考虑环境污染控制的城市交通网络的优化模型与算法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展和生活水平的提高,交通机动化程度加剧,引起的大气污染、噪声污染成为影响城市环境质量的主要污染源之一。另一方面,城市交通网络设计必须考虑降低交通污染这一不容忽视的问题。因此,从系统和全局的角度将环境污染控制和交通网络设计有机融合,是解决环境问题最迫切最有效的方法之一,也是本文将两者结合研究的主要原因。
     本文首先从宏观角度分析交通网络中的环境污染控制机理,提出了基于“共生效益”和“均衡供需”的环境污染控制手段,构建了共生理论视角下的交通环境承载力的测度模型和评价模型,为中观角度的研究提供指导思想和理论依据。而后为更精确控制交通环境污染,本文从中观角度研究了城市交通网络中的尾气排放控制策略和噪声污染控制策略。其主要原理是通过分析城市某区域的车辆运行与环境污染的关系,采取某些措施和手段,以提高交通运行效率,缓解交通环境污染。本文研究范畴仅限于以静态交通分配固定需求为基础的交通网络中环境污染管理和控制措施,采用数学规划类方法、智能算法、计算机模拟仿真相结合的方法来分析和解决问题。研究的主要内容如下:
     (1)首先对国内外研究现状进行了分析,包括考虑环境因素的道路网络优化方法,尾气排放模型、噪声预测模型、环境污染控制方法和粒子群算法,在此基础上归纳和总结了当前研究存在的问题。并据此确定了本文研究的范围、方法、内容和技术路线。
     (2)分析了城市交通网络领域和环境污染控制领域的理论和方法,包括城市交通网络平衡分析、双层规划模型、尾气排放模型、噪声预测模型,为构建复杂的优化模型打下坚实的理论基础。
     (3)针对求解复杂交通网络优化问题的粒子群算法研究,主要通过引入免疫选择、混沌搜索、多种群演化、自适应繁殖等策略对粒子群算法改进,提出基于免疫选择的自适应繁殖混沌粒子群算法(ICPSO算法)。通过交通网络优化算例和针对交通网络特征的性能仿真,证明改进算法在加快收敛速度、增强粒子多样性、防止早熟现象等方面的有效性,为构建复杂交通网络的优化模型提供便捷的求解途径。
     (4)将共生理论和供需平衡原理引入交通网络的环境污染控制中,分析了由共生单元、共生模式、共生环境三要素构成的城市交通共生网络,提出了基于“共生效益”和“均衡供需”的环境污染控制手段,阐述了其概念和作用范围、目标和实现方式。利用DPSIR模型从驱动力、压力、状态、影响、响应环节筛选出环境压力的关键因子:土地利用、能源消耗、尾气排放、噪声污染,据此从共生理论视角定义了城市交通环境承载力的内涵和外延,构建了交通环境承载力的测度模型和评价模型,为从宏观角度控制城市机动车规模提供了决策依据,同时也为城市交通网络的优化模型中约束条件所参照的环境阈值提供了量化手段。
     (5)在共生效益思想指导下,采取多种手段组合优化的策略来控制城市交通网络中的尾气排放。首先构建了考虑行驶工况和信号配时的尾气排放模型,分析了路段能力增量和信号配时对怠速时间和阻抗函数的影响,在此基础上构建了道路拓宽费用调节下的双层规划模型,利用ICPSO算法求解并进行算例仿真分析,最后是所做工作总结和针对性措施。
     (6)在共生效益思想指导下,构建了考虑重车比例和临街建筑物布局类型的噪声污染模型,据此构建了噪声分区控制思想下的双层规划模型,利用ICPSO算法求解并进行算例仿真分析,最后是所做工作总结和针对性措施。
     希冀上述研究能为制定科学合理的交通管理和控制措施提供决策依据,为交通规划方案设计考虑环境污染控制提供定量方法,为衡量ITS智能交通系统是否先进合理提供主要手段。
With the development of economy and the improvement of the living standard, the aggravation of traffic motorization degree brings about the air and noise pollution, which has been the one of main pollution sources of urban environment. On the other hand, the urban traffic network design must be considered to reduce traffic pollution which cannot be ignored. Therefore, the organic integration between environmental pollution control and traffic network design from the systemic and all-around perspective, is one of the most urgent and effective methods to solve environmental problems, which is also the main reason of integrated research in this dissertation.
     The mechanism of environmental pollution control in the traffic network was discussed from the macroscopic view, which provided guidelines and theoretical basis for the following medium-view research. Then, the means of environmental pollution control were put forward based on the symbiosis benefit and balance of supply and demand equilibrium, and the measuring and evaluation of traffic environmental carry capacity were proposed based on symbiosis theory. For more precise controling the traffic environmental pollution, we analyzed on the optimization strategy of traffic emission control and noise pollution control in the urban traffic network from the medium view. Based on analysis of the relation between the vehicles running and environmental pollution, some measures and means were proposed to improve traffic operation efficiency and to ease traffic environmental pollution.The discussion range of this dissertation is limited to the management and control measures of environmental pollution in traffic network system based on the static traffic allocation with the fixed traffic demand. In order to analyze and solve the above problems, mathematical programming, intelligent algorithm, and computer simulation were put forward together in this dissertation. The main content of this dissertation are as follows:
     (1) Firstly, we discussed the domestic and foreign research status, including the road network optimization method considering the environmental factors, vehicle emission model, noise prediction model, methods of environmental pollution control and the particle swarm algorithm. Based on these, the current research problems were summarized and proposed in this dissertation. And according to above problems, the scope, method, contents and technical route of this dissertation were put forward.
