玉米籽粒品质性状QTL定位及其遗传相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高油玉米具有全面的优良籽粒品质和较高利用价值,是优质玉米领域发展较快的一种类型。前人主要针对IHO、IHP和BHO种质背景,利用单一遗传背景和测交群体对玉米籽粒品质性状开展了QTL定位研究。本研究选用与IHO和BHO具有不同种质背景的高油玉米自交系GY220,同时与两个普通玉米自交系8984和8622杂交构建的两组284个(P1)和265个(P2)F2和F2:3家系群体,利用SSR分子标记构建高密度遗传图谱,通过同时进行两种不同环境条件下的田间试验,采用复合区间作图法定位籽粒油分、蛋白质、淀粉含量3个籽粒品质性状QTL,采用多区间作图法分析定位QTL间的上位效应,并采用条件QTL分析和多性状联合分析的复合区间作图方法探讨各籽粒品质性状间及其与主要产量性状间的分子遗传关系,筛选具有不同遗传背景和环境稳定表达的有效分子标记,为玉米籽粒品质性状的分子遗传剖析、分子标记辅助育种、QTL精细定位及克隆奠定基础。主要试验和结论如下:
     1.用665对SSR引物分别对两个组合普通玉米自交系8984×GY220 (P1)和普通玉米自交系8622×GY220 (P2)的亲本自交系进行多态性检测,分别筛选出212对和205对多态性标记。两组亲本间多态性标记存在较大差异,仅有104对相同,占49.1%和50.7%。去除严重偏分离的标记,用Mapmaker3.0b作图软件构建两张分别包含185个和173个多态性标记的玉米遗传连锁图谱,图谱总长度分别为2111.7 cM和2298.5 cM,相邻标记间平均距离为11.41 cM和13.29 cM。
     2.两组F2和F2:3家系群体在两种环境条件下共检测到53个籽粒品质性状相关QTL,P1F2和P1F2:3家系群体检测到10个和22个QTL,P2F2和P2F2:3家系群体检测到6个和19个QTL,两组群体没有定位到位于相同标记区间的QTL。
     3.籽粒油分含量共检测到22个QTL,18个与以往利用不同材料的相关研究具有相同或相似的染色体bin位点,2个籽粒油分含量QTL(qzOIL1-10-1、qzOIL1-4-1)与胚乳突变体基因accB(乙酰CoA)、bt2(脆质胚乳2)具有相同的染色体bin位点。其中P1F2和P1F2:3家系群体检测到5个和7相关QTL,P2F2和P2F2:3家系群体检测到3个和9个相关QTL,位于第1、3、4、5、6、7、8和10染色体上。其中2个QTL在来自同一组合的F2和F2:3家系群体均检测到,F2:3家系群体在两种环境条件下未检测到共同QTL,5个QTL在F2:3家系群体一个环境和两环境平均都检测到。单个QTL贡献率为5.0%~26.5%,12个QTL的贡献率大于10%,其中有11个QTL在以往研究中均被检测到,同时也具有较大的贡献率。具有环境稳定性和不同研究一致性的QTL qlOIL2-8-1和qzOIL2-6-1适宜作为进一步研究和实施MAS的主要目标。油分含量QTL位点的增效基因除一个来自普通玉米亲本自交系8622外,其余21个均来自高油亲本GY220,充分显示针对籽粒油分含量长期选择对相关基因的高度聚集效果。
     4.籽粒蛋白质含量共检测到12个QTL,9个与以往利用不同材料的相关研究具有相同或相似的染色体bin位点,qpPRO1-3-1与胚乳突变体基因sh2(皱缩2)具有相同的染色体bin位点。其中P1F2和P1F2:3家系群体检测到3个和6个相关QTL,P2F2和P2F2:3家系群体检测到0个和3个相关QTL,位于第1、3、5、6、8、9和10染色体上。F2和F2:3家系群体及F2:3家系群体在两种环境条件下均未检测到共同QTL,2个QTL在F2:3家系群体一个环境和两环境平均都被检测到。单个QTL贡献率为3.9%~17.5%,其中6个QTL的贡献率大于10%,有4个QTL在以往研究中均被检测到,同时也具有较大贡献率。qxPRO1-8-1和qxPRO1-8-2具有环境稳定性和不同研究一致性,适宜作为进一步研究和实施MAS的主要目标QTL。5个蛋白质含量的增效基因来自于高油亲本GY220,5个和2个分别来自普通亲本8984和8622。
     5.籽粒淀粉含量共检测到19个QTL,14个与以往利用不同材料的相关研究具有相同或相似的染色体bin位点,qpSTA1-5-2与胚乳突变体基因ae1(直链淀粉扩充者)具有相同的染色体bin位点。其中P1F2和P1F2:3家系群体检测到2个和9相关QTL,P2F2和P2F2:3家系群体检测到3个和7个相关QTL,位于第2、4、5、6、8和10染色体上。其中2个QTL在来自同一组合的F2和F2:3家系群体均检测到,1个QTL在F2:3家系群体两种环境条件下均检测到,2个QTL在F2:3家系群体一个环境和两环境平均都检测到。单个QTL贡献率为2.9%~14.0%,其中6个QTL的贡献率大于10%,有5个QTL在以往研究中均被检测到,同时也具有较大的贡献率。qzSTA2-6-1具有环境稳定性和不同研究一致性,适宜作为进一步研究和实施MAS的主要目标QTL。分别有10个和8个淀粉含量QTL的增效基因来自普通亲本8984和8622,仅一个增效基因来自高油亲本GY220。
     6.籽粒油分、蛋白质和淀粉含量表现为加性、部分显性、完全显性和超显性的QTL数目为12个、25个、7个和9个,部分显性和加性对玉米籽粒品质性状的遗传起着主要作用。定位QTL间的互作效应较小。
     7.条件QTL分析表明,百粒重、穗粒重对籽粒蛋白质含量QTL的表达影响最大,对籽粒油分、淀粉含量QTL的表达也有较大影响,籽粒蛋白质和淀粉含量对油分含量QTL的表达均有较大的影响。与籽粒油分、蛋白质和淀粉含量相关的3个、0个和2个QTL基本不受其它性状的影响,可以实现单个QTL的分子聚合。多性状联合QTL分析可以提高检测功效,第1、2、4、5、6、7、8和10染色体上控制不同籽粒品质性状及第1、2、4、5、6、7、8、9和10染色体上控制产量性状和籽粒品质性状的QTL存在一因多效或紧密连锁。
High-oil corn is fastly developing in quality maize breeding with its comprehensive kernel nutritional quality traits and higher commercial value. Previous researches about QTL mapping for kernel nutritional quality traits have been conducted with IHO, IHP and BHO high-oil corn germplasms and using single genetic background and testcross populations. In this study, 284 and 265 F2 populations and their F2:3 family lines were respectively developed from two crosses between the same high-oil corn inbred GY220 and two normal corn inbreds, 8984 and 8622. The germplasm background of GY220 was different from IHO and BHO. SSR markers were used to construct high-density genetic maps. QTL associated with three kernel nutritional quality characters were detected according to the LOD thresholds after 1000 permutations. Using composite interval mapping (CIM) method, QTL mapping of kernel oil, protein and starch concentration was done for the two environments individually and together. The interactions of detected QTL were identified using multiple interval mapping (MIM) method according to the result of CIM method. Conditional QTL mapping and joint QTL analysis for two or three different characters were done using CIM method of multiple traits analysis among three kernel nutritional quality and two main yield component characters. Our objectives were to reveal the molecular genetic mechanism of these characters and the genetic correlations among different kernel nutritional quality characters, and between these characters and yield components, and to select effective molecular markers with stable expression across different populations and environments. These results will do great help in fine mapping QTL associated with kernel nutritional quality characters and their map-based cloning, and in marker-assisted selection in high-oil maize breeding. The main results in this study were as follows:
     1. Totally, 665 SSR primers were employed to screen polymorphism between parents of two crosses, 8984×GY220 (P1) and 8622×GY220 (P2). 212 and 205 polymorphism markers were selected, respectively. Great differences in polymorphism markers were found between the two sets of parents. Only 104 pairs of markers were in common, which accounted for 49.1% and 50.7%, respectively. 185 and 173 pairs of SSR markers were selected respectively to construct the maize genetic linkage maps with the genetic distance of 2111.7 cM and 2298.5 cM (centimorgan) and an average of 11.41 cM and 13.29 cM using Mapmaker 3.0b.
