三峡库区消落区土壤溶解有机质荧光特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡库区消落区作为水陆衔接的过渡地带,具有敏感而脆弱的生态系统,可能引起一系列生态环境问题。土壤溶解有机质(DOM)可与痕量重金属离子相互作用,影响其在水陆界面的迁移转化、毒性和生物可利用性等。因此,关于消落区土壤中DOM的物理化学特性研究是其生态环境问题防控和治理的重要环节。本文选取开县消落区,通过对土壤DOM荧光光谱特征进行分析,得到以下结论:
     (1)土壤DOM的浸提采用冷冻干燥的土壤样品,浸提时间为16h, DOM样品采取4℃冷藏且避光的方法保存。
     (2)消落区土壤DOM含有可见光区类腐殖质荧光峰A和紫外光区类腐殖质荧光峰C、长波处类色氨酸荧光峰B和短波处类色氨酸荧光峰D,仅在某些土壤中出现长波处类酪氨酸荧光峰E和短波处类酪氨酸荧光峰F。土壤DOM峰A、峰B、峰D、峰F位置变化范围较大,峰C、E位置无较大范围波动。对荧光峰强度分析发现,土壤腐殖质是消落区土壤DOM的主要来源,消落区土壤DOM中类腐殖质以大分子量的腐殖酸物质为主。
     (3)对2009年1月~7月采集的消落区土样DOM分析发现,在研究时段内,DOM中类腐殖质荧光物质有所增加,类色氨酸和长波处类酪氨酸荧光物质有所减少,短波处类酪氨酸物质变化不大,这预示着消落区土壤被淹没后,对上覆水体释放类腐殖质物质的潜力较大。
     (4)对沿小江流向的消落区土壤DOM的变化分析发现,峰A、峰C、峰D荧光强度变化趋势大致相同;峰B、峰E和峰F则无明显规律。对开县各镇消落区土壤DOM分析表明,各镇类腐殖质荧光强度变化趋势相同,荧光物质含量无明显差异;各镇类色氨酸、类酪氨酸荧光强度变化趋势不同,荧光物质含量存在明显的差异。对裸露区和淹没区土壤DOM荧光强度的比较发现,土壤周期性的淹没和裸露对DOM中的荧光峰C和峰D强度影响较大,裸露区土壤比淹没区含有更多DOM。
     (5)荧光强度比值分析揭示消落区土壤污染尚不严重,且土壤DOM中至少含有两种类型的类腐殖质荧光基团和类蛋白荧光基团;类腐殖质荧光峰A与C之间具有较好的相关关系,类色氨酸荧光峰B与峰D之间的相关性较差,类酪氨酸荧光峰E与峰F存在一定的相关关系;而峰A与峰B、峰E之间均存在着一定的相关关系。各荧光峰与有机质之间存在着一定的相关关系。对DOM的HIX值分析发现,裸露区土壤DOM腐殖化程度较高、芳香性较大,土壤被周期性的淹没和裸露对DOM腐殖化程度有较大的影响。在研究时段内,消落区土壤DOM的腐殖化程度有所提高。
     (6)消落区土壤中类腐殖质和类蛋白荧光物质是重金属Cd(Ⅱ)、Pb(Ⅱ)的强有机配位体,且Cd (Ⅱ)、Pb(Ⅱ)与DOM中的富里酸结合能力强于与腐殖酸的能力;紫色土DOM中类腐殖质荧光物质与Pb(Ⅱ)结合的荧光基团的比例均大于与Cd(Ⅱ)结合的比例,预示着在紫色土中Pb(Ⅱ)较易随DOM发生迁移和转化; Cd(Ⅱ)易与沙质土DOM中类腐殖质荧光物质结合,Pb(Ⅱ)易与类蛋白荧光物质结合,预示着在沙质土中两者均易随DOM迁移或扩散到水环境中去;Cd (Ⅱ)、Pb(Ⅱ)与消落区沙质土DOM中类蛋白荧光物质结合的能力比与类腐殖质荧光物质的能力强。
     论文研究成果可为研究三峡库区消落区土壤DOM特征及其迁移转化规律提供基础数据,为治理消落区生态和环境问题提供基础数据与理论依据。
As the zone where the transition between land and water converges, the water-level-fluctuating zone (WLFZ) has a sensitive and fragile ecosystem. This could result in a series of ecological and environmental problems in the WLFZ as well as the Three Gorges Reservoir (TGR). Dissolved organic matter (DOM) plays an important role in the migration and transformation of pollutants. DOM may interact with trace heavy metal ions, influencing their migration and transformation at the land and water interface, their toxicity and their bio-availability. Therefore, the study on physical and chemical characteristics of DOM in the WLFZ soil is the important part of prevention and control of ecological environmental problems in the WLFZ, TGR. So in this paper, the author selects soil samples in the WLFZ of Kai County, from the analysis of Three-dimensional fluorescence spectral of soil DOM, making conclusions as follows:
     (1) Extraction of soil DOM used freeze-drying soil samples, and samples were shaken for 16 h. Samples were kept in a refrigerator at 4°C.