     (2) In this dissertation, we discussed the theory and methods of urban traffic network and environmental pollution control, including the analysis of urban traffic network equilibrium, bi-level programming models, emission models and noise prediction models, which provided solid theoretical basis for follow-up study.
     (3) To solve complex traffic network optimization problems the particle swarm optimization algorithm was improved by introduced with the immune selection, chaos search, multi-population evolution and adaptive breeding, and the adaptive breeding chaotic particle swarm optimization algorithm based on immune selection was put forward. Then the example of traffic network optimization and the performance simulation test of aiming at the characteristics of traffic network were discussed in this dissertation, which proved that the improved algorithm was more of validity, in some aspects such as speeding up the convergence, enhancing diversity of the particles and preventing precocious etc, which provided new solution to solve the problems of complex traffic network optimization models.
     (4) The symbiosis theory and supply-demand balance principle were introduced into environmental pollution control of the traffic network, and we discussed the urban traffic symbiosis network which composed of three elements including symbiotic unit, symbiotic pattern and symbiotic environment, and proposed environmental pollution control means based on symbiosis benefit and supply-demand balance. And we expounded the conception, scopes of functions, objectives and realization ways in the further discussion. Then the key factors of environmental pressure were selected by using the DPSIR model from drive force, pressure, state, impact and response, which are including the land use, energy consumption, emission and environmental pollution. Thus we defined the connotation and denotation of environmental carrying capacity of urban traffic, and built the measurement and evaluation models, which were benefit to providing the decision-making basis of control urban vehicle scale and providing measurement means of constraint conditions of environmental threshold for urban traffic network optimization from the macroscopic perspective view.
     (5) In the guidance of symbiosis benefit theory, some means and strategies of combinatorial optimization were proposed to control emission of the urban traffic network Firstly, the emission models were been established considering the running condition and signal timing, and the influence on the idle time and impedance function come from improving the section traffic capacity and signal timing. Based on this, the bi-level programming model was put forward based on the road section widening expense, and an example simulation was analyized and solved with above models by using ICPSO algorithm, and finally summarized and brought forward corresponding measures.
     (6) In the guidance of symbiosis benefit theory, we proposed the noise pollution model considering the heavy truck scale and the layout of nearby-street buildings, based on this, we proposed the bi-level programming model with the ideal of noise division control, and analyized and solved an example simulation with above models by using ICPSO algorithm, finally some conclusions and measures were put forward according to above states.
     These studies may be benefit to providing the decision-making basis of reasonable strategies for traffic management and environmental control measures, and to providing quantitative method for urban traffic planning based on environmental pollution control, and also providing good means for measuring the advance and reasonability of ITS running in urban traffic network.
引文
[1]Abo-Qudais S, Alhiary A. Statistical models for traffic noise at signalized intersections[J]. Building and Environment,2007,42(8):2939-2948.
    [2]Ahn K, Pakha H, Trani A, et al. Estimating vehicle fuel consumption and emissions based on instantaneous speed and accerleration levels. Journal of Transportation Engineering,2002,128(2):182-190.
    [3]Ahn K, Pakha H. Energy and environmental impacts of route choice decisions. Paper presented at the 86th Annual Meeting of Transportation Research Board, 2007.
    [4]Aiyoshi E, Shimizu K. A solution method for the static constrained Stackelberg problem via penalty method[J]. IEEE Transactions on Automatic Control,1984, 29(12):1111-1114.
    [5]Ajtay D, Weilenmann M, Soltic P. Towards accurate instantaneous emission models. Atmospheric Environment,2005,39(13):2443-2449.
    [6]Allen W G Jr. Model improvements for evaluating pricing strategies[J]. Transportation research record 1498.1996,75-81.
    [7]Anderson W P, Kanaroglou P S, Miller E J and Buliung R N. Simulating automobile emission in an interated urban model[J]. Transportation research record 1520,1996,75-80.
    [8]Arild Void. Optimal Land Use and Transport Planning for the Greater Oslo Area. Transportation Research Part A:Policy and Practice.2005.39(6):548-565.
    [9]Bai S, Chiu Y C, Niemeier D A. A comparative analysis of using trip-based versus link-based traffic data for regional mobile source emissions estimation. Atmospheric Environment,2007,41(35):7512-7523.
    [10]Bard J. Convex two-level optimization[J]. Mathematical Programming,1988, 40:15-27.
    [11]Barkawi A. An evaluation of modal and average speed approacher for mobile source emissions estimation:[Ph.D Dissertation].Knoxville, USA:Civil and Environmental Engineering, The University of Tennessee,1997.
    [12]Barry T M, Reagan J A. FHWA-RD-77-108, FHWA highway traffic noise prediction model, U.S. Department of Transportation. Washington DC:1978.
    [13]Bassanino M. SPENET-software package for environmental regulatory assessment of noise and atmospheric emissions from urban traffic:application in Italian areas[A]. Zannetti P Editor. Computer techniques in environmental studies[C].1994:141-148.
    [14]Beevers S D, Carslaw D C. The impact of congestion charging on vehicle speed and its implications for assessing vehicle emissions[J].Atmospheric environment,2005,39(36):6875-6884.
