城市供水管网运行状态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题以城市供水管网的运行状态为研究内容,为便于研究,建立了供水管网物理模型;基于该物理模型,进行供水管网的常规运行和漏损模拟实验;建立管网状态估计数学模型,并进行漏损状态分析;在此基础上开展了压力分布研究和管网水质模型研究,为实际供水管网的模拟和控制提供科学的方法和依据。
     首先,基于管流的变态相似理论,推导供水管网原型和实验模型之间的各种相似关系,分析并确定了承压管网符合欧拉相似定律;依据管网的简化原则,对所研究区域复杂的管网进行简化,得到适合建立实验模型的管网简化结构;提出构建供水管网实验模型的具体方法和步骤,确定实验模型的变态率和具体参数;应用美国国家环境保护总局开发的管网模拟软件EPANET 2.0软件模拟管网运行情况,对比管网实验模型和原型的运行检测数据,证明模型的管道流量、流速指标能够与原型很好地满足相似关系,此模拟方法有效可靠。
     其次,针对城市供水管网压力监测点设置较少,且采集的状态变量有限,不能全面有效地反映管网的运行状态这一实际情况,建立了基于粒子群优化算法(PSO)的BP神经网络状态估计模型。PSO是基于群体智能技术的全局优化技术,通过粒子间的相互作用,对解空间进行智能搜索,从而发现最优解。应用PSO对神经网络权值进行优化,建立PSO-BP神经网络。结果证明,PSO-BP方法具有满意的收敛速度和精度。
     再次,采用多种方法进行管网模型的渗漏和爆管实验,在实验数据的基础上进行漏损的相关性分析。从供水管网的压力分布特性出发,提出了运用趋势分析法建立供水管网压力分布曲线和三维趋势面模型,讨论了模型求解的步骤。结果表明,该模型能够实现管网压力的连续性模拟,为解决城市供水管理和调度系统中管网压力模拟问题提供了一个新方法,增强了决策的科学性和准确性。
     最后,介绍了余氯衰减数学模型。本文采用一级动力学方程对余氯在主流体和管壁中的衰减进行描述,建立余氯动态模型;模型考虑了管网中余氯沿管道水流的反应过程、余氯与管壁上微生物的反应过程、余氯在管壁腐蚀过程中的消耗以及余氯在主流和管壁之间的质量传输过程;利用EPANET 2.0模拟求解,并在物理模型的构架中,使用Matlab软件进行余氯分布模拟分析。
The research is mainly about operating state of the water distribution network, experimental model is established convenient for studying. General and leakage operating state are simulated in the experimental model, mathermatics model of the network state estimation is established also, Leakage state is analyzed, pressure distribution model and water quality model are based on experimental model, all of the study providing method and foundation for simulation and control of real water distribution network.
     First, several different similarity relations between actual network and experimental model are deduced based on distorted similarity theory of pipe liquid, finally, Euler similarity theory is chosen to use. Network simplify theory is used in simplify the complicated network of this area, proper network structure is find for construction of experimental model, possible method and process are put constructing the experimental model of water distribution network, the distorted rate and parameter of experimental model are decided. EPANET software is used for simulating the operating state of water distribution network, well similarity relationship of pipe runoff and flow velocity between the model and the actual network as well as credibility of the simulation method are proved by the operating and monitoring data.
     Secondly, owing to less monitoring nodes in water distribution network, the collected state variables are limited and can’t effectively reflect the operating state of the network, so a BP state estimation model based on particle swarm optimization (PSO) is established. Particle swarm optimization algorithm is a kind of stochastic global optimization based on swarm intelligence, through the interaction of particles,PSO searches the solution space intelligently and finds out the best solution, adopts the particle swarm optimization optimizes the power value of artificial neural network set up PSO-BP network to find the solution of the model. Result of the PSO-BP model shows that PSO-BP network is better in water demand prediction and possesses higher forecasting precision and accuracy.
     Thirdly,experimentation of leakage and burst in network model are processed,leakage correlative analysis based on the experimental data. Based on the distribution of pressure in water supply network, pressure distribution curve and three dimensional surface model are put forward. Method of solving the model is discussed that has been validated with an example. The result indicated that the model can really carry out the continuous simulation of pressure in network, and provide a new method to resolve technical puzzles of the pressure simulation of network in urban water supply and operation system, and enhance the rationality and veracity of st rategy.