     2. 53 QTL were detected for three kernel nutritional quality characters using both F2 and F2:3 families of the two crosses under two environments. 10 and 22 QTL were detected in P1F2 population and P1F2:3 families, repectively. In P2F2 population and P2F2:3 families 6 and 19 QTL were detected. No common QTL were detected in both populations.
     3. 22 QTL for kernel oil concentration were detected. Of these, 18 QTL were on identical or similar chromosomal bin locations with previous studies. qzOIL1-10-1 and qzOIL1-4-1 had the same chromosome regions as endosperm mutant genes accB and bt2, respectively. 5 and 7 QTL were detected in P1F2 population and P1F2:3 families, and 3 and 9 QTL for oil in P2F2 population and P2F2:3 families. These QTL were located on chromosome 1, 3, 4, 5, 6, 7, 8 and 10. Two identical QTL were detected in both F2 population and F2:3 families from the same cross. No identical QTL was detected in both F2:3 families. 5 QTL were simultaneously detected in F2:3 families under one environment and the average of two enviroments. The contribution of single QTL to phenotypic variation varied from 5.0% to 26.5%. Of 12 QTL with contributions higher than 10%, 11 QTL were detected by previous researchers. qlOIL2-8-1 and qzOIL2-6-1 had stability between different environments and consistency in different studies. They could be used as the main objevtive QTL in further studies and in MAS. Except one, all the favorable alleles of 21 QTL were from the high-oil corn parent GY220, which clearly showed high degree of kernel oil gene pyramiding through long-term selection.
     4. Of 12 QTL for kernel protein concentration, 9 QTL were on identical or similar chromosomal bin locations with previous studies. qpPRO1-3-1 had the same chromosome regions as endosperm mutant gene sh2. 3 and 6 protein QTL were detected in P1F2 population and P1F2:3 families. No protein QTL was detected in P2F2 population. 3 QTL were detected in P2F2:3 families. These QTL were located on chromosome 1, 3, 5, 6, 8, 9 and 10. No identical QTL was detected in both F2 population and F2:3 families, and in F2:3 families under two environments. 2 QTL were simultaneously detected in F2:3 families under one environment and the average of two enviroments. The contribution of single QTL to phenotypic variation varied from 3.9% to 17.5%. Of 6 QTL with contributions more than 10%, 4 QTL were detected by previous researchers. qxPRO1-8-1 and qzPRO1-1-1 could be used as the main objective QTL in further studies and in MAS with their stability between different environments and consistency between different studies. The favorable alleles of 5 QTL were contributed by GY220, and 5 and 2 QTL were from 8984 and 8622, repectively.
     5. 19 QTL for kernel starch concentration were detected. 9 QTL were on identical or similar chromosomal bin locations with those previous studies. qpSTA1-5-2 had the same chromosome regions to endosperm mutant gene ae1. 2 and 9 starch QTL were detected in P1F2 population and P1F2:3 families, and 3 and 7 QTL in P2F2 population and P2F2:3 families. These QTL were located on chromosome 2, 4, 5, 6, 8 and 10. Three identical QTL were detected in both F2 population and F2:3 families from the same cross. One identical QTL was detected in F2:3 families under two environments. Two QTL were simultaneously detected in F2:3 families under one environment and the average of two enviroments. The contribution of single QTL to phenotypic variation varied from 2.9% to14.0%. Of 6 QTL with contributions higher than 10%, 5 QTL were detected by previous researchers. qzSTA2-8-1 and qzSTA2-6-1 had stability between different environments and consistency between different studies, which could be used as the main objective QTL in further studies and in MAS. In all favorable QTL for starch concentration, only one was from GY220, and 10 and 8 QTL were from 8984 and 8622, repectively.
     6. The numbers of QTL expressing additive, partially dominance, dominance and over-dominance effects were 12, 25, 7, 9. Partially dominance and additive effects all played important role in the heredity of kernel nutritional quality characters. Very low interaction effects between detected QTL were estimated.
     7. The results of conditional QTL mapping showed that 100-kernel weight and ear-kernel weight had the greatest effect on kernel protein concentration. Their effects on kernel oil and starch concentration were also significant. Kernel oil concentration was also affected greatly by kernel protein and starch concentration. 3 and 2 QTL associated with oil and starch concentration were not affected by other characters, which could be pyramided in single QTL level. The QTL controlling different kernel nutritional quality characters mapped on chromosome 1, 2, 4, 5, 6, 7, 8 and 10, and QTL for them and yield components on chromosome 1, 2, 4, 5, 6, 7, 8,9 and 10, showed pleiotropy or tight linkage.