    [15]Benedek C M, Rilett L R. Equitable traffic assignment with environmental cost functions. Journal of Transportation Engineering,1998,124(1):16-22.
    [16]Bracken J, McGill J. Mathematical programs with optimizaiton problems in the constraints. Operation Research,1973,21:37-44.
    [17]Braess D. Uber ein Paradox der Verkehrsplanung[J]. Unternehmenstorschung, 1968,12:257-268.
    [18]Button, K. Environmental externalities and transport policy[J].Oxford Review of Economic Policy,1990,6:61-75.
    [19]CAI-Asia, Promoting the co-benefits approach in Asia, PPT prepared for CAI-Asian Partnership Council Meeting, Clean Air Initiative for Asian Cities Center,23th July 2007. http://www.cleanairnet.org/caiasia.
    [20]Chiu C C. Pre-empting noise pollution in housing development in Hong Kong[A]. proceedings of Noise & Planning[C].1996:204-208.
    [21]Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation,2002,6(1):58-73.
    [22]Coelho M C, Farias T L, Rouphail N M. Measuring and Modeling Emission Effects for Toll Facilities[J]. In Transportation Research Record:Journal of the Transportation Research Board 1941, TRB, National Research Council, Washington, D.C.,2005:136-144.
    [23]Colson B, Marcotte P, Savard G. Bilevel programming:A survey[J].40R: Quarterly Journal of the Belgian, French and Italian Operations Research Societies,2005,3:87-107.
    [24]Cui Jian-qiang, Lin Dong, Chen Zhi-long. Environmental Benefit Model for Reducing the Vehicle Emission Pollution in Underground Urban Freeway[J]. Journal of Transportation Engineering and Information,2008,6(3):41-48.
    [25]De Castro L N, Von Zuben F J. Learing and optimization using the clonal selection principle[J]. IEEE Trans, on evolutionary computation(S1089-778X), 2002a,6(3):239-251.
    [26]De Castro L N, Timmis J. An artificial immune network for multimodal function optimization[C].Proc of IEEE Congress on Evolutionary Computation, Hawaii, USA,2002b. USA:IEEE,2002,1:699-704.
    [27]De Corla-Souza P. Everett J and Lim P. Trip-based approach to estimate emissions with Environmental Protection Agency's MOBILE model. Transportation Research Record 1444.1995:118-125.
    [28]De Vlieger I, De Keukeleere D, Kretzschmar J G. Environmental effects of driving behavior and congestion related to passenger cars[J]. Atmospheric Environment,2000,34(27):4649-4655.
    [29]Deng X. Economic costs of motor vehicle emissions in China:a case study. Transportation Research D,2006,11(3):216-226.
    [30]Department of Transport and Welsh Office UK(DoT UK). Calculation of road traffic noise[R]. London:HMSO.1988.
    [31]Dijkema M B A, Zee S C v d, Brunekreef B, et al. Air quality effects of an urban highway speed limit reduction[J]. Atmospheric Enironment,2008,42: 9098-9015.
    [32]Dos Santos Coelho L, Herrera B M. Fuzzy identification based on a chaotic particle swarm optimization approach applied to a nonlinear yo-yo motion system[C]. IEEE Trans. Ind. Electron.,2007,54(6):3234-3245.
    [33]Douglas A E. Symbiotic interactions[M]. Oxford University Presss.1994:1-11.
    [34]Eberhart R C, Shi Y H. Comparison between genetic algorithms and particle swarm opimizaiton[C]. Proceedings of the 7th Annual Conference on Evolutionary amputation, LNCS 1447. Berlin:Springer-Vedag,1998: 611-616.
    [35]ECMT.Cutting Transport CO2 Emissions:What progress?[C]. European Conference of Ministers of Transport,2007.
    [36]Edith Smeets RW. Environmental indicators:Typology and Overview. Copenhagen:European Environment Agency,1999.
    [37]El-Fadel M, Sbayti H. Noise control at congested urban intersections: Sensitivity analysis of traffic management alternatives. Noise Control Engineering Jouranl,2000,48(6):206-213.
    [38]Femando J, Verdegay J L. Evolutionary technique for constrained optimization problems. In Hans-Jurgen Zimmermann. Editor,7th European Congress on Intelligent Technique and Soft Computing, Aachen, Germany, 1999.
    [39]Ferrari P. Road pricing and network equilibrium[J]. Transportation Research Part B,1995,29:357-372.
    [40]Gao Z Y and Song Y F. A reserve capacity model of optimal signal control with user-equilibrium route choice[J]. Transportation Research Part B,2002, 36:313-323.
    [41]Hallmark S. L, Fomunung I, Guensler R, et al. Assessing impacts of improved signal timing and transportation control measure using an activity-specific modeling approach[J]. Transportation Research Record,2000,1738:49-55.
    [42]Higashi N, Iba H. Particle swarm optimization with Gaussian Mutation[C]. Proceedings of the 2003 Congress on Evolutionary Computation. Piscataway, NJ:IEEE Press,2003:72-89.
    [43]Hizir A E. Using emission functions in mathematical programming models for sustainable urban transportation:an application in bilevel optimization[D]. Istanbul, Turkey:School of Engineering and Natural Science, Sabanci University, Master Thesis,2006.
    [44]Holmen B A, Niemeier D A. Characterizing the effects of driver variability on real-world vehicle emissions. Transportation Research D,1998,3(2):117-128.