     In the and, models of residual chlorine decay in network is discussed.The model of first-order decay reaction is adopted for chlorine decay dynamic model. The consumption of chlorine reacting with chemicals and microbes in bulk water, with biofilms on the pipe wall is discussed, besides, the mass transport of chlorine from bulk water to pipe wail is considered too. The pipes simulation software EPANET 2.0 which is developed by national environment protecting bureau of USA is used to solving the model, and the Matlab software is used to simulating the distribution of the chlorine in the network based on the data of experimental model.
引文
[1] 2004年城市供水统计年鉴.中国城镇供水协会. 2004.
    [2] C.F.Shute. Water Loss Management in a Developing Country: from Strategy to Practice. Proceedings of 20th Water Supply Congress. London, 1995. (12): 12-14.
    [3]中国城市供水办会.城市供水行业2010年技术进步发展规划及2020年远景目标. 2005. 10.北京,中国建筑工业出版社.
    [4]陈寅,陈国光.上海城市供水管网水质的调查分析.中国给水排水, 2002, 18 (7): 32-34.
    [5]杜英林,任立民.浅析配水管网水质污染原因及防止措施.山东水利, 2001, (9): 43-44.
    [6]何维华.国内部分城市供水管网水质调研分析.给水排水, 1993, 19 (10): 15-19.
    [7]后藤圭司.城市自来水管线的泄漏控制.地下管线管理. 1996. 17(3-4): 343-349.
    [8] K.Gotoh, K.Takahashi. General Report: Recent techniques in leak detection. Proceedings of 18th International Water Supply Congress. Riode Janeiro. 1988(4): 20-22.
    [9] A.N.Tafural. Locating Leaks with Acoustic Technology. Journal AWWA. 2000, 92(7): 57-66.
    [10]刘崎峰.城市供水管网漏失问题的分析与诊断: [硕士学位论文],青岛:青岛建工学院, 2004.
    [11] S.G.Bessey. The economics of leakage control in the UK: Theory and Practice, Proceedings of 20th Water Supply Congress, 1995, 12:1-5.
    [12]李伟,左晨.英国水务公司的漏损控制管网漏损控制研讨会论文集.中国水协科技委管道专业委员会, 2001: 98-103.
    [13] D. A. Savic, G. A. Walters. Genetic Algorithms for Least-cost Design of Water Distribution Networks. J. Water Resour. Plng. and Mgmt., ASCE. 1997, 123(2): 67-77.
    [14]赵胜跃.供水SCADA系统的研究与建立.中国给水排水. 2001(1): 50-53.
    [15]赵洪滨.给水管网漏损预测模型的研究.给水排水. 2001, 27(10): 94-96.
    [16] Pelletier G, Mailhot A, Villeneuve P. Modeling Water Pipe Breaks Three Case Studies, Water Resources Planning and Management, 2003, 3(4): 115-123.
    [17]耿为民,刘遂庆.城市给水管网漏损检测优化周期的求解.同济大学学报. 2004, 32(4): 5-8.
    [18]李霞.城市供水管网漏损定位及控制研究: [博士学位论文].天津:天津大学. 2006.
    [19]赵洪宾,严煦世.给水管网系统理论与分析.北京:中国建筑工业出版社. 2003.
    [20] Goodwin SJ. The results of the experimental program on leakage and leakage control. Water research center, 1980, (52): 154.
    [21] D.G.Shore. Economic Optimization of Distribution Leakage Control. Institution of Water and Environmental Management. 1988, (2): 545-551.
    [22] Bessey, S.G. Some developments in pressure reduction. J.Inst. of Water Engineers, 1996, (6): 501-505.
    [23] Bessey, S. G.. Progress in pressure control. Water Research. 1994, (6): 325-330.
    [24] Germanopoulos G., Jowitt P.W.. Leakage reduction by excessive pressure minimization in a water supply network, Proc., Institution Civ. Engrs., Part 2, 87(6): 195-214.
    [25] Germanopoulos G.. A technical note on the inclusion of pressure dependent demand and leakage terms in water supply network models, Civ.Engrgs. Systems, 2(3): 171-179.
    [26] Bargiela A.. On-line monitoring of water distribution systems, Thesis presented to the University of Durham, United Kingdom, in partial fulfillment of the requirements for the degree of Doctor of Philosophy.