引文
1.蔡巨广,彭懿紫,刘丕庆,韦喜云,覃亚然.高油玉米综合杂交种含油特性的探讨.广西农业生物科学,2005,24(1):35-37.
    2.曹永国,孔繁玲,宋同明.高油玉米基础群体选择效果的评价及选择方法.中国农业大学学报,1999,4(1):83-89.
    3.曹永国,王国英,王守才,魏艳玲,卢江,谢友菊,戴景瑞.玉米RFLP遗传图谱的构建及矮生基因定位.科学通报,1999,44(20):2178-2182.
    4.陈绍江.从高油玉米之发展看我国玉米育种之创新.中国农业科技导报,2000,6.
    5.陈绍江.高油玉米发展回顾与展望.玉米科学,2001,9(4) : 80-83.
    6.陈绍江.高油玉米及其在畜禽饲料中的应用中国畜牧杂志,2004,40(10):42-44.
    7.陈绍江.我国高油玉米育种的发展策略.科技导报,2004,(2) : 52-55.
    8.丛兹金,宋同明.不育杂交种生产高油玉米的可行性研究.作物杂志.(增刊),1998,104-106.
    9.戴景瑞.我国玉米生产发展的前景及对策.作物杂志,1998,5:6-11.
    10.段民孝,赵久然,王元东,滕海涛,邢锦丰,宋同明,王利明,范弘伟.玉米子粒淀粉研究进展.玉米科学,2002,10(1):29-32.
    11.高用明.复杂上位性及其与环境互作的QTL定位方法和杂种优势预测研究.浙江大学博士论文,2001.
    12.霍仕平,晏庆九.玉米子粒含油量的研究及其育种进展.玉米科学,1994,2(3) :75-77.
    13.姜海鹰,陈绍江,高兰锋,邢吉敏,宋同明,戴景瑞.高油玉米自交系的杂种优势群划分和优势模式分析.作物学报,2005,31(3):361-367.
    14.柯枫英,石永刚,郑用链,李建生.玉米淀粉修饰基因du的RAPD标记研究.作物学报,1999,25(1):1-7.
    15.柯永培,石海春,杨志荣.玉米营养品质的遗传研究与育种进展.玉米科学,2004,
    12(4):16-20.
    16.兰进好,张宝石.玉米分子遗传图谱的SSR和AFLP标记构建.西北农林科技大学学报,2004,12(32)28-32.
    17.李德发.高油玉米对肉用仔鸡的营养价值.中国饲料,1994,(1):12-13.
    18.李玉玲,董永彬,牛素贞.爆裂玉米3个膨爆特性的非条件和条件QTL分析.分子植物育种,2006,4(3):372-380.
    19.李玉玲.爆裂玉米种质基础及其数量性状的分子遗传研究.河南农业大学博士论文.2005.
    20.刘纪麟,主编.玉米育种学.北京:农业出版社,1991,135:342-348.
    21.刘纪麟.玉米育种学.第二版.北京:中国农业出版社,2001,383-384.
    22.刘立丰.浅谈高油玉米的开发利用.天津农业科学,1997,3(4):32-33.
    23.刘仁东,杨秀梅,徐家舜.我国高油玉米的发展前景展望.作物杂志,1995,(3):1-5.
    24.刘文俊,王令强,何予卿.利用2个相关群体定位和比较水稻株高与抽穗期QTL.华中农业大学学报,2007,4:161-166.
    25.刘艳霞.Alho高油玉米自交系与不同来源普通玉米自交系的遗传关系研究.河南农业大学硕士学位论文.2007.
    26.刘章雄,王守才,戴景瑞,黄烈健曹海河.玉米P25自交系抗锈病基因的遗传分析及SSR分子标记定位.遗传学报,2003,30(8):706-710.
    27.柳李旺,朱协飞,郭旺珍,张天真.分子标记辅助选择聚合棉花Rf1育性恢复基因和抗虫Bt基因.分子植物育种,2003,1:48-52.
    28.路明,周芳,谢传晓,李明顺,李新海,杨晓军,刘美洲,张世煌.玉米穗长上位效应和Q×E互作效应分析,作物杂志,2007.4:30-32.
    29.马延华,于长会,孙德全,李绥艳,林红,潘丽艳.高油玉米在畜禽饲料中的应用效果浅析.黑龙江农业科学,2007,(2):67-69
    30.莫惠栋.数量遗传学的新发展—数量性状基因图谱的构建和应用.中国农业科学,1996,29:8-16.
    31.乔光明,贾举庆,丁建旭,李忠诚.高直链淀粉玉米研究进展.玉米科学,2007,15(4):140-142,145.
    32.任时成,王志祥,刘岭.高蛋白玉米日粮对生长猪生长性能的影响.饲料博览,2007,3:9-12.
    33.沈伟,耿社民,潘庆杰,李兰,秦国庆.群体遗传不平衡条件下的结构基因遗传共适应特性.遗传,2003,25(3):295-298.
    34.盛志廉,陈瑶生编著.数量遗传学.科学出版社,1999,340-347.
    35.宋同明,苏胜宝,陈绍江,赵永亮.高油玉米前途光明.玉米科学,1997,5(3):73-77.
    36.宋同明.高油玉米.北京:北京农业大学出版社,1992.
    37.宋同明.高油玉米种质资源的快速创新.玉米科学,2001,9 (4) : 3-5.
    38.宋同明.高油玉米自交系的培育与改良.作物杂志,1991,3:13-14.
    39.宋同明.脉冲核磁共振仪(NMR)对作物种子含油量的快速测定.作物学报,1989,15(2):160-166.
    40.宋同明.迎接高油玉米新世纪.种子科技,2001,(5):279-281.
    41.宋秀芳.玉米籽粒油分含量基因的SSR分子标记、定位及相关分析.中国农业大学博士论文.2003.
    42.隋华.高油玉米青贮秸秆饲喂试验研究.天津农林科技,1999,(5):1-3.
    43.覃兰英,吴子恺,罗高玲,蒋一岚.微胚乳超高油玉米自交系含油量的研究.玉米科学2005,13(1):25-27,32.
    44.唐定中,吴为人,李维明,吴建梅.水稻品种Acc8558抗白叶枯病的抗性基因定位.福建农业大学学报,2000,29 (2):134-137.
    45.万向元,刘世家,王春明,江玲,翟虎渠,吉村醇,万建民.利用CSSLs群体研究稻米粒型QTL的表达稳定性.遗传学报,2004,31(11):1275-1283.