    [45]Kennedy J, Eberhart R C. Particle Swarm Optimization[C]. Proceeding of IEEE International Conference on Neural Network. Piscataway, NJ:IEEE Service Center,1995:1942-1948.
    [46]Koziel S, Michalewicz Z. Evolutionary algorithm, homomorphous mapping, and constrained parameter optimization[J]. Evolutionary Computation,1999, 7(1):19-44.
    [47]Jones R, et al. The prediction of noise levels from unrestricted traffic in urban situations by means of a digital computer simulation[J]. Traffic Engineering and Control,1979,20:479-481.
    [48]Jocobs L, et al. A computer model to predict traffic noise in urban situations under free flow and traffic light conditions[J]. Sound and Vibration,1980, 72(4):523-537.
    [49]Laskari E C, Psrsopoulos K E and Vrahatis M N. Particle swarm optimization for integer programming[C]. In:Proceedings of the IEEE Congress on Evolutionary Computation, Honolulu, USA,2002:1583-1587.
    [50]Li X, Li G, Pang S, Yang X, Tian J. Signal timing of intersections using integrated optimization of traffic quality, emissions and fuel consumption:a note[J]. Transportation Research Part D,2004,9:401-407.
    [51]Liu B, Wang L, et al. Improve particle swarm optimization combined with chaos[J].Chaos, Solitons and Fractacs,2005,25:1261-1271.
    [52]Lovbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimiser with breeding and subpopulations. Proceedings of the Third Genetic and Evolutionary Computation Conference, San Francisco, USA,2001.
    [53]Lu Gang, Tan Dejian, Zhao Heming. Improvement on regulating definition of antibody density of immune algorithm[A].Proceedings of the 9th international conference on neural information processing[C],.Singapore,2002,5: 2669-2672.
    [54]Luc Int Panis, Steven Broekx, Ronghui Liu. Modeling Instantaneous Traffic Emission and the Influence of Traffic Speed Limits[J]. Science of the Total Environment,2006, (371):270-285.
    [55]Makarewicz R. Traffic noise in a built-up area[J]. Applied Acoustics,1991, 34(1):37-50.
    [56]Makarewicz R, Fujinmoto M, Kokowski P. A model of interrupted road traffic noise[J]. Applied Acoustics,1999,57(2):129-137.
    [57]Mcgill, R. Fuel Consumption and Emission Values for Traffic Models. Report Number FHWA/RD-85/053. US. Department of Transportation. Federal Highway Administration, Washington, D.C.1985.
    [58]Migdalas A, Pardalos P, Varbrand P. Multilevel Optimization:Algorithms and Applications. Kluwer Academic Publishers, London,1997.
    [59]Margiotta R A. Improved vehicle speed estimation procedures for air quality and planning applications:[Ph.D Dissertation]. Knoxville, USA:Civile and Environmental Engineering, The University of Tennessee,1996.
    [60]Matthew Barth. Vehicle Emissions Modeling in the U.S.A. Vehicle Emissions Modeling in the U.S. A.3rd Japan Clean Air Program Conference Tokyo, Japan.2002.
    [61]Mirata M, Emtairah T, Industrial Symbiosis Net-works and the Contribution to Environmental Innovation:the Case of the Landskrona Industrial Symbiosis Programme, Journal of Cleaner Production,2005, (13):993-1002.
    [62]Meng Q, Yang H. Benefit distribution and equity in road network design[J]. Transportation Research Part B,2002,36:19-35.
    [63]Miranda V, N Fonseca. EPSO-Evolutionary Particle Swarm Optimization, a New Algorithm with Applications in Power Systems[A]. In Proceedings of the Asia Pacific IEEE/PES Transmission and Distribution Conference and Exhibition[C],2002,2:5-750.
    [64]Mitchell G. Forecasting environmental equity:air quality responses to road user charging in Leeds, UK. Journal of Environmental Management, 2005,77(3):212-226.
    [65]Nagurney A, Ramanujam P. A multimodal traffic network equilibrium model with emmison pollution permits:compliance VS noncompliance[J]. Transportation Research Part D,1998,3(5):349-374.
    [66]Nagurney A. Congested urban transportation networks and emission paradoxes[J]. Transportation Research Part D,2000a,5:144-151.
    [67]Nagurney A. Alternative pollution permit systems for transportation networks based origin/destination pairs and paths[J]. Transportation Research Part D, 2000b,5(1):37-58.
    [68]Nagurney A, Zhang D. Dynamics of a transportation pollution permit system with stability analysis and computations[J]. Transportation Research Part D, 2001,6:243-268.
    [69]Nagurney A, Dong J. A multiclass, multicriteria traffic network equilibrium model with elastic demand[J]. Transportation Research B,2002, 36(5):445-469.
    [70]Nijis L. The increase and decrease of traffic noise levels at intersections measured with moving microphone[J]. Journal of Sound and Vibration,1989, 131(2):127-141.
    [71]Qi Y, Teng H, Yu L. Microscale emission models incorporating acceleration and deceleration. Journal of Transportation Engineering,2004, 130(348):348-359.
    [72]Rakha H, Aerde M V, et al. Requirments for Evaluaing Traffic Signal Control Impacts on Energy and Emission based on Instantaneous Speed and Acceleration Measurements[J]. Transportation Research Record,2000, (1738):56-67.