    [27] Miyaoka, S., Fun abashi.M.. Optimal control of water distribution system by network flow theory, IEE Trans. Automatic Control, AC-29(4): 303-311.
    [28] P.W.Jowit, C. Xu. Optimal Valve Control in Water Distribution Networks. Water Resources Planning and Management. 1990, 116(4): 455-472.
    [29] M.J.H.Sterling, A. Bargisla. Leakage Reduction by Optimal Control of valves In Water Networks. Trans Inst MC. 1984, (6): 293-297.
    [30] B.Ulanicki, RLM.Bounds, J.P.Rance, L.Reynolds. Open Loop and Closed Loop Pressure Control for Leakage Reduction. Urban Water. 2000, 2(2): 105-114.
    [31] J. P. Vitkovsky, A. R. Simpson, M. F. Lambert. Leak Detection and Calibration Using Transients and Genetic Algorithms. J. Water Resour. Plng. and Mgmt., ASCE. 2000, 126(4): 258-262.
    [32] A. R. Simpson, G. C. Dancy, L. J. Murphy. Genetic Algorithms Compared to other Techniques for Pipe Optimization. J. Water Resour. Plng. and Mgmt., ASCE. 1994, 120(4): 423-443.
    [33] R. W. Meier, B. D. Barkdoll. Sampling Design for Network Model Calibration Using Genetic Algorithms. J. Water Resour. Plng. and Mgmt., ASCE. 2000, 126(4): 245-250.
    [34] D. Halhal, G. A. Walters, D. Ouazar, D. A. Savic. Water Network Rehabilitation with Structured Messy Genetic Algorithms. J. Water Resour. Plng. and Mgmt., ASCE. 1997, 123(3): 137-146.
    [35] L. F. R. Reis, R. M. Porto, F. H. Chaudhry. Optimal Location of Control Valves in Pipe Networks by Genetic Algorithm. J. Water Resour. Plng. and Mgmt., ASCE. 1997, 123(6): 317-326
    [36]徐洪福,赵洪宾,尤作亮等.配水系统的水质模型研究概况.中国给水排水, 2002, 18(3): 33-36.
    [37] R. M. Clark. Developing and Applying the Water Supply Simulation Model. AWWA. 1986, 78(8): 929-943.
    [38]李欣,宋学峰,赵洪宾.配水管网水质变化的研究.哈尔滨建筑大学学报, 1999, 32(3): 52-56.
    [39] Patrick Laurent, Pierre Servais. Testing the SANCHO Model on Distribution Systems. J. AWWA, 1997, 89(7): 92-98.
    [40] R. M. Males, R. M. Clark, P. J. Wehrman. Algorithm for Mixing Problems in Water Systems. Hydraulic Engineering. 1985, 111(2): 206-219.
    [41] W. M. Grayman, R. M. Clark, R. M. Males. Modeling Distribution System Water Quality: Dynamic Approach. J. Water Resour Plng and Mgmt. 1988, 114(3): 295-312.
    [42] C. P. Lious, J. R. Kroon. Modeling the Propagation of Waterborne Substances in Distribution Networks. AWWA.1987, 79(11): 54-58.
    [43] L. A. Rossman, Paul F. Boulo, Tom Altman. Discrete Volume-element Method for Network Water quality Models. J. Water Resour. Plng. and Mgmt. 1993, 119(5): 32-40.
    [44] M. H. Chaudhry, M. R. Islam. Water Quality Modeling in Pipe Networks. Netherlard: Improving Efficiency and Reliability in Water Distribution Systems. Kluwer Academic publishers. 1995: 233-241.
    [45] D. Feben , M. J. Taras. Studies on Chlorine Demand Constants. J. Am. Water Works Assoc. 1951, 43(11): 922-932
    [46] V. K. Chambers, J. S. Joy. Validity of Modeling Chlorine Residuals in Distribution. Technical Report UC 1942, WRc Swindon, Frankland Road, Blagrove, Swindon, Wilts. 1993.
    [47] W. M. Grayman, R. M. Clark, R. M. Males. Modeling Distribution-system Water Quality: Dynamic Approach. J. Water Resour. Plng and Mgmt.1988, 114(3): 295-312.
