油茶粕多肽的制备及其生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油茶是我国目前主要的油料植物之一,每年生产油茶籽约100万t、榨油后的副产物——油茶粕约68万t,目前,大多数的油茶粕只是作为有机肥料来使用,造成优质资源的严重浪费。在油茶粕中含有10%-20%的优质蛋白,是一种潜在的植物蛋白资源,而以油茶粕蛋白为原料进行生物活性肽的研究目前尚未见报道。本文对油茶粕蛋白的提取、油茶粕多肽的制备及其生物活性进行了深入的研究,成功制备出具有良好抗氧化、降血压、增强机体免疫力、降血脂和抗菌活性的油茶粕多肽。本研究为拓宽油茶粕的综合利用开辟了新的空间,可为油茶粕多肽的工业化生产提供理论基础与试验依据。
     在探明油茶粕蛋白组成与等电点(pI=4.6)的基础上,采用碱溶酸沉法,研究了油茶粕蛋白的提取工艺,重点对油茶粕蛋白的碱提工艺进行了响应曲面法优化,最佳的碱提工艺为:料液比1:25、浸提液pH值10.4、浸提时间2.42 h、浸提温度49.2℃,在此条件下,蛋白提取率为65.83±2.45%(n=4),与模型预测值64.97%无显著差异(P>0.05)。
     油茶粕蛋白水解产物的体外抗氧化活性与酶的种类和水解度密切相关。当酶与底物比和水解时间分别为1.50%与6.00 h时,经碱性蛋白酶(Alcalase)水解后所得多肽对O2-·的清除能力、还原能力和抑制亚油酸过氧化的活性均最强,分别为59.93%、0.621和53.19%。当酶与底物比和水解时间分别为1.50%与9.00 h时,经木瓜蛋白酶(Papain)水解后得到的多肽具有最强的清除DPPH的能力(46.89%)。以四氯化碳致毒小白鼠为试验对象,剂量分别为250、500和1000 mg/kg体重,对油茶粕多肽(MW<3 kDa)的体内抗氧化活性进行了研究。结果表明,中、高剂量的油茶粕多肽能使中毒小鼠肝脏的超氧化物歧化酶(SOD)与谷胱甘肽过氧化物酶(GSH-Px)活力显著提高(P<0.05),能使丙二醛(MDA)含量显著降低(P<0.05),说明油茶粕多肽可以显著减轻活性氧对机体的损害,增强机体的抗氧化能力。
     对制备油茶粕ACE抑制肽的最适酶及其最佳的水解条件分别进行了筛选与优化,在此基础上,将所得多肽(MW<3 kDa)用于自发性高血压大鼠(SHRs)的ACE抑制活性与降压效果研究。蛋白酶的筛选试验中,Alcalase水解所得多肽的IC50是最低的0.96±0.11mg/mL/借助响应曲面法,探明了最佳的水解条件,即pH值8.1、酶与底物比1.57%、水解温度50.5℃、水解时间6.66 h,同时获得了用于ACEI预测的二元回归数学模型。在体内试验中,SHRs在一次灌喂与长期服用100和500 mg/kg·bw的油茶粕多肽后,收缩压显著降低(P<0.05),长期服用油茶粕多肽SHRs的动脉ACE活性受到显著抑制。试验结果证明油茶粕多肽对SHRs具有良好的降压作用。
     通过建立SD大鼠高血脂模型,采用低、中、高三种剂量(250,500和1000 mg/kg·bw),研究了油茶粕多肽(Alcalase水解)的降血脂效果。结果表明,低、中、高剂量的油茶粕多肽均可显著降低高血脂模型SD大鼠血清中总胆固醇(TC)与甘油三酯(TG)的含量、动脉硬化指数(AI)(P<0.05),还能有效提高高密度脂蛋白胆固醇(HDL-C)的水平(P<0.05)。试验结果提示油茶粕多肽具有良好的降血脂功效,可有效降低动脉粥样硬化的风险。
     以脾淋巴细胞增殖作用、免疫脏器指数、血清半数溶血值(HC50)、小鼠巨噬细胞的吞噬指数与吞噬率为指标,研究了油茶粕多肽(Alcalase水解)对小鼠的免疫调节功能。试验结果表明,低、中、高剂量(250、500、1000 mg/kg-bw)的油茶粕多肽均能对抗环磷酰胺所致小鼠免疫降低的作用,说明不同剂量的油茶粕多肽均能显著提高免疫低下型小鼠的非特异性和特异性细胞免疫功能(P<0.05)。迟发型超敏反应(DTH)试验结果表明,低、中、高剂量的油茶粕多肽均能显著提高免疫正常小鼠的特异性细胞免疫功能(P<0.05)。
     以Pepsin为水解酶,用E. coli为指标菌,通过响应曲面法,对油茶粕蛋白水解制备抗菌肽(MW<10 kDa)的工艺进行了优化,最佳的水解条件为:酶添加量1.70%,pH值1.9,反应温度36.8℃,反应时间60.10 min。在此条件下,对大肠杆菌的抑制率为66.05±0.22%(n=4),与预测值67.88%无显著差异(p>0.05)。对最优条件下所得多肽的抗菌活性进行了研究,结果表明,油茶粕多肽对所测试的细菌、酵母和霉菌均有一定的抑制效果,但差异明显,对细菌的抑菌作用较强,而对酵母菌和霉菌的抑制效果相对较弱。
     为了探明油茶粕多肽(Alcalase水解)的食用安全性,通过急性毒性试验、遗传试验和亚慢性毒性试验,对其进行了安全性评价。采用一次最大限量法(摄入量为20.00 g/kg·bw)进行急性毒性试验,无小鼠死亡;在遗传试验中,Ames试验、骨髓细胞微核试验和小鼠精子畸形试验结果均为阴性,表明油茶粕多肽对哺乳类动物体细胞染色体及生殖细胞均无损伤作用;在亚慢性毒性试验中,油茶粕多肽对大鼠体重、摄食量、血液学指标、血液生化指标和脏器系数均无明显影响。通过试验结果可以初步判定油茶粕多肽为无毒物质。
Camellia oleifera Abel is one of the main oil plants in China. Approximately 100 million tones of oil-tea seed and 68 million tones of oil-tea seed meal (OTSM), a by-product of the production of tea-seed oil, are produced annually in China. At present, however, most of the OTSM is utilized as organic fertilizer. Thus the valuable resources was not under effective utilization. Even though it is the only oil-tea seed