    [73]Rakha H, Ding Y. Impact of stops on vehicle fuel consumption and emissions. Journal of Transportation Engineering,2003,129(23):23-32.
    [74]Raus J. A Method for Estimating Fuel Consumption and Vehicle Emission on Urban Arterials and Networks. Report Number FHWA-TS-81-210. US, Department of Transportation, Federal Highway Administration, Washington, D.C.1981.
    [75]Reynolds A W, Broderick B M. Development of an emissions inventory model for mobile sources. Transportation Resarch D,2000,5(2):77-101.
    [76]Rilett L R, Benedek C M. Traffic assignment under environmental and equity objectives [J]. Transportation Research Record 1443, TRB, National Research Council, Washington, D. C.,1994:176-190.
    [77]Road Construction Section of the Federal Ministry of Transport(RCSFMT). Directives for anti-noise protections along roads[R]. Berlin:Ministry for Transport,1990.
    [78]Rober B. Noland, Mohammed A. Quddus. Flow Improvements and Vehicle Emissions:Effects of Trip Generation and Emission Control Technology[J]. Transportation Research Part D,2006, (11):1-14.
    [79]Robinson J, Sinton S, Yahya R S. Particle swarm, genetic algorithm, and their hybrids:optimization of a profiled corrugated horn antenna[J]. IEEE Antennas and Propagation Society International Symposium. San Antonio, 2002:314-317.
    [80]Shi Y H, Eberhart R C. Parameter Selection in Particle Swarm Optimization[C]. Proceeding of 1998 Annual Conference on Evolutionary Programming. San Diego:Springer-Berlin,1998:591-600.
    [81]Smit R. An examination of congestion in road traffic emission models and their application to urban road networks:[Ph.D Dissertation]. Griffith, Australia:Environment and planning, Griffith University,2006.
    [82]Stead D. Relationships between transport emissions and travel patterns in Britain. Transport Policy,1999,6(4):247-258.
    [83]Steele C. A critical review of some traffic noise prediction models[J]. Applied Acoustics,2001,62(3):271-287.
    [84]Suwansirikul C, Friesz T L and Tobin R L. Equilibrium decomposed optimization:a heuristic for the continuous equilibrium network design problem[J]. Transportation Science,1987,21:254-263.
    [85]Teng H, Qi Y, Byun J H, et al. Modeling vehicle emissions in hot-stabilized conditions using a simultaneous equations model. Journal of the Air & Waste Management Association,2005,131 (10):762-770.
    [86]Tzeng G H, Chen C H. Multiobjective decision making in traffic assignment[J]. IEEE Transactions on Engineering Management,1993, 40(2):180-187.
    [87]U. S. Environmental Protection Agency(US EPA). Federal Test Procedure Review Project:Preliminary Technical Report[R]. U. S. EPA Report, EPA 420-R-93-007,1993.
    [88]Van G T, Block C, Geens J, Cornelis G, Vandecasteele C. Environmental response indicators for the industrial and energy sector in Flanders. Journal of Cleaner Production,2006.
    [89]Venigalla M M. A network assignment based approach to modeling mobile source emissions[D]. Knoxville, USA:Civil and Environmental Engineering, The University of Tennessee, Ph.D Dissertation,1994.
    [90]Wang J, An S, Zhao Z. Urban transportation multi-pricing model based on bi-level programming method. In:International Conference on Management Science and Engineering,2006:2050-2055.
    [91]Wang S C and Yang H. Reserve capacity of a signal-controlled road network[J]. Transportation Research Part B,1997,31:396-402.
    [92]Williams H C W L and Lam W H K. Transport policy appraisal with equilibrium models:generalized traffic and highway investment benefits[J]. Transportation Research Part B,1991,25:253-279.
    [93]Yang H and Bell M G H. Traffic restraint road pricing and network equilibrium[J]:Transportation Research Part B.1997,31:303-314.
    [94]Yang W G, Guo T, Gao Z and Zhao T. A bi-level programming model for the optimal velocity problem under environmental objective. Journal of the Graduate School of the Chinese Academy of Sciences,2005,22:129-134.
    [95]Yin Y, Lawphongpanich S. Internalizing emission externality on road networks. Transportation Research D,2006, 11(4):292-301.
    [96]Zheng Y. A new grid-based mobile source emissions inventory model:[Ph.D Dissertation]. Davis, USA:Civil and Environmental Engineering, University of California,2003.
    [97]Zietsman J, Forrest T L, Perkinson D, Rilett L R. Emissions of light-duty gasoline vehicle due to idling and restarts:comparative study[R]. Transportation Research Board 84th Annual Meeting, Washington, D.C., USA, 2005.
    [98]常玉林,王炜.城市道路交通噪声分析和预测方法研究[J].公路交通科技,2003,20(2):169-171.
    [99]陈琨,于雷.用于交通控制策略评估的微观交通尾气模拟与实例分析[J].交通运输系统工程与信息.2007,7(1):93-100.
    [100]陈峻.混合交通流条件下基于路内停车设置的路段车速阻滞模型[J].土木工程学报,2007,40(9):95-100.
    [101]陈玲娟,蒲云.基于粒子群算法的双目标可靠性网络设计[J].交通运输工程学报,2010,10(5):61-65.
    [102]陈茜,王炜.关于城市机动车发展水平的规划模型探讨[J].公路交通科技.2006,23(5):110-113.
