苦荞遗传多样性分子评价及其黄酮合成酶CHS基因的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用AFLP和SSR两种分子标记方法研究了50份国内苦荞优异种质材料的遗传多样性,并对这两种分子标记系统进行了比较。用19对AFLP引物组,检测到了211个AFLP特异性标记,PIC值变幅为0.0241-0.1918;用19对SSR引物组检测到了160个基因特异性标记,PIC值变幅为0.5908-0.9992。UPGMA聚类结果显示,当相似系数为0.790时,AFLP标记可将供试材料分为五个组群:当相似系数为0.578时,SSR标记可将供试材料分为四个组群。比较发现,两种分子标记划分结果不太一致。但通过比较两种分子标记的遗传多样性参数值,证实这两种分子标记系统均适合于苦荞遗传多样性研究。通过筛选,从中发现了一些适宜遗传多样性分析和杂交亲本材料选择的优势引物组合。这不仅对我国苦荞种质资源的遗传多样性保护提供了借鉴,也为国内优异苦荞品种的选育提供了很好的参考价值。此外,本研究还将对苦荞遗传图谱的构建、重要农艺性状基因的标记定位、荞麦起源研究提供了有益的参考价值。
     本研究还利用经典的RACE法成功地克隆出控制苦荞黄酮代谢合成的关键酶基因——查尔酮合酶(CHS)基因,确定了其完整的开放性阅读框(ORF)。用生物信息学手段分析预测了苦荞中该酶的基本理化性质和同源性,并用临接法构建了系统发生树,初步确定了苦荞以及其它植物中该酶的进化地位和方向。本实验的研究成果为下一步该基因转化及功能验证打下了良好的基础,并对今后用分子手段改良苦荞品质,即分子辅助选育高黄酮含量的苦荞优异品种具有重要意义。
We studied the genetic diversity of 50 elite tartary buckwheat (Fagopyrum tataricum) germplasm by Amplified Fragments Length Polymorphism marker (AFLP) and Simple Sequence Repeat marker (SSR). Meanwhile, we had a comparison on effectiveness of two molecular markers systems. The results showed that 211 special AFLP markers were detected by 19 AFLP primer pairs and 160 special SSR markers by 19 SSR primer pairs. The Polymorphism Information Content (PIC) value was from 0.0241 to 0.1918 for AFLP and from 0.5908 to 0.9992 for SSR, respectively. The clustering analysis by Unweighted Pair Group Method with Arithmetic Mean (UPGMA) indicated that these germplasm resources could be divided into five clusters when the similarity coefficient was 0.790, and could be divided into four clusters when the similarity coefficient was 0.578.Although the results were not so consistent by the two kinds of markers, both of them were effective for studying tartary buckwheat genetic diversity. Moreover, we identified some good molecular markers primer pairs for F. tataricum, which will be very useful for assessing genetic diversity and identifying more appropriated varieties for breeding. Fianally, our work will also have a important reference on constructing more complete and detailed genetic linkage map, locating some important agronomic trait genes and determining the origion of F. tataricum.
     We cloned the key enzyme, chalcone synthase (CHS) gene responsible for synthesizing flavonoid in tartary buckwheat by Rapid Amplification of cDNA Ends (RACE), and got its Open Reading Frame (ORF).We analysed basic physicochemical properties and homology of the enzyme gene, and constructed the phylogenetic tree of gene family by neighbor-joining, which confirmed its evolution status and origin in F. tataricum.Our research provided a base on further study on its transform and functional testing. Moreover, it will paly an important role o molecular assistant breeding for the excellent F. tataricum varieties with high flavonoid content.
引文
[1]李安仁主编.中国植物志.科学出版社,1998.
    [2]林汝法.苦荞资源的开发和利用.荞麦动态,2000,1:3-7.
    [3]张以忠,陈庆富.荞麦研究的现状与展望.种子,2004,23(3):39-42.