     (2) Soil DOM from the WLFZ of Kai County was found to contain four fluorescence peaks: peaks A and C, which represent humus-like fluorescence, and peaks B and D, which represent tryptophan-like fluorescence. Two additional peaks, E and F, which represent tyrosine-like fluorescence, were only present in certain soils. Analysis of location of the soil DOM fluorescence peaks showed that the fluctuations of the position of peak A, B, D, F varied greatly, and that of peak C, E was not large. Analysis of soil DOM fluorescence intensities showed that soil humus was the main source of soil DOM, and the humus-like material in the soil DOM from the WLFZ was mainly humic substances of large molecular weight.
     (3) Analysis of soil DOM collected from January to July, 2009 showed that the humic-like substances increased, tryptophan-like and high-wavelength tyrosine-like substances reduced in the studing period, and low-wavelength tyrosine-like substances had no change. This indicated the potential ability of release in to the overlying water of humic-like substances were stronger.
     (4) Analysis of soil DOM from the WLFZ along the flow of XiaoJiang showed the changing trend of Peak A, C, D fluorescence was similar; Peak B, E and F had no obvious rule. Analysis of soil DOM from the six towns showed that the changing trends of fluorescence intensity of humic-like in the six towns were the same, and there was no obvious difference between the content of humic-like in the six towns; The changing trends of fluorescence intensity of tryptophan-like and tyrosine-like in the six towns were different, and there was significantly difference between the content of that in the six towns. The comparison of the fluorescence intensities of soil DOM in submerged soil and in exposed soil showed that the fluorescence intensities of peaks C and D were greatly influenced by the water level fluctuations, and there was more DOM in the exposed soil than the submerged soil of the WLFZ. Analysis of the HIX values in submerged and exposed soil DOM indicated that the soil DOM in exposed areas had a higher degree of humification and aromaticity, and periodic submerging and exposure of soil had an impact on the humification of DOM.
     (5) The fluorescence intensity ratios of soil DOM in the WLFZ showed that WLFZ soil was not polluted badly, and the soil DOM contained at least two types of humus-like fluorescence groups and two types of protein-like fluorescence groups. Analysis of the correlations between the fluorescence intensities of the different peaks showed that the fluorescence intensities of peaks A and C had a good correlation, the tryptophan-like fluorescence peaks B and D had a poor correlation and tyrosine-like fluorescence peaks E and F had some correlation. A good correlation between the humic-like fluorescence peak A and the protein-like fluorescence peaks E and F. The intensities of fluorescence peaks of soil DOM and SOM had some correlation.
     (6) The humic-like and protein-like fluorescence matter of soil DOM were strong organic ligands of Cd (Ⅱ), Pb (Ⅱ) in the WLFZ, and the ability that Cd(Ⅱ) and Pb(Ⅱ) combined with fulvic acid (small molecular weight) was stronger than that of humic acid (large molecular weight). The combined ratio of fluorophores between Pb(Ⅱ) and soil DOM was larger than that of Cd(Ⅱ) in Zhenan town, indicating that Pb(Ⅱ) could easily migrate and convert with the purple soil DOM. Cd(Ⅱ) could easily combine with humic-like fluorescence matter of sandy soil DOM, and Pb(Ⅱ) could easily combine with protein-like fluorescence matter. In the sandy soil of the WLFZ, Cd(Ⅱ) and Pb(Ⅱ) could easily migrate or proliferate to the water environment. The ability that Cd(Ⅱ) and Pb(Ⅱ) combined with protein-like fluorescence matter was stronger than that of humic-like fluorescence matter in the sandy soil of the WLFZ.