    [103]陈曦,傅明.改进粒子群算法在动态交通分配问题中的应用[J].计算技术与自动化,2006,25(2):60-62.
    [104]陈熠澈.城市公交网络系统管理对策研究[D].浙江大学硕士学位论文,2008.4.
    [105]崔志华.城市道路单向改造对交通排放的影响研究[D].吉林大学硕士学位论文.2009.
    [106]董超俊,刘智勇等.灾变粒子群优化算法及其在交通控制中的应用[J].计算机工程与应用,2005,29:19-23.
    [107]度巍,王先甲等.求解随机用户平衡问题的粒子群演化算法[J].武汉理工大学学报(交通科学与工程版),2010,34(3):616-624.
    [108]冯晓.改善城市道路机动车排放污染的智能交通手段[J].交通运输工程学报,2002,2(2):73-77.
    [109]冯相昭.城市交通温室气体减排的战略研究[M].北京:气象出版社,2009.
    [110]高芳.智能粒子群优化算法研究[D].哈尔滨:哈尔滨工业大学博士学位论文.2008.
    [111]高鹰,谢胜利.免疫粒子群优化算法[J].计算机工程与应用,2004,40(6):4-6.
    [112]高自友,宋一凡,四兵锋.城市交通连续平衡网络设计——理论与方法[M].北京:中国铁道出版社,2000.
    [113]顾尚华.道路交通噪声的危害与控制[J].中国市政工程,1995,1(68):33-36.
    [114]郭栋.城市分等级道路轻型车行驶工况与排放因子关系研究[D].长春:吉林大学硕士学位论文.2007.
    [115]郝吉明,傅立新,贺克斌等.城市机动车排放污染控制——国际经验分析与中国的研究成果[M].北京:中国环境科学出版社,2000.
    [116]霍红,贺克斌,王岐东.机动车污染排放模型研究综述[J].环境污染与防治,2006,28(7):.526-530.
    [117]侯德劭,晏克非,成峰.城市交通噪声环境承载力分析模型及算法[J].计算机工程与应用.2008,44(18):215-220.
    [118]横田等.引擎启动时氮氧化物排放量和油耗关系的实验结果[EB/OL].http://www.asahi-net.or.jp/-id7y-mrym/shiryo000418.htm,2003-2-10.
    [119]胡启洲,邓卫等.基于定量分析的公交线路网络优化与粒子群算法[J].公路交通科技,2007,24(10):129-145.
    [120]黄海军.城市交通网络动态建模与交通行为研究[J].管理学报,2005,2(1):18-22.
    [121]黄亚飞,刘涛.路网最优费率的双层规划模型及算法[J].交通运输工程学报,2006,6(4):105-111.
    [122]焦李成,杜海峰等.免疫优化计算、学习与识别[M].北京:科学出版社2006.
    [123]焦朋朋,陆化普,王建伟.基于交通效率的城市道路网络优化[J].清华大学学报(自然科学版),2005,45(3):297-300.
    [124]姜海涛,夏庆海等.道路交通噪声预测模型及其应用[J].环境科学,1989,10(6):63-66.
    [125]寇晓丽.群智能算法及其应用研究[D].西安:西安电子科技大学博士学位论文,2009.
    [126]李本纲,陶澍等.城市居住小区的公路交通噪声预测与规划[J].城市环境与城市生态,1999,12(2):57-60.
    [127]李本纲,陶澍等.城市道路交通噪声预测理论-统计模型[J].环境科学,2000,21(6):1-5.
    [128]李本纲,陶澍.城市居住小区交通噪声的空间分布特征[J].城市环境与城 市生态,2001,14(6):5-7.
    [129]李本纲,陶澍.城市居住小区交通噪声总体评价与防治对策研究[J].环境科学学报,2002,22(3):397-401.
    [130]李剑.微粒群算法及其在物流系统中的应用研究[D].武汉:华中科技大学博士学位论文,2008.
    [131]李江等.交通工程学[M].北京:人民交通出版社,2002.
    [132]李士勇,李盼池.求解连续空间优化问题的量子粒子群算法[J].量子电子学报,2007,24(5):569-574.
    [133]李铁柱.城市交通大气环境影响评价及预测技术研究[D].东南大学博士学位论文,2001.
    [134]李铁柱.城市道路路段环境交通容量[J].东南大学学报(自然科学版),2008,38(2):309-313.
    [135]李铁柱,林锦山等.城市环境交通容量空间分析方法[J].东南大学学报(自然科学版),2009,39(6):1274-1278.
    [136]李王鸣,刘吉平等.交通能耗定量化研究尝试:城市微循环交通能耗模拟[J].城市发展研究,2010,17(6):32-63.
    [137]李相勇,田澎,孔民.解约束优化问题的新粒子群算法[J].系统管理学报.2007,16(2):120-130.
    [138]李相勇,田澎.双层规划问题的粒子群算法研究[J].管理科学学报.2008,11(5):41-109.
    [139]李阳.考虑环境限制因素的城市道路交通平衡配流模型及算法的研究[D].北京:北京交通大学硕士学位论文,2005.
    [140]刘炳全,孙广才.基于Logit分配的交通网络设计模型的改进粒子群算法[J].科学技术与工程,2008,8(19):5446-5456.
    [141]刘娟娟,范炳全,祝炳发.双层规划在城市交通污染控制中的一个应用[J].管理工程学报,2005,19(4):87-90.