    [4]Ohimi Ohnishi. Recent progress of the study on wild species. Advances in Buckwheat research. Proceeding of 8th international symposium on Buckwheat, 2001, pp:218-224.
    [5]Tsuji K, Ohnishi O., Phylogenetic relationships among cultivated landraces and natural populations of Tartary buckwheat (Fagopyrum tataricum Gaertn.) revealed by RAPD analyses. Proc.7th. Intl. Symp. Buckwheat Vol.Ⅵ,1998, pp: 41-49.
    [6]Tsuji K, Ohnishi O, Phylogenetic position of east Tibetan natural populations in Tartary buckwheat (Fagopyrum tataricum Gaertn.) revealed by RAPD analyses. Genet.Resources Crop Evol,2000,47.
    [7]Tsuji K, Ohnishi O., Phylogenetic relationships among wild and cultivated Tartary buckwheat (Fagopyrum tataricum Gaertn.) Populations revealed by AFLP analyses. Genes Genet.Syst.2001,76:47-52.
    [8]赵佐成,周明德,罗定泽,侯鑫,王中仁,沈国坤,李发良,曹吉祥.四川省凉山彝族自治州南部三县苦荞麦栽培居群德遗传多样性研究.遗传学报,2000,27(6):538-548.
    [9]林汝法,周小理,陕方,边俊生.中国荞麦的生产与贸易.荞麦动态,2004,2:5-6.
    [10]黄荣华.开发荞麦资源,发展荞麦生产.湖北农业科学,1994,6:26-28.
    [11]汝法译.21世纪荞麦育种展望.荞麦动态,2000,1:39.
    [12]徐丽华,潘宏,赵英明.荞麦——一种新兴的多用途作物.荞麦动态,2000,1:28-30.
    [13]钱迎倩,马克平.生物多样性研究的原理与方法[M].中国科技出版社,北京,1994,13-36.
    [14]施立明,贾旭,胡志昂.遗传多样性.陈灵芝主编:中国的生物多样性,科学出版社,北京,1993,99-113.
    [15]McNeely J.A., Miller, K.R. Conserving the world biological diversity. IUCN, WRI, CI, WWFUS, The World Bank,1990.
    [16]盖钧镒.植物种质群体遗传结构改变的测度.植物遗传资源学报,2005,6(1):1-8.
    [17]蔡健,兰伟,罗瑞丽,李飞天,闻峰.皖北小麦主栽品种遗传多样性的系统聚类法分析.中国农学通报,2006,22(11):143-146.
    [18]Kishor Sherchand, Akio Ujihara, Atudies on Some Morphological and Agronomical Traits of Buckwheat in Nepal. Current Advances in Buckwheat Research,1995, pp:285-293.
    [19]赵佐成,周明德,王中仁,侯鑫.中国苦荞麦及其近缘种的遗传多样性研究.遗传学报,2002,29(8):723-734.
    [20]Kump B, Javornik B., Genetic diversity and relationships among cultived and wild accessions of tartary buckwheat (Fagopyrum tataricum Gaertn.) revealed by RAPD markers. Genetic Resources and Crop Evolution 2002,49:565-572.
    [21]赵丽娟,张宗文,黎裕,王天宇.苦荞种质资源遗传多样性的ISSR分析.植物遗传资源学报,2006,7(2):159-164.
    [22]Yasuo Yasui, et al, Construction of genetic maps of Common buckwheat (Fagopyrum esculentum Moench) and its wild relative, F.homotropicum ohinishi based on amplified fragment length polymorphism (AFLP) markers. Advances in Buckwheat research, proceeding of 8th international Stmposium on Buckwheat 2001, pp:225-232.
    [23]唐栩,许东晖,梅雪婷等.26种黄酮类天然活性成分的药理研究进展.中药材,2003,26(1):46-54.
    [24]刘成洪.查尔酮合成酶等黄酮代谢基因的克隆及短亭飞蓬遗传转化研究[博士学位论文].上海:第二军医大学,2005.