     The research results of the paper can provide the basic data and theoretical basis for the study of the characteristics and the migration and transformation of the DOM in the WLFZ of the TGR. It can also provide a theoretical basis for control ecological and environmental problems in the WLFZ.
引文
曹军,陶澍.1999.土壤与沉积物中天然有机物释放过程的动力学研究[J].环境科学学报, 19(3):297-302.
    陈婷.三峡库区消落带存在的问题及其可持续发展研究[J].安徽农业科学, 2009, 37(19): 9091-9092.
    陈梓云,彭梦侠.三峡库区消落带土壤中镉污染调查及分析[J].西南大学民族大学学报,2003, 29(4): 494-495.
    陈梓云,彭梦侠.三峡库区消落带土壤中重金属铬调查与分析[J].四川环境,2001,20(1): 53-54.
    刁承泰,黄京鸿.三峡水库水位涨落带土地资源的初步研究[J].长江流域资源与环境, 1999, 8(1) ):75-80.
    杜逢彬.三峡库区消落带环境问题及生态环境评价治理[J].城市勘测, 2009, 3(2)150-152.
    冯义龙,先旭东,王海洋.2007.重庆市区消落区植物群落分布特点及淹水后演替特点预测[J].西南师范大学学报(自然科学版),32:112-117.
    冯孝杰,魏朝富,谢德体,等.周期性淹水对消落区水土环境的影响及控制对策[J].农业资源与环境科学,2005,21(10): 356-359.
    付川,潘杰,牟新利,等. 2007.长江(万州段)沉积物中重金属污染生态风险评价[J].长江流域资源与环境, 16 (2): 236-239.
    方芳,翟端端,郭劲松,等.三峡水库小江回水区溶解有机物的三维荧光光谱特征研究[J].长江流域资源与环境,2010,19(3):323-329.
    傅平青. 2004.水环境中的溶解性有机质及其与金属离子的相互作用——荧光光谱学研究[D]. 北京:中国科学院研究生院.
    郭卫东,程远月,吴芳. 2007.海洋荧光溶解有机物研究进展[J].海洋通报, 26(1): 98-106.
    关哈斯高. 2007.东、黄海荧光溶解有机物质及其与环境因子关系的研究[D].青岛:中国海洋大学.
    胡刚,王里奥,袁辉,等.三峡库区消落带下部区域土壤氮磷释放规律模拟实验研究[J].长江流域资源与环境,2008,17(5):780-784.
    黄泽春,陈同斌,雷梅.2002.黄泽春,陈同斌,雷梅.陆地生态系统中水溶性有机质的环境效应.陆地生态系统中水溶性有机质的环境效应[J].生态学报,22(2):259-269.
    贺阳. 2009.三峡库区腹心地带消落区土壤氮磷含量调查及其释放潜力分析[D].重庆:重庆大学.
    蒋凤华. 2006.渤海和胶州湾海域溶解有机物荧光及其在环境溯源中的应用[D].青岛:中国海洋大学.
    季乃云. 2005.胶州湾荧光溶解有机物及其与环境因子关系的研究[D].北京:中国科学院研究生院.
    吉芳英,王图锦等. 2009.三峡库区消落区水体-沉积物重金属迁移转化特征[J].环境科学, 30(12):3481-3487.
    林滨,陶澎,刘晓航. 1997.土壤与沉积物中水溶性有机物释放动力学研究[J].环境科学学报,17(1) :8-13.
    林陶,张金洋,石孝均,等.三峡水库消落区土壤汞吸附解吸动力学特征[J].环境化学,2007,26(3):302-306.
    林于廉,龙腾锐,夏之宁,等.干湿交替模式下土壤中镉的释放特征[J].环境化学, 2008,27(5): 624-628.
    李宏斌,刘文清,张玉钧等. 2006.水体中溶解有机物激光诱导荧光光谱分析方法[J].光谱学与光谱分析,26(11):2065-2068.
    李睿. 2005.DOM对紫色土中养分有效性的影响[D].重庆:西南农业大学.