    [142]刘南,陈达强,陈鸣飞.城市道路系统多时段、多出行方式拥挤定价模型[J].管理工程学报,2007,21(2):89-94.
    [143]刘培杰,孙海涛.居住小区交通噪声预测评价[J].噪声与振动控制,2009,(1):140-143.
    [144]刘芹,史忠科.混合粒子群算法求解交通路网中的车辆调度问题[J].控制与决策,2006,21(1]):1284-1288.
    [145]刘少瑜,宋德萱.香港高层住宅交通噪声环境方法[J].住宅科技,2002,(3):39-42.
    [146]刘腾飞.协调控制下公交优先控制方法的研究[D].大连:大连理工大学硕士学位论文,2009.
    [147]陆化普,毛其智等.快速城镇化进程中的城市可持续交通——理论与中国 实践[M].北京:中国铁道出版社,2008.
    [148]罗德相.粒子群和人工鱼群混合优化算法[J].计算机与应用化学,2009,26(10):1257-1261.
    [149]吕振肃,侯志容.自适应变异的粒子群优化算法[J].电子学报,2004,32(1):416-420.
    [150]吕智林,范炳全等.城市快速路网匝道与污染控制双层多目标规划模型[J].控制与决策,2006,21(1):64-87.
    [151]马东升,赵广宇.灰色关联度分析法在环境噪声监测优化布点上的应用[J].辽宁城乡环境科技,1998,18(2):44-46.
    [152]马蔚纯,林健枝等.高密度城市道路交通噪声的典型分布及其在战略环境评价中的应用[J].环境科学学报,2002,22(4):514-518.
    [153]毛东兴,陶锦圣,洪宗辉.交通噪声的衍射作用对住宅小区的影响[J].上海环境科学.1999,18(4):179-181.
    [154]钱勇生,王春雷.基于三群协同粒子群优化算法的区域交通控制[J].计算机工程与应用,2007,3(14):187-189.
    [155]秦进等.考虑可持续发展的交通网络设计双层模型与算法[J].交通运输系统工程与信息,2010,10(4):111-117.
    [156]饶品祥.共生理论视角下的旅游产业集群形成与演进研究[D].西北大学博士学位论文,2010.6.
    [157]任刚.交通管理措施下的交通分配模型与算法[M].南京:东南大学出版社,2007.
    [158]任子晖,王坚.模拟退火粒子群算法在新交通控制模型中的应用[J].计算机应用,2008,28(10):2652-2654.
    [159]沙学锋.城市道路机动车动态排放预测模型研究[D].吉林大学博士学位论文.2007.
    [160]孙德智.城市交通道路环境空气质量检测与评价[M].北京:中国环境科学出版社,2010.
    [161]台南市环境保护局.反怠速宣导[EB/OL].http://www.tneph.gov.tw,2008-1-1.
    [162]吴超仲,徐成伟,严新平.基于优化速度模型的城市交通微观尾气排放模型[J].武汉理工大学学报(交通科学与工程版),2008,32(2):203-205.
    [163]吴孟庭,李铁柱.路段公交专用道对车辆燃油消耗与污染物排放的影响分析[J].交通运输工程与信息学报,2009,7(3):78-86.
    [164]吴孟庭,李铁柱,何炜.考虑环境影响的公交专用道规划方案评价研究[J].交通运输工程与信息学报,2010,8(1):82-108.
    [165]吴硕贤.部分车辆成组的多车道混合车流噪声的计算机模拟[J].声学学报,1985,10(1):30-40.
    [166]吴硕贤,Kittinger E考虑声散射的街道交通噪声预报模型[J].环境科学学 报,1996,16(3):364-371.
    [167]王春雷,钱勇生.基于双向并行灾变粒子群算法的区域交通控制[J].计算机工程与应用,2007,43(34):229-232.
    [168]王国平.灰色系统理论在城市交通噪声预测和绝对关联度关系中的应用[J].中国环境科学,1996,16(10):56-59.
    [169]王岐东,贺克斌等.机动车排放模型的研究进展[J].重庆环境科学.2003,25(12):185-190.
    [170]王岐东,霍红等.基于工况的城市机动车排放模型DCMEM的开发[J].环境科学,2008,29(11):3285-3290.
    [171]王岐东,姚志良等.中国城市轻型车的排放特性[J].环境科学学报.2008,28(9):1713-1719.
    [172]王健,田禹,安实.基于环境保护的拥挤定价下公交收费策略研究[J].系统工程学报,2006,21(2):211-215.
    [173]王巧灵,高晓智等.基于克隆选择和粒子群思想的动态多群体优化算法[J].控制与决策,2008,23(9):1073-1076.
    [174]王莲芬,许树柏.层次分析法引论[M].北京:中国人民大学出版社,1990.
    [175]王素欣,高利等.交通分配的粒子群优化算法[J].交通运输工程学报,2007,7(5):97-122.
    [176]王希伟,李铁柱等.基于健康损失的峡谷型路段环境交通阻抗模型[J].东南大学学报(自然科学版),2010,40(1):196-200.
    [177]王养军.发动机及车辆声品质主观评价及道路交通噪声预测与控制[D].天津大学博士学位论文,2007.
    [178]王云鹏,沙学锋等.城市道路车辆排放测试与模拟[J].中国公路学报,2006,19(5):88-92.