    46.王芳,梁心龙,官明军,张红岗,张变英,刘燕萍,樊爱芳,车向荣.高蛋白玉米蛋白粉替代豆粕对蛋鸡饲喂效果研究高蛋白玉米蛋白粉替代豆粕对蛋鸡饲喂效果研究.饲料工业,2007,28(17):39-40.
    47.王凤格,刘贤德,王振华,张世煌,李新海,袁力行,韩晓清,李明顺.玉米抗甘蔗花叶病毒QTL的初步研究.作物学报,2003,29(1):69-74.
    48.王心宇,陈佩度,张守忠.小麦白粉病抗性基因的聚合及其分子标记辅助选择.遗传学报,2001,28:640-646.
    49.魏国才.高油玉米育种发展及黑龙江省研究现状.中国林副特产,2003,(1):27-28.
    50.吴春胜,贾士芳,王成己,牟金明.高蛋白玉米、高油玉米与普通玉米品质的对比研究.玉米科学,2004,12(1):57-60.
    51.吴为人,李维明,卢浩然.基于最小二乘估计的数量性状基因座的复合区间定位法.福建农业大学学报,1996,25:394-399.
    52.夏军红,郑用琏.玉米Rf3近等基因系的分子标记辅助回交选育与效应分析.作物学报,2002,28(3):339-344.
    53.向道权,曹海河,曹永国,杨俊品,黄烈健,王守才,戴景瑞.玉米SSR遗传图谱构建及产量性状基因定位.遗传学报,2001,28(8):778-784.
    54.向道权,黄烈健,戴景瑞.玉米产量QTL和杂种优势遗传基础研究进展.中国农业大学学报,1999,4(增刊):1-7.
    55.邢永忠,徐才国,华金平,谈移芳,孙新立.水稻株高和抽穗期基因的定位和分离.植物学报,2001,43(7):721-726.
    56.邢永忠,徐才国,华金平,谈移芳.水稻穗部性状的QTL与环境互作分析.遗传学报,2001,28(5):439-446.
    57.徐云碧.分子数量遗传学.北京:中国农业大学出版社,1994.
    58.严建兵,王毅,汤华,黄益勤,李建生,郑用琏.基于株高性状的玉米EST序列与水稻基因组的比较研究.作物学报,2004,30(7):657-667.
    59.杨俊品,荣廷昭.玉米数量性状RFLP分子标记研究进展.玉米科学,1999,7(1):18-24.
    60.杨文鹏.与玉米奥帕克-6位点连锁的RFLP标记.作物学报,1998,24(1):34-41.
    61.于永涛,张吉民,石云素,宋燕春,王天宇,黎裕.利用不同群体对玉米株高和叶片夹角的QTL分析.玉米科学,2006,14(2): 88-92.
    62.袁森泉.高蛋白玉米作猪饲料的经济效果.饲料广角,1996,(2):38-39.
    63.翟文学,李晓兵,田文忠,周永力,潘学彪,曹守云,赵显峰,赵彬,章琦,朱立煌.由农杆菌介导将白叶枯病抗性基因Xa21转入我国水稻品种.中国科学(C辑),2000,30(2):200-206.
    64.张帆,万雪琴,潘光堂.玉米分子遗传图谱的构建.玉米科学2006,14(3):6-9.
    65.张丽霞,刘丕庆,刘学义.染色体单片段代换系的构建及应用于QTL精细定位.分子植物育种,2004,2(3):743-746.
    66.张志明,赵茂俊,荣廷昭,潘光堂.玉米SSR连锁图谱构建与株高及穗位高QTL定位.作物学报,2007,33(2):341-344.
    67.赵茂俊,张志明,张世煌,李晚忱,MariaLuzC.George,潘光堂.玉米SSR连锁图谱构建及抗纹枯病基因定位.高技术通讯,2005,15(05):71-76.
    68.郑景生,江良荣,曾建敏,林文雄,李义珍.应用明恢86和佳辐占的F2群体定位水稻部分重要农艺性状和产量构成的QTL.分子植物育种,2003,1(5/6):633 - 639.
    69.周洪生,编著.玉米种子大全.北京:中国农业出版社,2000,88-115:323-325.
    70.朱丹.高油玉米主要性状的遗传相关性.延边大学农学学报,2000,22(2):96-101.
    71.庄铁成,王月,李中华.高淀粉玉米的遗传与育种.玉米科学,1996,4(4):12-14.
    72. Alexander D E, Silvela L, Collins F I, Rodgers R C. Analysis of oil content of maize by wide-line NMR. J Am Oil Chem Soc, 1967, 44 (10):555-558.
    73. Alexander D. E. L ambert R. J. Relationsh ip of Krnel o il content to yield in maize. Crop Sci. 1968, 8: 272-274.
    74. Alrefai R, Berke T G, Rocheford T R. Quantitative trait locus analysis of fatty acid concentrations in maize . Genome, 1995, 38:894-901.
    75. Andrae J G, Duckett S K, Hunt C W, Pritchard G T, Owens F N. Effect of feeding high oil to beef steers on carcass characteristics and meat quality. J Dairy Sci, 2001, 79:582-588.
    76. Antwell D G, Jaster E H, Moore K J, Fernando R L. Evaluation of high oil corn and corn silage for lactating cows. J Dairy Sci , 1988, 71:2689-2698.
    77. Austin D F, Lee M. Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and nonstress environments. Crop Sci, 1998, 38 (5):1296-1308.
    78. Austin D F, Lee M. Genetic resolution and verification of quantitative trait loci for flowering and plant height with recombinant inbred lines of maize. Genome, 1996, 39 (6):957-968.
    79. Bae J M, Giroux M, Hannah L. Cloning and characterization of the Brittle-2 gene of maize. Maydica, 1990, 35:317-322.
    80. Beavis W D, Grant D, Albertsen M, Fincher R. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet, 1991, 83:141-145
    81. Berke T G, Rocheford T R. Quantitative trait loci for flowering, plant ear height and kernel traits in maize. Crop Sci, 1995, 35:1542-1549.
    82. Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L. Connected populations for detecting quantitative trait lociand testing for epistasis: an application in maize . Theor Appl Genet, 2006, 113:206-224.
    83. Bond P L, Sullivan T W, Douglas J H. Composition and nutritional value of an experimental high-protein corn in the diets of broilers and laying hens. Poultry Science, 1991, 70( 7):1578-1584.
    84. Botella M A, Coleman M J, Hughes D E, Nishimura M T, Jones J D G, Somerville S C. Map positions of 47 Arabidopsis sequences with similarity to disease resistance genes. The Plant Journal, 1997, 12:1197-1211.