    李静,魏世强,杨勇,等.库区消落区紫色土与水稻土磷吸附解吸特征[J].西南农业大学学报, 2005,27(4):459-463.
    刘明亮,张运林,秦伯强. 2009.太湖入湖河口和开敞区CDOM吸收和三维荧光特征[J].湖泊科学, 21(2): 234-241.
    梁丽. 2007.DOM对汞在土壤-水-气界面释放的影响[D].重庆:西南大学.
    马利民,张明,滕衍行,等.三峡库区消落区周期性干湿交替环境对土壤磷释放的影响[J].环境科学,2008,29(4):1035-1039.
    裴廷权,王里奥,韩勇,等.三峡库区消落带土壤剖面中重金属分布特征[J].环境科学研究,2008,21(5):72-78.
    陶澎,梁涛,徐尚平. 1997.伊春河水溶解态有机碳含量和输出通量的时空变化[J].地理学报, 52(3): 254-261.
    王志刚,刘文清,李宏斌等. 2006.三维荧光光谱法分析巢湖CDOM的空间分布及其来源[J].环境科学学报, 26(2): 275-279.
    王里奥,黄川,詹艳慧,等.三峡库区消落带淹水-落干过程土壤磷吸附-解吸及释放研究[J].长江流域资源与环境,2006,15(5):593-597.
    夏达英,李宝华,吴永森等. 1999.海水黄色物质荧光特性初步研究.海洋与湖沼, 30(6): 719-725.
    夏锦尧. 1992.实用荧光分析法[M].第一版.北京:中国人民公安大学出版社.
    肖广全,温华,魏世强.三峡水库消落区土壤胶体对Cd在土壤中迁移的影响[J].水土保持学报,2007,21(4):16-20.
    袁辉,王里奥,胡刚,等.三峡库区消落带受淹土壤氮和磷释放的模拟实验[J].环境科学研究,2008,21(1):103-106.
    喻菲,张成,张晟,等.三峡水库消落区土壤重金属含量及分布特征[J].西南农业大学学报, 2006,28(1): 165-168.
    张甲坤,陶澎,曹军. 2000.土壤中水溶性有机碳测定中的样品保存与前处理方法[J].土壤通报, 31(4):174-176.
    张甲珅,淘澍,曹军. 2001.中国东部土壤水溶性有机物荧光特征及地域分异[J].地理学报, 56(4):409-416.
    张甲珅.陶澍等. 2000.土壤中水溶性有机碳测定中的样品保存与前处理方法(J).土壤通报,31(4):174-176
    张正斌,陈镇东,刘莲生等. 1999.第一版.北京:海洋出版社,海洋化学原理和应用(中国近海的海洋化学).
    张金洋,王定勇,石孝洪.三峡水库消落区淹水后土壤性质变化的模拟研究[J].水土保持学报, 2004, 18(6): 120-123.
    赵南京,刘文清,刘建国等. 2005.不同水体中溶解有机物的荧光光谱特性研究[J ].光谱学与光谱分析,25(7):1077-1079.
    钟润生,张锡辉,管运涛,等.三维荧光指纹光谱用于污染河流溶解性有机物来源示踪研究[J]. 光谱学与光谱分析, 2008, 2(28): 347-350.
    中国长江三峡工程开发总公司,水情实况[EB/OL]. 2009. http://www.ctgpc.com.cn/sx/sqsk.php.
    周江敏,代静玉,潘根兴.应用光谱分析技术研究土壤水溶性有机质的分组及其结构特征[J ].光谱学与光谱分析,2004,24(19):1060-1065.
    詹艳慧,王里奥,焦艳静.三峡库区消落带土壤氮素吸附释放规律[J].重庆大学学报,2006,29(8): 10-13.
    Baker A. 2001a. Flourescence excitation-emission matrix characterization of some sewage-impacted rivers. Environ. Sci. Technol.35:948-953.
    Baker B A, Inverarity R, Charlton M, et al. 2003. Detecting river pollution using fluorescence spertrophotometry:case studies from the Ouseburn,N E England [J]. Environmental Pollution, 124:57-70.
    Baker A. 2001b. Fluorescence excitation-emission matrix characterization of river waters impacted by a tissue mill effluent [J]. Environ Sci Technol, 36(7): 1377-1382.