    [179]王炜,过秀成等.交通工程学[M].南京:东南大学出版社,2000.
    [180]王炜,项乔君等.城市交通系统能源消耗与环境影响分析方法[M].北京:科学出版社,2002.
    [181]王炜,陈学武,陆建.城市交通系统可持续发展理论体系研究[M].北京:科学出版社,2004.
    [182]魏静萱.解决单目标和多目标优化问题的进化算法[D].西安:西安电子科技大学博士学位论文.2009.
    [183]卫振林.基于UTECC的城市机动车总量控制研究[J].中国安全科学学报,2004,14(4):75-78.
    [184]熊伟.考虑排放的交通分配模型及其算法研究[D].武汉:武汉理工大学博士学位论文.2008.
    [185]熊志华,邵春福等.短时交通状态预测参数粒子群算法优化研究[J].交通运输系统工程与信息,2008,8(3):29-33.
    [186]薛文涛,吴晓蓓,单梁.多峰函数优化的免疫混沌网络算法[J].系统仿真学报,2010,22(4):915-920.
    [187]阎利军.城市交通需求与供给效果的模型分析[D].大连:大连理工大学博士学位论文.2006.
    [188]杨满宏.声屏障对公路交通噪声衰减理论模型的研究[J].交通环保,1996,(6):17-20.
    [189]杨文国,高自友.考虑环境因素的广义用户平衡和广义系统最优配流模型[J].中国公路学报,2003,16(4):72-76.
    [190]杨文国,高自友,部分路段上一氧化碳排放量限制的用广平衡配流模型及算法[J].公路交通科技,2003,20(1):159-162.
    [191]杨文国,郭田德等.考虑部分路段上一氧化碳排放量限制的弹性平衡配流模型及算法[C].中国运筹学会第七届学术交流会论文集,Global-Link出版社(香港),2004:616-624.
    [192]杨兆升.信号周期时长优化方法研究[J].交通信息与安全,2009,27(3):35-38.
    [193]杨忠振,苗国强,冯涛.环境承载力约束下城市最大乘用车保有量预测[J].中国公路学报,2006,19(6):92-101.
    [194]姚娟.基于共生理论的物流交易模式研究[M].南京:东南大学出版社,2010.
    [195]尹红亮.城市交通管理规划理论体系与关键问题研究[D].南京:东南大学博士学位论文,2002.
    [196]于雷,乔凤翔等.基于采样交通量与路段特征车辆行驶里程估算模型[J].交通运输工程与信息,2005,5(1):38-46.
    [197]于雷,宋国华.交通环境学科方向发展战略研究[R].建筑、环境与土木工程学科发展战略研究报告.北京:国家自然科学基金委员会,2005:173-190.
    [198]余柳,于雷等.综合环境因素及延误的信号配时优化仿真研究[J].系统仿真学报,2008,20(11):3016-3031.
    [199]余谦,文晓艳.求解二层线性规划问题的混合粒子群算法[J].系统工程,2008,26(1):86-90.
    [200]于万霞等.基于蚁群粒子群的模糊神经网络交通流量预测[J].计算机工程与应用,2007,43(25):197-199.
    [201]袁纯清.共生理论——兼论小型经济[M].北京:经济科学出版社,1998.
    [202]赵凤强.城市环境噪声问题的相关理论方法及应用[D].大连:大连理工大学博士学位论文.2006.
    [203]赵彤,高自友.城市交通网络设计问题中的双层规划模型[J].土木工程学报,2003,36(1):6-10.
    [204]赵彤,郭田德,高自友.环境因素下城市交通离散网络设计问题中确定最大OD需求量的优化模型及求解算法[J].土木工程学报,2005,38(3):119-124.
    [205]赵彤,高自友.环境污染限制及最优信号控制条件下的综合离散网络设计问题[J].土木工程学报,2006,39(2):102-106.
    [206]赵志刚,顾新一,李陶深.求解双层规划模型的粒子群优化算法[J].系统工程理论与实践,2007,(8):92-98.
    [207]张春翠.基于混合粒子群算法的快速公共交通网络规划方法研究[D].西安:长安大学硕士学位论文.2009.
    [208]张好智,高自友,张贝.环境目标下城市交通综合网络设计的优化模型及求解算法[J].土木工程学报,2006,39(11):114-119.
    [209]张邦俊,施丽莉等.城市居住区地下车库噪声影响的计算机模拟预测[J].环境科学,2003,24(4):154-157.
    [210]张继萍,吴硕贤.人工神经网络在道路交通噪声预测中的应用[J].环境科学学报,1998,18(5):471-476.
    [211]张生瑞.公路交通可持续发展系统分析与评价[D].长安大学博士学位论文,2002.9.
    [212]张玉平.基于移动商务的出租车O/D收费经济规律研究[D],山东科技大学硕士学位论文,2009.5
    [213]张滢滢,陈旭梅等.交通信号控制策略对机动车尾气排放影响的评价[J].交通运输系统工程与信息,2009,9(1):150-155.
    [214]张潇,于雷,宋国华.基于PEMS技术的交叉口尾气排放特性分析[J].安全与环境工程,2006,13(3):50-54.
    [215]周申培.考虑排放因素的城市交叉口交通信号控制策略的研究[D].武汉理工大学博士学位论文.2009.
    [216]邹志云.城市道路网络运营可靠性分析及优化研究[D].北京交通大学博士学位论文.2009.