    85. Bubeck D M, Goodman M M, Beavis W D, Grant D. Quantitative trait loci controlling resistance to gray leaf spot in maize. Crop Sci, 1993, 33:838-847.
    86. Caffrey J J, Wurtele E S, Nikolau B J. Genetic mapping of two acetyl-CoA carboxylase genes. MNL,1995, 69:3-4.
    87. Cameron J W, Teas HJ. Carbohydrate relationships in developing and mature endosperms of brittle and related maize genotypes. Am J Bot, 1954, 41:50-55.
    88. Cao G. QTL analysis of epistatic and conditional effects for some agronomic traits in rice (Oryza sativa L.). 2000.Ph.D Dissertation. Zhejiang Agricultural University. Hangzhou, China.
    89. Chouinard R Y, Corneau L , Butler W R , Bauman D E , Chilliard Y, Drackley J K. Effect of Dietary lipid source on conjugated linoleic acid concentrations in milk fat. J Dairy Sci, 2001, 84:680-690.
    90. Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138:963-971.
    91. Clark D, Dudley J W, Rocheford T R, LeDeauxb J R. Genetic analysis of corn kernel Chemical composition in the random mated 10 generation of the cross of generations 70 of IHO×ILO. Crop Sci, 2006, 46:807–819.
    92. Cuppen E. Haplotype-based genetics in mice and rats. Trends Genet, 2005, 21(6):318-322.
    93. Darvasi A, Soller M. Advanced intercross lines, an experimental population for fine genetic mapping. Genetics, 1995, 141(3):1199-1207.
    94. Darvasi A. Interval-specific congenic strains (ISCS):an experimental design for mapping a QTL into a 1-centimorgan interval. Mamm Genome, 1997, 8(3):163-167.
    95. Doebley J, Stec A, Gustus C. Teosinte branched1 and the origin of maize: Evidence forepistasis and the evolution of dominance. Genetics, 1995, 141:333-346.
    96. Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature, 1997, 386:485-488.
    97. Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura1 A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes & Development, 2004, 18:926-936.
    98. Dorweiler J, Stec A, Kermicle J, Doebley J. Teosinte glume architecture 1: A genetic locus controlling a key step in maize evolution. Science, 1993, 262:233-235.
    99. Dudley J W, Clark D, Rocheford T R, LeDeaux J R. Genetic analysis of corn kernel chemical composition in the random mated 7 generation of the cross of generations 70 of IHP×ILP. Crop Sci, 2007, 47:45-57.
    100. Dudley J W, Dijkhuizen A, Paul C, Coates S T, Rocheford T R. Effects of random mating on marker-QTL associations in the cross of the Illinois High Protein-Illinois Low Protein Maize strains. Crop Sci, 2004, 44:1419-1428 .
    101. Dudley J W, Lambert R J. Ninety generations of selection for oil and protein in maize. Maydica, 1992, 37:81-87.
    102. East E M, Jones D F. Genetic studies on the protein content of maize. Genetics, 1920, 5(6):543-610.
    103. Edwards M D, Helentjaris T, Wright S, Stuber C W. Molecular-facilitated investigations of quantitative trait loci in maize.Ⅵ. Analysis based on genome saturation with isozyme and restriction fragment length polymorphis markers. Theor Appl Genet, 1992, 765-774.
    104. Fergason V. High amylose and waxy corns. In : Hallauer A R. Specialty Corn. Boca Raton : CRC Press, 1994, 65-66.
    105. Ferguson J E, Rhodes A M, Dickinson D B. The genetics of sugary enhance (se) ,an independent modifer of sweet corn (su) . Heredity, 1978, 69 : 377-380.
    106. Feuillet C, Keller B. Comparative genomics in the grass family:molecular characterization of grass genome structure and evolution. Ann Bot (Lond). 2002, 89 (1):3-10.
    107. Flint-Garcia S A. Jampatong C, Darrah L L, McMullen M D. Quantitative Trait Locus analysis of stalk strength in four Maize populations. Crop Sci, 2003, 43:13-22.
    108. Foote T, Roberts M, Kurata N, Sasaki T, Moore G. Detailed comparative mapping of cereal chromosome regions corresponding to the Ph1 locus in wheat. Genetics, 1997, 147:801-807.
    109. Frary A, Nesbitt T C, Frary A, Grandillo S, Knaap E, Cong B, Liu J P, Mellor J, Elber R , Alpert K B, Tanksley S D. fw2.2:a quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289:85-88.
    110. Frey K J. The inheritance of protein and certain of its components in maize. Agro J,1949, 41:113-117.
    111. Fridman E, Carrari F, Liu Y S, Fernie A R, Zamir D. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science, 2004, 305:1786-1789.
    112. Fridman E, Pleban T, Zamir D. E. Fridman, T. Pleban and D. Zamir, A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. PNAS, 2000, 97 (9):4718-4723.
    113. Fulker D W, Cardon L R. A sib-pair approach to interval mapping of quantitative trait loci. Am J Hum Genet, 1994, 54:1092-1103.
    114. Goldman I L, Rocheford T R, Dudley J W. Molecular marker assooiated with maize kernel oil concentration in an Illinois high protein and Illinois low protein cross . Crop Sci, 1994, 34:908-915.
    115. Goldman I L, Rocheford T R, Dudley J W. Quantitative trait loci influencing protein and starch concentration in Illinois long-term selection maize strains . Theo App Genet, 1993, 87:217-224.
    116. Groh S, González-de-León D, Khairallah MM, Jiang C, Bergvinson D, Bohn M, Hoisington DA, Melchinger AE. QTL Mapping in tropical maize:III. Genomic regions for resistance to Diatraea spp. and associated traits in two RIL Polulations. Crop Sci, 1998, 38:1062-1072.
    117. Harwood J L. Fatty acid metabolism. Annu Rev Plant Physiol Plant Mol Biol, 1988, 39:101-138.
    118. Helentjaris T, Slocum M, Wright S, Schaefer A, Nienhuis J. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Genet, 1986, 72:761-769.
    119. Hitzemann R, Malmanger B, Cooper S, Coulombe S, Reed C, Demarest K, Koyner J, Cipp L, Flint J, Talbot C, Rademacher B, Buck K, McCaughran J Jr. Multiple cross mapping (MCM)markedly improves the localization of a QTL for ethanol-inducedactivation. Genes Brain Behav, 2002, 1(4):214-222.
    120. Huang N, Angeles ER, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N Bennett J, Khush G S. Pyramiding of bacterial blight resistance genes in rice:marker assisted selection using RFLP and PCR. Theor Appl Genet, 1997, 95:313-320.