    [25]赵晓莉,岳红.黄酮类化合物分析方法概述.盐湖研究.2005,13(2):34-39.
    [26]Forkmann G, Heller W. Biosynthesis of flavonoids. Amsterdam:Elsevior,1999: 713-748.
    [27]Thilo C.Fischer, Christian Gosch, Judith Pfeiffer, Heidrum Halbwirth, Christian Halle, Karl Stich. Flavonoid genes of pear(Pyrus communis). Trees,2007,21: 521-529.
    [28]张党权,谭晓凤,王晓红.查尔酮合酶和查尔酮异构酶基因特征及转基因 应用.中南林业科技大学学报.2007,27(2):87-91.
    [29]Jiang C, Schommer C K, Kim S Y, Suh D Y. Cloning and characterization of chalcone synthase from the moss, Physcomitrella patens. Phytochemistry,2006, 67:2531-2540.
    [30]vander Meer I M, Stuitje A R, Mol N J M. Regulaton of general phenylpropanoid and flavonoid gene expression.BocaRatan:CRC Press.1993: 125-155.
    [31]Cui Y, Magill J, Frederiksen R, Magill C. Chalcone synthase and phenylalanine ammonia lyase mRNA following exposure of sorghum seedlings to three fungal pathogens. Physiological and Molecular Plant Pathology,1996,49:187-199.
    [32]Van der Krol AR et al. Mol Gen Genet,1990,220:204.
    [33]谭晓风,张党权,陈鸿鹏,谢禄山,王晓红,石明旺,胡芳名.油茶查尔酮合酶和异构酶基因的cDNA克隆.中南林业科技大学学报(自然科学版),2007,1(27):9-13.
    [34]蒋明,曹家树.查尔酮合成酶基因.细胞生物学杂志,2007,29:525-529.
    [35]Heather I. McKhann and Ann M. Hirsch. Isolation of chalcone synthase and chalcone isomerase cDNAs from alfalfa (Medicago sativa L.):highest transcript levels occur in young roots and root tips. Plant Molecular Biology,1994,24: 767-777.
    [36]王曼玲,董臣,朱虹琳,李国林,周明全,胡中立.莲查尔酮合酶基因的克隆及序列分析.分子植物育种,2006,4(3):30-35.
    [37]孙艳琼,段红平.植物基因克隆方法在作物上的应用.广西农业科学,2005,36(3):275-279.
    [38]许本波,谢伶俐,严寒,何勇,田志宏.RACE方法在甘蓝型油菜基因克隆中的应用.河南农业科学,2007,45-51.
    [39]张艳,柴岩,冯佰利,胡银岗.苦荞和甜荞查尔酮合成酶基因的克隆及序列比较.西北植物学报,2008,28(3):0447-0451.
    [40]王青山,李葱葱,王晶,王丹,张明.AFLP分子标记技术及应用研究进展.吉林农业科学,2005,30(6):29-33.
    [41]陈新,万德光,严铸云,裴瑾.银杏苯丙氨酸解氨酶(PAL)的基因克隆.成都中医药大学学报,2004,27(1):32-34.
    [42]徐建堂,祁建民,方平平,李爱青,林荔辉,吴建梅,陶爱芬.CTAB法提取红麻总DNA技术优化与ISSR和SRAP扩增效果.中国麻业科学,2007,29(4):179-183.
    [43]闫龙,关建平,宗绪晓.木豆种质资源AFLP标记遗传多样性分析.作物学报,2007,33(5):790-798.
    [44]赵丽娟.荞麦种质资源遗传多样性分析[硕士学位论文].北京:中国农业科学院,2006.
    [45]徐微.裸燕麦种质资源遗传多样性及遗传图谱构建研究[硕士学位论文].北京:中国农业科学院,2009.