    [48] D. L. Boccelli, M. E.Tryby, et al. Optimal Scheduling of Booster Disinfection in Water Distribution Systems. J. Water Resour. Plng. and Mgmt. 1998, 124(2): 99-111.
    [49] E. Erkan Ucaner, Osman N. Ozdemir. Application of Genetic Algorithms for Booster Chlorine in Water Supply Networks. World Water Congress. 2003.
    [50] B.H. Lee, R.A. Deininger. Optimal Location of Monitoring Stations in Water Distribution System.”J. Envir. Engrg. 1992, 118(1).
    [51]赵洪宾.给水管网“生长环”对水质水压的影响.安徽建筑工业学院报. 1994, (4): 12-14.
    [52]吴文燕.给水管网系统水质模型的研究: [博士学位论文].哈尔滨:哈尔滨建筑大学, 1999.
    [53]吴文燕,赵洪宾,解守志.监测配水管网水质.中国给水排水, 1997, 13(1): 25-27.
    [54]李欣.配水管网水质变化的研究: [博士学位论文].哈尔滨:哈尔滨建筑大学, 1999.
    [55]李爽,张晓健.给水管壁生物膜的生长发育及其影响因素.中国给水排水. 2003, 19(13): 49-52.
    [56]迟海燕.城市供水管网氯的优化配置: [硕士学位论文].天津:天津大学, 2004.
    [57]黄雅芳.城市配水管网二次加氯优化的研究: [硕士学位论文].湖南:湖南大学. 2005.
    [58]刘文君.给水处理消毒技术发展展望.给水排水, 2004, 30(1): 2-5.
    [59]程伟平,郑冠军,俞停超等.供水管网状态估计研究进展.中国给水排水, 2006, 22(20): 9-13.
    [60] Helmut Kobus.水力模拟.清华大学水利系泥沙研究室译.北京:清华大学出版社, 1988.
    [61]郑国栋,郑邦民,黄本胜等.变态模型水流相似的精度及误差分析.水动力学研究进展, 2005, 20(1): 33-37.
    [62]毛野.水工模型相似度的研究.水利学报, 2002, 7:64-69.
    [63]李家星,赵振兴.水力学.南京:河海大学出版社, 2001.
    [64]左东启.模型试验的理论和方法.北京:水利电力出版社, 1984.
    [65]杨钦,严煦世.供水工程.北京:中国建筑工业出版社, 1986.
    [66]严煦世,赵洪宾.给水管网理论和计算.北京:中国建筑工业出版社, 1987.
    [67]吴学伟,赵洪宾.城市供水管网系统工况分析的研究,广州大学学报(综合版), 2001, 15(2): 86-88.
    [68] M.B.Mcpherson.Generalized distribution network head-loss characteristics. Transaction ASCE, 1961, 126(10): 1190-1234.
    [69] NAGAR A K, POWELL R S. LFT/SDP approach to the uncertainty analysis for state of water distribution systems. IEEE Proc Control Theory, 2002, 149(2): 137-142.
    [70] REDDY P V N, SRIDHARAN K, RAO PV. WLS method for parameter estimation in water distribution networks. J Water Resour Plng and Mgmt, ASCE, 1996, 122(3): 157-164.
    [71] Robert Demoyer JR, Lawrence B. Horwitz. Macroscopic distribution system modeling. AWWA, 1975, (7): 377-380.
    [72]陈跃春.城市配水系统的微型电子计算机优化调度.中国给水排水, 1986. 2(3): 12-15.
    [73]王训俭,张宏伟,赵新华.城市配水系统宏观模型的研究.中国给水排水, 1988, (2): 33-37.
    [74]赵新华,田一梅等.城市配水系统优化运行的研究,中国给水排水, 1992.8(3), 18-22.
    [75]吴学伟.给水管网状态估计及多目标直接优化调度研究: [博士学位论文].哈尔滨:哈尔滨建筑大学, 1996.
    [76] Zhou S L, McMahon T A, Walton A, et al. Forecasting operational demand for an urban water supply zone. Journal of Hydrology, 2002, 259(3): 189-202.
    [77] El-Keib A, Ma X, Ma H. Advancement of statistical based modeling techniques for short-term load forecasting. Electric Power Systems Research, 1995, 35(1): 51-58.
    [78] Kalogirou S A. Applications of artificial neural-networks for energy systems. Applied Energy, 2000, 67(1): 17-35.