    121. Huang N, Courtois B, Khush G S, Lin H X, Wang G L, Wu P, Zheng K L. Association of quantitative trait loci for plant height with major dwarfing genes in rice. Heredity, 1996, 77:130-137.
    122. Jannink J L, Jansen R. Mapping epistatic quantitative trait loci with one-dimensional genome searches. Genetics, 2001, 157:445-454.
    123. Jansen R C, van Ooijen J W, Stam P, Lister C, Dean C. Genotype by environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet, 1995, 91:33-37.
    124. Jansen R C. Interval mapping of multiple quantitative trait loci. Genetics, 1993, 135:205- 211.
    125. Jellum M D and Widstrom N W. Location of genes controlling oleic and linoleic acids in maize oil. MNL, 1984, 58:88.
    126. Jiang C, Zeng Z B. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics, 1995, 140:1111-1127.
    127. Kao C H, Zeng Z B, Robert D T. Mutiple interval mapping for quantitative trait loci. Genetics, 1999, 152, 1203-1216.
    128. Keightley P D, Blfield G. Detection of quantitative trait loci from frequency changes of marker alleles under selection. Genet Res, 1993, 62:195-203.
    129. Keim P, Diers B W, Olson T C, Shoemaker R C. RFLP Mapping in soybean:association between marker loci and variation in quantitative traits. Genetics, 1990, 126:735-742.
    130. Kilian A, Chen J, Han F, Steffenson B, Kleinhofs A. Towards map-based cloning of the barley stem rust resistance genes Rpg1 and rpg4 using rice as an intergenomic cloning vehicle. Plant Molecular Biology, 1997, 35:187-195.
    131. Knapp S J, Bridges W C, Birkes D. Mapping quantitative trait loci using molecular maker linkage maps. Theor Appl Genet, 1990, 79:583-592
    132. Knapp S J, Stroup W W, Ross W M. Exact confidence intervals for heritability on progeny mean basis. Crop Sci, 1985, 25:192-194.
    133. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day condition. Plant Cell Physiol, 2002, 43:1096-1105.
    134. Korol A B, Ronin Y I, Itskovich A M, Peng J, Nevo E. Enhanced efficiency of quantitative trait loci mapping analysis based on multivariate complexes of quantitative traits. Genetics 2001, 157:1789-1803.
    135. Korol A B, Ronin Y I, Kirzhner V M. Interval mapping of quantitative trait loci employing correlated trait complexes. Genetics, 1995, 140:1137-1147.
    136. Kruglyak L, Lander E S. Complete multi-point sib pair analysis of qualitative and quantitative traits. Am J Hum Genet, 1995, 57:439-459.
    137. Lambert R J,Alexander D E,Mollring E L, Wiggens B. Selection for increased oil concentration in maize kernels and associated changes in several kernel traits. Maydica, 1997, 42:39-43.
    138. Lander E S, Botstein S. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121:185-199.
    139. Laurie C C, Chasalow S D, LeDeaux J R, McCarroll R, Bush D, Hauge B, Lai C, Clark D, Rocheford T R, Dudley J W. The genetic architecture of oil concentration in the maizekernel after 70 generations of divergent selection. Genetics, 2004, 168:2141-2155.
    140. Lee, M. DNA markers in plant breeding programs. Adv Agron, 1995, 55:265-344.
    141. Leister D, Ballvora A, Salamini F, Gebhardt C. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nature Genetics, 1996, 14:421-429.
    142. Li Z K, Luo L J, Mei H W, Shu Q Y, Wang D L, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice: I. Biomass and grain yield. Genetics, 2001, 158:1737–1753
    143. Li Z K, Pinson S R M, Stansel J W, Stansel, Park W D. Identification of quantitative trait loci(QTL)for heading date and plant height in rice using RFLP markers. Theor Appl Genet, 1995, 91:374-381.
    144. Lincoln S, Daly M, Lander E. Mapping genetic mapping with MAPMAKER/EXP3.0. Cambridge:MA:Whitehead institute Technical Report, 1992.
    145. Liu J, Eck J V, Cong B, Tanksley S D. A new class of regulatory genes underlying the cause of pear shaped tomato fruit . PNAS, 2002, 99 (20):13302-13306.
    146. Lu C, Shen L, Tan Z, Xu Y, He P, Chen Y, Zhu L. Comparative mapping of QTLs for agronomic traits of rice across environments by using a doubled haploid population. Theor Appl Genet, 1996, 93:1211-1217.
    147. Luo L J, Li Z K, Mei H W, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice.II.Grain yield components.Genetics, 2001, 158:1755-1771.
    148. Luo Z W, Wu Ch, Kearsey M J. Precision and high-resolution mapping of quantitative trait loci by use of recurrent selection, backcrossor intercross schemes. Genetics, 2002, 161(2) : 915-929.
    149. Mcmullen M D, Snook M, Lee E A, Byrne P F, Kross H, Musket T A, Houchins K, Coe E H. The biological basis of epistasis between quantitative trait loci for flavone and 3-deoxyanthocyanin synthesis in maize.Genome, 2001, 44:667-676.
    150. Melchinger A E, Utz H F, Schon C C. Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics, 1998, 149:383-403.
    151. Mertz E T, Bates L S, Nelson O E. Mutant gene that changes protein composition and increase lysine content of maize endosperm.Science, 1964, 145:279-280.
    152. Mihaljevic M, Friedrich U H, Melchinger A E. Congruency of quantitative trait loci detected for agronomic traits in testcrosses of five populations of European Maize. Crop Sci, 2004, 44:114-124.
    153. Miller P A, Brimhall B. Factors influencing the oil and protein content of corn grain. Agron J, 1951, 43:305-311.
    154. Miller R L, Dudley J W, Alexander D E. High intensity selection for percent oil in corn. Crop Sci, 1981, 21:433-437.
    155. Misevic D, Alexander D E, Dumanovic J, Kerecki B, Ratkovic S. Grain moisture loss rate of high-oil and standard-oil maize hybrid. Agron J, 1988, 80 (5):841-845.
    156. Moore G, Devos K M, Wang Z, Gale M. Cereal genome evolution. Grasses, line up and form a circle. Current Biology, 1995, 5:737-7391.
    157. Moore G, Foote T, Helentjaris T, Devos K, Kurata N, Gale M. Was there a single ancestral cereal chromosome. Trends Genet, 1995, 11:81-82.