    Baker A, Robert G.M. 2004. Spencer.Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy [J]. Science of the Total Environment, 333:217– 232.
    Baham J, Sposito G. 1983.Chemistry of water-soluble.metal-complexing ligands extracted from an anaerobicaally digested sewage sludge.J.Environ Qual,12(1):96-100.
    Benner R, Pakulski J D, Mccarthy M, et al.1998. Chemical characteristics of dissolved organic matter in the ocean[J]. Science, 255(5051):1561-1564.
    Christ M J, David M B. 1996. Dynamics of extractable organic carbon in Spodosol forest floor[J].Soil Biol Biochem, 28(9):1171-1179.
    Chapman P J, Edwards A C, Cresser M S, et al. 2001.The nitrogen composition of streams in upland Scotland: some regional and seasonal differences[J]. Science of the Total Environment, 265(1-3):65-83.
    Chen W. 2003.Flourescence properties of effluent organic matter and role of mineral adsorption in soil aquatic treatment. Arizona State University,Ph.D.
    Chen R F, Bada J L. 1992. The fluorescence of dissolved organic matter in seawater [J]. Marine Chemistry, 37:191-221.
    Coble P G, Green S A, B lough N V et al. 1990. Characterization of dissolved organic carbon matter in the Black Sea by fluorescence spectroscopy [J]. Nature, 348(29): 432-435.
    Coble P G.1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy [J]. Marine Chemistry, 51(4): 325-346.
    Cox L, Celis, R, Hermosin, MC, Cornejo J, Zsolnay, A, Zeller K. 2000.Effect of organic amendments on herbicide sorption as related to the nature of the dissolved organic matter [J]. Environmental Science &Technology, 34, 4600–4605.
    Davidson E A, Galloway L F, Strand M K.1987. Assessing available carbon: comparative of techniques across selected forest soils[J]. Comm. Soil Sci. Plant. Anal, 18:45-64.
    Dargan A I, Khrapunov S N, Protas A F, et al. 1983. The change in maximum position of tyrosyl fluorescence spectra of R Nase A and histone dimer(H2A-H2B) under denaturation[J]. Stud Biophys, 96:187-193.
    Determann S, Reuter R, Wagner P, et al. 1994. Fluorescent matter in the eastern Atlantic Ocean (Part 1:method of measurement and near-surface distribution).Deep-Sea Res I, 41(4): 659-675.
    Determann S, Lobbes J M, Reuter R, Rullkotter J.1998. Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria. Marine Chemistry, 62:137-156.
    Determann S, Reuter R, Willkomm R. 1996. Fluorescent matter in the eastern Atlantic Ocean. Part 2: vertical profiles and relation to water masses [J]. Deep-sea research. Part 1. Oceanographic research papers, 43(3):345-360.
    Esteves da Silva J.C.G, Machado A.A.S.C, Oliveira C.J.S, et al. 1998. Fluorescence quenching of anthropogenic fulvic acids by Cu(Ⅱ), Fe(Ⅲ) and UO22+, Talanta, 45:1155-1165.
    Elliott H A, Denney. 1982.Soil adsorption of cadmium from solution containing organic ligands [J].Environ Qual, 11(4):658-662.
    Galla H J, Warnke M, Scheit K H. 1985. Incorporation of the antimicrobial protein eminalplasmin into lipid bilayer membranes[J]. Eur Biophys, 12:211.
    Haynes R J. 2000.Labile organic matter as an indicator of organic matter quality in arable andpastoral soil in New Zealand[J]. Soil Biol Biochem, 32:211-219.
    Harey G R, Boran D A, Chesal L A, et al. 1983. The structure of marine fulvic and humic acids[J]. Marine Chemistry, 12:119-132.
    Kalbitz K, Wennich R. 1998. Mobilization of heavy metal and inpolluted wetland soil and its dependence on dissolved organic matter[J]. Sci Total Environ, 209:27-39.
    Kalbitz K P , Geyer W, et al. 1997.β-HCH mobilization in polluted wetland soils as influenced by dissolved organic matter[J]. Sci Total Environ, 204:37-48.
    Kaiser K, Zech W. 1998. Rate of dissolved organic matter release and sorption in forest soils[J]. Soil Sci, 163(3): 714-725.