    [46]王红梅,张正英,陈玉梁.SSR标记技术及其在植物遗传学中的应用.西北师范大学学报(自然科学版),2003,39(1):113-116.
    [47]张恩来.燕麦核心种质构建及其遗产多样性研究[硕士学位论文].北京:中国农业科学院,2008.
    [48]侯雅君,张宗文,吴斌,李艳琴.苦荞种质资源AFLP标记遗传多样性分析.中国农业科学,2009,42(12):4166-4174.
    [49]Weir B S. Genetic Data Analysis:Methods for Discrete Population Genetic Data. Sunderland:Simauer Associates,1990.
    [50]Simpson E. Measurement of diversity. Nature,1949,163:688.
    [51]Shannon C E. A mathematical theory of communication. Bell System Technical Journal,1948,27:379-423.
    [52]Nei M, Li W. Mathematical model for studying genetic variation in terms of restriction endonucleases [A]. Proc Natl[C]. Acad. USA,1979,76:5269-5273.
    [53]李丽娜.小麦抗叶锈基因Lr35的AFLP和SSR分子标记[硕士学位论文].保定:河北农业大学,2005.
    [54]Yong-Bi Fu, James Chong, Tom Fetch, Ming-Li Wang. Microsatellite variation in Avena sterilis oat germplasm. Theor Appl Genet,2007,114:1029-1038.
    [55]宫慧慧,谢华,马荣才,曹鸣庆,万平,金文林,濮邵京.利用SSR分析小豆种质遗传多样性.农业生物技术学报,2008,16(5):872-880.
    [56]Wang X W, Kaga A, Tomooka N, Vaughan DA.The development of SSR markers by a new method in plants and their application to gene flow studies in azuki bean[Vigna angularis(Wild.)Ohwi&Ohashi][J]. Theor Appl Genet,2004, 109:352-360.
    [57]Takehiko Konishi, Hiroyoshi Iwata2, Kazutoshi Yashiro, Yoshihiko Tsumura, Ryo Ohsawa,Yasuo Yasui and Ohmi Ohnishi. Development and Characterization of Microsatellite Markers for Common Buckwheat. Breeding Science,2006,56:277-285.
    [58]丁燕红,金文林,赵波,濮绍京.小豆SSR-PCR反应条件的优化.北京农学院学报:2006,21(1):14-17.
    [59]赵茹,程舟,陆伟峰,卢宝荣.基于分子标记的野生大豆居群遗传多样性估算与取样策略.科学通报,2006,51(9):1042-1048.
    [60]Yan-qin Li, Tong-lin Shi, Zong-wen Zhang. Development of microsatellite markers from tartary Buckwheat. Biotechnol Lett,2007,29:823-827.
    [61]Hill M,Witsebboer H,Zabeau M, et al.PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships in Lactuca spp.[J].Theor Appl Genet,1996,93:1202-1210.
    [62]Senthilkumaran R, Bisht I S, Bhat K V, Rana J C. Diversity in buckwheat (Fagopyrum spp.) landrace populations from north-western Indian Himalayas. Genetic Resources and Crop Evolution,2008,55(2):287-302.
    [63]Condit R, Hubbel S. Abundance and DNA sequence of Two-base repeat regions in tropical tree genomes. [J] Genome,1991.33:66-71.
    [64]杨进.SSR标记技术在植物遗传多样性研究上的应用农业生物技术科学,2006,7(22):90-93.
    [65]陈新民,何中虎,史建荣,夏兰芹,Rick Ward,周阳,蒋国梁.利用SSR标记进行优质冬小麦品种(系)的遗传多样性研究.作物学报,2003,29(1):13-19.
    [66]海林,王克晶,杨凯.半野生大豆种质资源SSR位点遗传多样性分析.西北植物学报,2002,22(4):751-757.
    [67]郝晓芬,王节之,王潞英,王根全.SSR标记分析谷子遗传多样性.山西农业科学,2005,33(4):29-31.