    [79] Chiu C C, Cook D F, Kao J L, et al. Combining a neural network and a rule-based expert system for short-term load forecasting. Computers & Industrial Engineering, 1997, 32(4): 787-797.
    [80] Beccali M, Cellura M, Lo Brano V, et al. Forecasting daily urban electric load profiles using artificial neural networks. Energy Conversion and Management, 2004, 45(18): 2 879-2 900.
    [81] Liao G C, Tsao T P. Application of fuzzy neural networks and artificial intelligence for load forecasting . Electric Power Systems Research, 2004, 70(3): 237-244.
    [82] Virgil C A., David R M.. Multi-watfore method: A water demand forecasting system. Optimizing the Resources for Water Management——Proceedings of the ASCE 17th Annual National Conference. Texas: ASCE, 1990: 13-18.
    [83] Arruse, Garadia. Intelligent system of computer-aided long-term water demand forecasting. Application in Algeria. Proceedings of the 2nd International Conference on Computer Methods in Water Resources. Morocco: [s.n.], 1991: 159-171.
    [84] Wang Q, Heller M. Hybrid Box-Jenkins and neural network forecasting of potable water demand[A]. Proceedings of the 1996 Artificial Neural Networks in Enginering, ANNIE, 96. Missouri: ASME, 1996: 801-807.
    [85] Beccali M, Cellura M, Lo Brano V et al. Forecasting daily urban electric load profiles using artificial neural networks. Energy Conversion and Management, 2004, 45(18): 2879-2900.
    [86] Kennedy, J., Eberhart, R. C.. Particle swarm optimization. Proc. IEEE intl conf. on neural networks Vol. IV, pp. 1942-1948. IEEE service center, Piscataway, NJ, 1995.
    [87] Eberhart, R. C. and Kennedy, J. A new optimizer using particle swarm theory. Proceedings of the sixth international symposium on micro machine and human science pp. 39-43. IEEE service center, Piscataway, NJ, Nagoya, Japan, 1995.
    [88] Eberhart, R. C. and Shi, Y. Comparison between genetic algorithms and particle swarm optimization. Evolutionary programming vii: proc. 7th ann. conf. on evolutionary conf., Springer-Verlag, Berlin, San Diego, CA., 1998.
    [89] Eberhart, R. C. and Shi, Y. Particle swarm optimization: developments, applications and resources. Proc. congress on evolutionary computation 2001 IEEE service center, Piscataway, NJ., Seoul, Korea., 2001.
    [90] Shi, Y. and Eberhart, R. C. A modified particle swarm optimizer. Proceedings of the IEEE International Conference on Evolutionary Computation pp. 69-73. IEEE Press, Piscataway, NJ, 1998.
    [91] Stephen. R. Mounce, Asar. Khan, Alastair. S. Wood, Andrew.J.Day, Peter. D. Widdop, John.Machell. Sensor-fusion of hydraulic data for burst detection and location in a treated water distribution system. Information Fusion 2003(4): 217-229.
    [92]陈玲俐,李杰.供水管网渗漏分析研究.地震工程于工程振动. 2003, 23(1): 115-121.
    [93]宋仁元.怎样防止给水系统的漏损.北京:中国建筑工业出版社. 1988.
    [94] Germanopoulos G.etal. A technical niter on the inclusion of pressure dependent demand and leakage terms in water supply network model. Civil Egn.Sys. 1985, 2(9): 171-179.
    [95]周继成.人工神经网络.第六代计算机的实现,北京:科学普及出版社, 1993.
    [96]张立明.人工神经网络的模型及其应用.上海:复旦大学出版社, 1992.
    [97] Kleiner Y, Rajani B. Comprehensive review of structural deterioration of water mains: statistical models. Urban Water. 2001, (3): 151-164.
    [98] Rajani B, Kieiner Y. Comprehensive review of structural deterioration of water mains: physically based models. Urban Water. 2001, (3): 177-190.
    [99]吴学伟,赵洪宾.给水管网状态估计模型的研究.哈尔滨建筑大学学报. 1998, 31(2): 57-62.
    [100] U.Shamir, C.D.D Howard. An Analytic Approach to Scheduling Pipe Re placement. Jour. AWWA. 1997, 71(5): 248-258.