    Kaiser K, Kaupenjohann, M, Zech W.2001. Sorption of dissolved organic carbon in soils: effects of soil sample storage, oil-to-solution ratio, and temperature[J].Geoderma, 99(3-4):317-328.
    Leenheer JA, Huffman E WD. 1976.Classification of organic solutes in water by using macro reticular resins[J]. Journal Rsearch US Geol Survey, 4(6):737-751.
    McDowell W H.1988.Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soils[J]. Water Air Soil.Pollut.,105:175-182.
    McDowell W H, Kinner N. 1998. Quantification of biodegradable dissolved organic catbon in soil solution with flow through bioreactors[J]. Soil Sci Soc Am, 62:1556-1564.
    Magee B R, Lion L W, Lemley A T.1991. Transport of DOM macromolecules and their effect on the transport of phenanthrene in porous media[J]. Environ Sci&Tech, 5(2):323-331.
    Mayer L M, Schik L L, Loder T C. 1999. Dissolved protein fluorescence in two Maine estuaries. Mar Chem, 64: 171一179.
    Matthews B J H, Jones A C, Theodorou N K, et al. 1996. Excitation-emission-matrix fluorescence spectroscopy applied to humic acid bands in coral reefs. Mar Chem, 55: 317-332.
    Ohno T. 2002. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter [J]. Environmental Science &Technology, 36, 742–746.
    Ohno T, Fernandez I J, Hiradate S, Sherman J F. 2007. Effect of soil acidification and forest type on water soluble soil organic matter properties [J]. Geoderma. 140(1):176-187.
    Piccolo A. 1996.Humic Substances, in Terrestrial Ecosystems [M]. Elsevier Sciences B.V.
    Patel-Sorrentino N, Mounier S, Benaim J Y. 2002. Excitation-emission fluorescence matrix to study pH influence on organic matter fluorescence in the Amazon Basin Rivers[J].Water Research, 36:2571-2581.
    Raulund-Rasmussen K B O, Hansen H C B, et al. 1998. Effect of natural soil solutes on weathering of soil minerals[J]. Eur J Soil Sci, 49:397-406.
    Sierra M M D, Donard O F X, Lamotte M, Belin C, Ewald M. 1994.Fluorescence spectroscopy ofcoastal and marine waters [J]. Mar Chem, 47(2): 127~144.
    Sierra M M D, Donard O F X, Lamotte M. 1997.Spectral identification and behaviour of dissolved organic fluorescent material during estuarine mixing processes [J]. Mar Chem, 58(1/2): 51~58.
    Sierra M M D, Giovanela M, Parlanti E, Soriano-Sierra E J. 2005. Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques [J]. Chemosphere, 58(6):715~733.
    Stedmon CA, Markager, S R. 2003. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy [J]. Marine Chemistry, 82:239-254.
    Stevenson F J. 1982. Humus Chemistry: Gensis, Composition, Reactions. New York: John Wiley and Sons.
    Stewart A J, Wetzel R G, 1980. Fluorescence: absorbance ratios-a molecular-weight tracer of dissolved organic matter. Limnol. Oceanogr, 25(3): 559-564.
    Tipping E. 1998. Modelling the properties and behavior of dissolved organic matter in soil[J]. Mitteilgn Dtsch Bodenk Gesell, 87:237-252.
    Wu F C, Midorikawa T, Tanoue E, 2001a. Fluorescence properties of organic ligands for copper(Ⅱ) in Lake Biwa and its rivers. Geochemical Journal, 35:333-346.
    Wu F C, Tanoue E, 2001b. Isolation and partial characterization of dissolved copper-complexing ligands in streameaters. Environ Sci Technol, 35: 3646-3652.
    Wu F C, Cai Y R, Evans R D, et al, 2004. Complexation between Hg(Ⅱ) and dissolved organic matter in stream waters: An application with fluorescence spectroscopy. Biogeochemistry, 71(3): 339-351.
    Yamashita Y, Tanoue E. 2003. Chemical characterization of protein-like fluorophores in DOM in relation to armatic amino acids. Mar Chem, 82: 255-271.
    Yin Y, Allen H E, Huang C P, et a, 1997. Interaction of Hg(Ⅱ) with soil-derived humic substances. Anal Chim Acta, 341:73-82.