    [68]聂永心,张丽,潘光堂,荣廷昭.四川省常用玉米自交系SSR遗传多样性分析.分子植物育种,2005,3(1):43-51.
    [69]袁力行,傅骏骅,Warburton M,李新海,张世煌,Khairallah M,刘新芝,彭 泽斌,李连城.利用RFLP、SSR、AFLP、RAPD标记分析玉米自交系遗传的比较研究[J].遗传学报,2000,27(8):725-733.
    [70]Pejic I, Ajmone-Marsan P, Morgante M, Kozumplick V, Castiglioni P, Taramino G, Motto M. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs [J]. Theor Appl Genet,1998, (97):1248-1255.
    [71]Smith J S C, Chin E C L, Shu H, Smith O S, Wall S J, Senior M L, Mitchell S E, Kresovich S, Ziegle J. An evaluation of the utility of SSR loci as molecular markers in maize (Zea maysL):Comparisons with data from RFLPs and pedigree[J]. Theor Appl Genet,1997, (95):163-173.
    [72]J.萨姆布鲁克,E.F弗里奇,T.曼尼阿蒂斯.分子克隆实验指南(第二版).北京,科学出版社,2002.
    [73]刘学奋.银杏黄酮相关基因的克隆与转化[博士学位论文].上海:复旦大学,2006.
    [74]雷栀,邹详,向阳,汤绍虎,孙敏.植物查尔酮异构酶的生物信息学分析.北方园艺,2008,(2):193-197.
    [75]庞永珍.银杏黄酮和萜类化合物生物合成途径中重要相关基因的克隆和研究[博士学位论文].上海:复旦大学,2005.
    [76]蒋明,曹家树.查尔酮合成酶基因.细胞生物学杂志,2007,29:525-529.
    [77]张当权,谭晓风,王晓红.查尔酮合酶与查尔酮异构酶基因特征及转基因应用.中南林业科技大学学报,2007,27(2):87-91.
    [78]Durbin M L, McCaig B, Clegg M T. Molecular evolution of chalcone synthase multigene family in the morning glory genome[J]. Plant Mol.Biol.,2000,42: 79-92.
    [1]张美莉,胡小松.荞麦生物活性物质及其功能研究进展.杂粮作物,2004,24(1):26-29.
    [2]胡小松.苦荞麦浸提液对胰蛋白酶和淀粉酶抑制作用的研究.中国食品学报,2003,3(4):63-63.
    [3]Bernfeld, P. Methods Enzymol.1955,1:149-158.
    [4]张晓琦,杨明琰,马瑜,宋纪蓉.白豆淀粉酶抑制剂的生物学性质及抑制动力学特征研究.食品科学,2007,28(12):29-31.
    [5]王燕飞,张晖,郭贯新.米胚芽中胰脂肪酶抑制剂的抑制机理研究.食品科技,2004,6:94-96.
    [6]Ran Yang, Xiao-lan Chen, Ping Li, Ling-bo Qu. Interaction Between Lysozyme and Three Flavones by Fluorescence Spectroscopy, Chem. J. Chinese Universities,2006,9,27(9):1673-1676.
    [7]Xiao-wei Zhang, Feng-lin Zhao, Ke-an Li. Chem. J. Chinese Universities,1999, 20 (7):1063-1067.
    [8]Jiang C Q, Gao M X, Meng X Z. Spectrochim. Actra, Part A 2003,59:1605.
    [9]Philip D. Ross S. Subramanian. Thermodynamics of Protein Association Reactions:Forces Contributing.Biochemistry,1981,20:3096-3012.
    [10]Ⅱ'ichev Y V, Perry J L, Simon J D J. Phys.Chem.B,2002,106:452.
    [11]Macregor E A, S Janecek A B S. Relationship of Sequence and Structure to Specificity in the a-Amylase Family of Enzyme[J], Biochim. Biophys. Acta, 2001, (1546):1-20.