    [101] T.M.Waiski, A Pelliccia. Economic Analysis of Water Main breaks. Jour. AWWA. 1982, 71(5): 248-258.
    [102] C.Enrique, A.Miguel, P.Francisco. Network maintenance through Analysis of the Cost of Water. Jour. AWWA. 1995, 87(7): 86-98.
    [103] T.M Walski, T. Replacement Rules for Water Mains. Jour. AWWA. 1987, 79 (11): 140-147.
    [104] J.H.Stacha. Criteria for Pipeline Replacement. Jour. AWWA. 1978, 79(5): 140-147.
    [105] R.M.Clark, C.L.Stafo, A.Goodrich. Water Distribution systems: A Spatial and Cost Evaluation. Jour.Water Resources Planning &Management. 1982, 108(10): 243-246.
    [106] Robert D J, Lawence B H. Macroscopic distribution system modeling. Journal of the American Water Works Association. 1975, (7): 377-380.
    [107]金溪,曾小兵,高金良,王芳.利用遗传算法进行供水管网压力监测点优化布置.给水排水, 2007, (33): 346-349.
    [108]郭思元,刘遂庆,陈嵘.给水管网压力监测点的优化布置.中国给水排水, 2004, 20(12): 82-84.
    [109]张宏伟,张丽,梁建文.给水管网压力监测点的布置方法.中国给水排水, 2003, 19(3): 53-55.
    [110]周敏.西宁市给水管网测压点优化布置及状态估计: [硕士学位论文].西安:西安建筑科技大学, 2004.
    [111]李霞.城市供水管网漏损定位及控制研究: [硕士学位论文].天津:天津大学. 2003.
    [112]黄廷林,丛海兵.给水管网测压点优化布置的模糊聚类法.中国给水排水, 2001, 17(11): 50-52.
    [113] Sterling, M., and Bargiela,A. , Leakage reduction by optimized control of valves in water networks, Trans.Inst. Meas.Control, 1986, 6: 293-298.
    [114]田林,张宏伟,牛志广等.应用自控阀控制给水管网漏损的研究.中国给水排水, 2004, 20(3): 12-15.
    [115]崔建国,于庆江.城市给水系统优化调度中的管网分区方法.太原理工大学学报, 2004, 35(5): 605-608.
    [116]信昆仑,刘遂庆,耿为民.城市给水管网三维水压面的绘制.给水排水, 2002, 28(6): 83-86.
    [117]张雄,党志良,张贤洪等. WebGIS及三维可视化技术在铜川新区供水管网中的应用研究.给水排水, 2006, 32(1): 105-107.
    [118]张志涌.精通MATLAB6.5版.北京:北京航空航天大学出版社, 2003.
    [119]刘幸.直接法自动绘制等值线图.武汉水利电力大学学报, 1995, 28(6): 588-591.
    [120]仲伟俊.城市供水系统的计算机调度与设计.南京:东南大学出版社, 1995.
    [121]吴学伟,赵洪宾.给水管网状态估计模型的研究.哈尔滨建筑大学学报, 1998, 31(2): 57-62.
    [122]从海兵,黄廷林.给水管网状态估计的优化方法.给水排水, 2001, 27(9): 34-38.
    [123] Ercan Kahya. Trend analysis of stream flow in Turkey. Journal of Hydrology, 2004, 289: 128-144.
    [124]曹瑞钰.氯消毒机理、危害及脱氯.中国给水排水, 1995, 11(4): 36-39.
    [125]马小杰,杨健,吴敏等.市政水处理消毒技术现状与进展.北方环境, 2004, 29(5): 65~67.
    [126]卫生部.《生活饮用水卫生标准》(GB5749-2006). 2006年12月29日发布, 2007年7月1日实施.
    [127] M. T. Koechling. Assessment and Modeling of Chlorine Reactions with Natural Organic Matter: Impact of Source Water Quality and Reaction Conditions. Ph.D thesis, Univ. of Cincinnati, Cincinnati. 1998.
    [128]冯逸仙,杨世纯.反渗透水处理.北京,中国电力出版, 1997.46.
    [129]王权,郑传林.给水处理中加氯量的影响因素.山东建筑工程学院学报, 2000, 15(1): 34~36.
    [130]赵洪宾.给水管道的余氯消耗规律的初步研究.给水排水, 1986, 12(6): 11~15.