    158. Moreno-Gonzalez J, Dudley J W, Lambert R J. A design of linkage disequilibrium for percent oil in maize. Crop Sci, 1975, 15:840-843.
    159. Moreno-Gonzalez J. Genetics models to estimate additive and non-additive effects of marker-associated QTL using multiple regression techniques. Theor. Appl. Genet., 1992, 85:435-444.
    160. Nelson O E, Mertz E T, Bates L S. Second mutant gene affecting the amino acid pattern of maize endosperm. Science, 1965, 150:1469-1470.
    161. Nienhuis J, Helentjaris T, Slocun M, Ruggero B, Schaefer A. Restriction fragment length polymorphism analysis of loci associated with insect resistence in tomato. Crop Sci., 1987, 27:797-803.
    162. Paez A V, Helm J L , Zuber M S. Lysine content of opaque-2 maize kernels having different phenotypes. Crop Sci., 1969, 9:251-252.
    163. Paterson A H, Bowers J E, Burow M D, Draye X, Elsik C G, Jiang C X, Katsar C S, Lan T H, Lin Y R, Ming R, Wright R J. Comparative genomics of plant chromosomes. Plant Cell, 2000, 12:1523-1539.
    164. Paterson A H, Domon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics, 1991, 127:181-197.
    165. Paterson A H, Lanter E S, Hewitt J D, Peterson S, Lincoln S E, Tanksley S D. Resolution of quantitative trait loci into Mendelian factors by using a linkage map of RFLP. Nature, 1988,335:721-726.
    166. Peng J, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F.‘Green revolution’genes encode mutant gibberellin response modulators. Nature, 1999, 400:256-261.
    167. Piepho H P. A quick method for computing approximate thresholds for quantitative trait loci detection. Genetics, 2001, 157:425-432.
    168. Poneleit C G. Chromosome location for control of oleic and linoleic acids in corn oil. Agronomy abstracts, 1976, 8:59.
    169. Preiss J, Danner S, Summers P S, Morell M, Barton C R, Yang L, Nieder M. Molecular characterization of the brittle-2 gene effect on maize endosperm ADP glucose pyrophos phorylase. Plant Physiol, 1990, 92:881-885
    170. Robertson D S. A possible technique for isolating genetic DNA for quantitative traits in plants. J Theor Bio, 1985, 117:1-10.
    171. Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley:Mendelian inheritance, chromosomal location, and population dynamics. PNAS, 1984, 81:8014-8018.
    172. Salah E D E A , Carlos A B , Anton J M P , Vered R , Maarten K, 2001. A QTL for flowering time in Aribiodopsis reveals a novel allele of CRY2. Nature Genet, 29:435-440.
    173. Salvi S, Tuberosa R, Phillips, R L. Development of PCR-based assays for allelic discrimination in maize, by using the 5 -nuclease procedure. Mol. Breed, 2001, 8:169-176.
    174. Sax K. the association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics, 1923, 8:552-560.
    175. Sehon C C, Lee M, Melchinger A E, Guthrie W D, Woodman W L. Mapping and characterization of quantitative trait loci affecting resistance against second-generation European corn borer in maize with the aid of RFLPs. Heredity, 1993, 70:648-659.
    176. Sehon C C, Melehinger A E, BoPPenmaier J, Brunklaus E, Jerrtnann R G, Seitzer J G RFLP mapping in maize: Quantitative trait loei affeeting ttesteross performanee of elite EuroPean flint lines.Crop Sei. 1994, 34:378-389.
    177. Senior M L, Heun M. Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome,1993, 36:884-889.
    178. Soller M, Brody T, Genizi A. In the power of experimental designs for detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor Appl Genet, 1976, 47:35-39.
    179. Somers D A, Keith R A, Egli M A, Marshall L C, Gengenbach B G, Gronwald J W, Wyse D L. Expression of the Acc1 gene encoded acetyl-coenzyme-A carboxylase in developing maize (Zea mays L.) kernels. Plant Physiol, 1993, 10:1097-1101.
    180. Song X F, Song T M, Dai J R, Rocheford T R, Li J S. QTL mapping of kernel oil concentration with high-oil maize by SSR markers. Maydica, 2004, 49(1):41-48.
    181. Sprague,G F and B Brimhall. Quantitative inheritence of oil in corn kernel. Agron. 1949,41:30-33.
    182. Stein N, Feuillet C, Wicker T, Schlagenhauf E, Keller B. Subgenome chromosome walking in wheat:a 450kb physical contig in Triticum monococcum L.Spans the Lr10 resistance locus in hexaploid wheat. PNAS, 2000, 97:13436-13441.
    183. Stuber C W, Edwards M D and Wendel J. F1 Molecular marker facilitated investigations ofquantitative trait loci in maize.,Ⅱ.Factors influencing yield and its component traits .Crop Sci, 1987, 27:639-648.
    184. Stuber C W, Wolff D W, Helentjaris T, Lander E S. Identification of genetic factors contributing to heterosis in a hybrid from 2 elite maize inbred lines using molecular markers. Genetics, 1992, 132:823-839
    185. Stumpf M P. Haplotype diversity and the block structure of linkagedisequilibrium. Trends Genet, 2002, 18(5):226-228.
    186. Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. PNAS, 2001, 98 (14):7922-7927.
    187. Tanksley S D, Ahn N, Caysse M. RFLP mapping of the rice genome.In Rice Genetics II.Los Banos,Laguna:IRRI, 1991:435-442.
    188. Tanksley S D, Ganal M W, Prince J P, de Vicente M C, Bonierbale M W, Broun P, Fulton T M, Giovannoni J J, Grandillo S, Martin G B, Messeguer R, Miller J C, Miller L, Paterson A H, Pineda O, Roder M S, Wing R A, Wu W, Young N D. High density molecular linkage map of the tomato and potato genomes. Genetics, 1992, 132:1141-1160.
    189. Tanksley S D, Medina Hilho H, Rick C M. Use of naturally occurring enzyme variation to detect and map gene controlling quantitative traits in an interspecific backcross of tomato. Heredity, 1982, 49:11-25.
    190. Tanksley S D, N D Young, A H Paterson & M W Bonierbale. RFLP mapping in plant breeding:new tools for an old science. Bio/Technology, 1989, 7:257-264.
    191. Tanksley S D, Nelson J C. Advanced backcross QTL analysis:a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet, 1996, 92:191-203.
    192. Tanksley S D. Mapping polygenes. Annu Rev Genet, 1993, 37:205-233.
    193. Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S. Dwarf8 polymorphisms associate with variation in flowering time. Nature Genetics, 2001, 28:286-289.
