water Resources Research,2002,38(10):1206.
    [151]Mitchell M J, Bailey S W, Shanley J B, et al. Evaluating sulfur dynamics during storm events for three watersheds in the northeastern USA:a combined hydrological, chemical and isotopic approach[J]. Hydrological Processes,2008,22(20):4023-4034.
    [152]Mitsch W J, Gosselink J G, Zhang L, et al. Wetland ecosystems[M]. New York:Wiley,2009.
    [153]Mitsch W J, Gosselink J G. Wetlands[M]. New York:John Wiley & Sons, Inc.,2007.
    [154]Moon H P. Observations on a small portion of a drying chalk stream[C]:Wiley Online Library, 1956.
    [155]Muchmore C B, Dziegielewski B. Impact of drought on quality of potential water supply sources in the sangamon river basin[J]. Journal of the American Water Resources Association,1983, 19(1):37-46.
    [156]Mulhouse J M, De Steven D, Lide R F, et al. Effects of dominant species on vegetation change in Carolina bay wetlands following a multi-year drought[J]. JOURNAL OF THE TORREY BOTANICAL SOCIETY,2005,132(3):411-420.
    [157]Naiman R J, Decamps H, Pastor J, et al. The potential importance of boundaries of fluvial ecosystems[J]. Journal of the North American Benthological Society,1988:289-306.
    [158]Naiman R J, Decamps H. The ecology of interfaces:riparian zones[J]. Annual review of Ecology and Systematics,1997:621-658.
    [159]Parry M L. Climate Change 2007:Impacts, Adaptation and Vulnerability:Working Group I Contribution to the Fourth Assessment Report of the IPCC[M]:Cambridge University Press, 2007.
    [160]Plum N M, Filser J. Floods and drought:Response of earthworms and potworms (Oligochaeta: Lumbricidae, Enchytraeidae) to hydrological extremes in wet grassland[J]. PEDOBIOLOGIA, 2005,49(5):443-453.
    [161]Pollock M M, Naiman R J, Hanley T A. Plant species richness in riparian wetlands-a test of biodiversity theory [J]. Ecology,1998,79(1):94-105.
    [162]Price J S, Waddington J M. Advances in Canadian wetland hydrology an biogeochemistry[J]. Hydrological Processes,2000,14(9):1579-1589.
    [163]Sabo J L, Sponseller R, Dixon M, et al. Riparian zones increase regional species richness by harboring different, not more, species[J]. Ecology,2005,86(1):56-62.
    [164]Saito T, Terashima I. Reversible decreases in the bulk elastic modulus of mature leaves of deciduous Quercus species subjected to two drought treatments[J]. PLANT CELL AND ENVIRONMENT,2004,27(7):863-875.
    [165]Song L, Zhou J, Guo J, et al. A robust well-balanced finite volume model for shallow water flows with wetting and drying over irregular terrain[J]. Advances in Water Resources,2011,34(7): 915-932.
    [166]Song L, Zhou J, Li Q, et al. An unstructured finite volume model for dam-break floods with wet/dry fronts over complex topography[J]. International Journal for Numerical Methods in Fluids,2011,67(8):960-980.
    [167]Sprague L A. Drought effects on water quality in the South Platte River Basin, ColoradofJ]. Journal of the American Water Resources Association,2005,41(1):11-24.
    [168]Staes J, Rubarenzya M H, Meire P, et al. Modelling hydrological effects of wetland restoration:a differentiated view.[J]. Water science and technology,2009,59(3):433-441.
    [169]Stanford J A, Ward J V. Revisiting the serial discontinuity concept[J]. Regulated Rivers: Research & Management,2001,17(4-5):303-310.
    [170]Stroh C L, De Steven D, Guntenspergen G R. Effect of climate fluctuations on long-term vegetation dynamics in Carolina Bay wetlands[J]. Wetlands,2008,28(1):17-27.
    [171]Toro E F. Riemann solvers and numerical methods for fluid dynamics:a practical introduction[M]. Berlin:Springer,2009.
    [172]Touchette B, lannacone L, Turner G, et al. Drought tolerance versus drought avoidance:A comparison of plant-water relations in herbaceous wetland plants subjected to water withdrawal and repletion[J]. Wetlands,2007,27(3):656.
    [173]Trepel M, Dall'O M, Dal Cin L, et al. Models for wetland planning, design and management[J], 2000.
    [174]Trepel M, Kluge W. WETTRANS:a flow-path-oriented decision-support system for the assessment of water and nitrogen exchange in riparian peatlands[J]. Hydrological processes,2004, 18(2):357-371.
    [175]Unisdr. Drought Risk Reduction Framework and Practices:Contributing to the Implementation of the Hyogo Framework for Action[M]. Geneva:United Nations secretariat of the International Strategy for Disaster Reduction,2009.
    [176]Vanek V. Heterogeneity of groundwater-surface water ecotones[J]. INT. HYDROL. SER.,1997: 151-161.
    [177]Wagner I, Zalewski M. Effect of hydrological patterns of tributaries on biotic processes in a lowland reservoir-consequences for restoration[J]. Ecological Engineering,2000,16(1):79-90.
    [178]Wang M N, Qin D Y, Lu C Y, et al. Modeling Anthropogenic Impacts and Hydrological Processes on a Wetland in China[J]. Water Resources Management,2010,24(11):2743-2757.
    [179]Wang W, Shao Q, Yang T, et al. Quantitative assessment of the impact of climate variability and human activities on runoff changes:a case study in four catchments of the Haihe River basin, China[J]. Hydrological Processes,2013,27(8):1158-1174.
    [180]Welcomme R L. The effects of the Sahelian drought on the fishery of the central delta of the Niger River[J]. Aquaculture Research,1986,17(2):147-154.
    [181]Wright J F, Berrie A D. Ecological effects of groundwater pumping and a natural drought on the upper reaches of a chalk stream[J]. Regulated Rivers:Research & Management,1987,1(2): 145-160.
    [182]Wylie E B, Streeter V L, Suo L. Fluid transients in systems[M]. N.J.:Prentice Hall Englewood Cliffs,1993.
    [183]Ylla I, Sanpera-Calbet I, Vazquez E, et al. Organic matter availability during pre-and post-drought periods in a Mediterranean stream[J]. Hydrobiologia,2010,657(1):217-232.
    [184]Zacharias I, Dimitriou E, Koussouris T. Quantifying land-use alterations and associated hydrologic impacts at a wetland area by using remote sensing and modeling techniques[J]. Environmental Modeling and Assessment,2004,9(1):23-32.
    [185]Zelnik I, carni A. Distribution of plant communities, ecological strategy types and diversity along a moisture gradient[J]. Community ecology,2008,9(1):1-9.
    [186]Zhang L, Dawes W R, Walker G R. Response of mean annual evapotranspiration to vegetation changes at catchment scale[J]. Water resources research,2001,37(3):701-708.
    [187]Zhang X, Zhang L, Zhao J, et al. Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China[J]. Water Resources Research,2008,44(7):W7A.
    [188]Zheng H, Zhang L, Zhu R, et al. Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin[J]. Water Resources Research,2009,45(7):W19A.