    [131] O. Wable, et al. Modeling Chlorine concentrations in a network and applications to Paris distribution network. Proc., AWWARF and USEPA Conf. On Water Quality Modeling in Distribution Sys., Cincinnati, Ohio, 4-5 February 1991, American Water Works Association, Research Foundation, Denver. 1991.
    [132] G. R. Zhang, L. Kiene, O. Wable, U.S. Chan, J. P. Duguet. Modeling of Chlorine Residual in the Water Distribution Network of Macal. Envir. Technol. 1992, 13(10): 937-946.
    [133] Am. Water Works Res. Found. Characterisation and Modeling of Chlorine Decay in Distribution Systems. American Water Works Association, Denver. 1996.
    [134] J. J. Vasconceios, L. A. Rossman, W. A. Grayman, P. F. Boulos, R. M. Clark. Kinetics of Chlorine Decay. J. Am. Water Works Assoc. 1997, 89(7): 54-65.
    [135] C. N. Haas, S. B. Karra. Kinetics of Wastewater Chlorine Demand Exertion. J. Water Pollution Control Fedn. 1984, 56(2): 170-173.
    [136] James C. Powell, et al. Performance of Various Kinetic Models for Chlorine Decay. J. Water Resour. Plng. and Mgmt. 2000(1): 13-20.
    [137] A. Jadas Hécart, A. E Moher, M. Stitou, P. Bouillot, B. Legube. The Chlorine Demand of a Treated Water. Water Res., Oxford, England. 1992, 26(8): 1073-1084.
    [138] S. Schneider, M. A. Brdys, H. Puta, S. Hopfgarten. Modeling of Chlorine Concentration in Water Systems Directed to Integrated Operational Control. In Integrated Computer Applications in Water Supply, ed. B. Coulbeck. 1993: 143-159.
    [139] C. A. Woodward, C. T. Ta, D. M. Holt, J. Colbourne. Relationship between Observed Monochloramine Decay Rates and other Physical and Chemical Parameters. In Proceedings of the Water Quality Technology Conference, American Water Works Association, New Orleans. 1995.
    [140] M. Lungwitz, S. Hopfgarten, K. Chen, M. A. Brdys, H. Puta. Modeling and Simulation of Chlorine Concentration in Water Supply Systems for Control Purposes. In Proceedings of the 39th International Scientific Colloquium, Ilmenau, Germany. 1994.
    [141] Stefan H. Maier, Roger S. Powell, Clive A. Woodward. Calibration and Comparison of Chlorine Decay Models for a Test Water Distribution System. Wat. Res. 2000, 34(8): 2301-2309.
    [142] T. H. Feng. Behaviour of Organic Chloramines in Disinfection. J. Water Pollut. Control Fed. 1966, 38(4): 614-627.
    [143] J. Heraud, L. Kiéné, M. Detay, Y. Levi. Optimised Modeling of Chlorine Residuals in a Drinking Water Distribution System with a Combination of On-line Sensors. J. Water SRT-Aqua. 1997, 46(2): 59-70.
    [144] L. A. Rossman. EPANET user’s manual: Version 2.0 U.S. Environmental Protection Agency, Cincinnati, Ohio. 2000.
    [145] W. M. Kays, et al. Convective Heart and Mass Transfer. McGraw-Hill New York, 1993.
    [146] Alper Ucak, Osman N. Ozdemir. Simulation of Chlorine Decay in Drinking Water Distribution Systems. World Water Congress, ASCE. 2004.
    [147] R. M. Clark, M. Sivaganesan. Predicting Chlorine Residuals and the Formation of TTHMS in Drinking Water. J. Environ. Eng. 1998, 124(12): 1203-1210.
    [148] Robert M. Clark, Mano Sivaganesan. Predicting Chlorine Residual in Drinking Water: Second Order Model. J. Water Resour. Plng. and Mgmt., ASCE. 2002, 3(4):152-161.
    [149]齐晶瑶,李欣,赵洪宾.关于供水管道内余氯消耗机理的探讨.给水排水, 2000, 26(8): 66~69.
    [150] L. A. Rossman. EPANET user’s manual: Version 1.1 U.S. Environmental Protection Agency, Cincinnati, Ohio. 1994.
    [151]王志丹.输配水系统水质统计模型的研究: [硕士学位论文],天津:天津大学, 2005.