    194. Tsai C L, Huber D M, Warren H L, Tsai C Y. Effects of cross - pollination on dry matter accumulation , nutrient partitioning and grain yield of maize hybrids grown under different levels of N fertility. Sci Food Agric, 1991, 57:175-187
    195. Tuinstra M R, Ejeta G, Goldsbrough P B. Heterogeneous inbred family (HIF) analysis:a method for developing near-isogeniclines that differ at quantitative trait loci. Theor Appl Genet, 1997, 95(5-6):1005-1011.
    196. Valdar W S, Flint J, Mott R. QTL fine-mapping with recombinant-inbred heterogeneous stocks and in vitro heterogeneous stocks. Mamm Genome, 2003,14(12):830-838.
    197. Van Berloo R. GGT: software for the display of graphical genotypes. J Hered, 1999, 90:328-329.
    198. Van Dodeweerd A M, Hall CR, Bent EG, Johnson S J, Bevan M W, Bancroft I. Identification and analysis of homoeologous segments of the genomes of rice and Arabidopsis thaliana. Genome, 1999, 42 (5):887-8921.
    199. Veldboom L R, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments:Ⅰ.Grain yield and yield components. Crop Sci, 1996, 36: 1310 -1319.
    200. Vineyard M L, Bear R P, Deatherage W L. Development of“Amy losemaize”corn hybrids with high amylose starch. Agron J, 1958, 50:595-560.
    201. Visscher, P M, Thompson R, Haley C S. Confidence intervals for QTL locations using bootstrapping. Genetics, 1996, 143:1013-1020.
    202. Vladutu C, McLaughlin J, Phillips R L. Fine mapping and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures. Genetics, 1999, 153:993-1007.
    203. Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed liner model approaches. Theor Appl Genet, 1999, 99:1255-1264.
    204. Wang S , Basten C J, Zeng Z B. Windows QTL Cartographer2.5 Department of Statistics, North Carolina State University, Raleigh, NC, 2006.
    205. Wang S M, Lue W L, Wu S Y, Huang H W, Chen J. Characterization of a maize [beta]-Amylase cDNA clone and its expression during seed germination. Plant Physiol., 1997, 113:403-409.
    206. Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer2.0. Department of Statistics, North Carolina State University, Raleigh, NC, 2001-2004. (http://statgen.ncsu.edu/qtlcart/ WQTLCart.htm)
    207. Wang X, Le Roy L, Nicodeme E, Li R, Wagner R, Petros C, Churchill G A, Harris S, Darvasi A, Kirilovsky J, Roubertoux P L, Paigen B. Using advanced intercross lines for high-resolution mapping of HDL cholesterol quantitative trait loci. Genome Re-search, 2003, 13(7): 1654-1664.
    208. Wassom J, Wong J, Martinez E, King J, Debaene J, Hotchkiss J, Mikkilenini V and Rocheford T. QTL associated with maize kernel composition and related traits among Illinois High Oil×B73 backcross-derived lines. Theor Appl Genet, 2004, in press.
    209. Weller, J I. Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers. Biometrics, 1986, (42):627-640.
    210. Winter, F L. The mean and variability as affected by continuous selection for composition in corn. Agric Res, 1929, 39:451-476.
    211. Wu W R, Li W M, Tang D Z, Lu H R.Worhand A J. Time-related mapping of quantitative trait loci underlying tiller number in rice. Genetics, 1999, 151:297-303.
    212. Yamamoto T, Kuboki Y, Lin SY, Sasaki T, Yano M. Fine mapping of quantitative trait loci Hd-1,Hd-2 and Hd-3,controlling heading date of rice, as single Mendelian factors. Theor Appl Genet, 1998, 97:37-44.
    213. Yamanaka N, Watanabe S, Toda K, Hayashi M, Fuchigami H, Takahashi R, Harada K. Fine mapping of the FT1 locus for soybeanflowering time using a residual heterozygous line derivedfrom a recombinant inbred line. Theor Appl Genet, 2005, 110 (4):634-639.
    214. Yan J B, Tang H, Huang Y Q, Zheng Y L, Li J S. Quantitative trait loci mapping and epistatic analysis for grain yield and yield components usingmolecular markerswith an elite maize hybrid. Euphytica, 2006, 149:121-131.
    215. Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004, 303:1 640-1 644.
    216. Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positionalcloning of the wheat vernalization gene VRN1. Proceedings of the National Academy of Sciences of the USA, 2003, 100:6263-6268.
    217. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Tomoya Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photope riod sensitivity quantitative trait locus in rice, is closely related to the arabidopsis flowering time gene constans. Plant Cell, 2000, 12:2473-2484.
    218. Yoshimura S. Yoshimura A, Iwata N, Mccouch S R, Abenes M L, Baraoidan M R, Mew T W, Nelson R J. Tagging and combining bacterial blight resistance genes in rice using RAPD and RFLP markers. Mol Breeding, 1995, 1:375-387.
    219. Yu S B, Li J X, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci., 1997, 94:9226-9231.
    220. Zehr B E, Dudley J W, Chojecki J. Saghai-Maroof M A, and Mowers R P. Use of RFLP markers to search for alleles in a maize population for improvement of an elite hybrid, Theor Appl Genet, 1992, 83:903-911.
    221. Zeng Z B, Kao C H, Basten C J. Estimating the genetic architecture of quantitative traits. Genetical Research,1999, 74:279-289.
    222. Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136:1457-1468.
    223. Zeng Z B. QTL mapping and the genetic basis of adaptation:recent developments. Genetica, 2005, 123:25-37.
    224. Zhao J Y, Becker H C, Zhang D Q, Zhang Y F, Ecke W. Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet, 2006, 113:33-38.
    225. Zhao J Y. QTLs for oil content and their relationships to other agronomic traits in an European×Chinese oilseed rape population. Ph. D Dissertation. Georg-August University of G?ttingen, Germany, 2002.
    226. Zhu J, Weir B S. Mixed model approaches for the genetics of quantitative traits. In:Chen LS, Ruan SG, Zhu J(eds) Advanced topics in biomathematics:Proc Int Conf on Mathematical Biology, World Scientific Publishing Co, Singapore, 1998:321-330.
    227. Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics, 1995, 141:1633-1639.
    228. Zhuang J Y, Lin H X, Lu J, Qian H R, Hittalmani, Huang N, Zheng K L. Analysis of QTL×environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997, 95:799-808.
    229. Zuber M S, Grogan C O, Deatherage W L. Breeding high amylose corn. Agron J, 1958, 50 : 9-12.