residue, OTSM contains about 10%-20% protein (dry basis) which is a potential resource of plant protein. To our knowledge, no data are currently available concerning bioactive peptides derived from OTSM protein. In this paper, the extraction of OTSM protein and the preparation of bioactive peptide derived from the former through proteolytic digestion was studied, and bioactive OTSM peptides (OTSMP) were obtained successfully. The OTSMP obtained through different methods showed good bioactivities, such as antioxidation, antihypertension, immuno-regulation, antihyperlipemia, and antibacterium. These researches can broad the application area for OTSM, and can provide theoretical foundation and experimental basis for the industral production of OTSMP.
     After determination the composition and isoelectric point value (pI=4.6) of the OTSM protein, using the methods of dissolving protein under alkaline condition and then settling protein under acidic condition, the extracting technology for protein was studied with the main aspect focused on the optimization of extraction through alkaline solution using response surface methodology (RSM). The optimal conditions of alkaline extracting for protein were as followings:the ratio of material to liquid 1:25, the pH value of extracting solution 10.4, extracting time 2.42 h, extracting temperature 49.2℃. Under these optimum conditions, the extracting rate of protein was 65.83±2.45%(n=4), without significant difference with the predicted value 64.97%(P>0.05).
     The antioxidant activities of OTSM protein hydrolysates in vitro are highly related to the protease and the degree of hydrolysis (DH). Among all tested samples, alcalase peptides, produced with the E/S ratio and hydrolysis time kept at 1.50% and 6.00 h respectively, possessed the strongest activity (P<0.05) concerning scavenging activities against superoxide anion (59.93%), reducing capacity (0.621) and inhibitory effect on linoleic acid peroxidation (46.89%), while the papain peptides, produced with E/S ratio and hydrolysis time kept at 1.50 % and 9.00 h respectively, had the strongest (P<0.05) scavenging activity against DPPH·(53.19%). Taking rats intoxicated with carbon tetrachloride (CT) as experimental animals, the antioxidative activities of OTSMP (MW<3 kDa) in vivo were studied using three kinds of dose i.e.250,500 and 1000 mg/kg·bw. Results showed that medium and high dose of OTSMP could significantly increase the activities of SOD & GSH-Px and significantly reduce the contents of MDA in liver(P<0.05). These results suggested that OTSMP could obviously enhance the antioxidatve ability of the assayed mices and reduce reactive oxygen species (ROS) damage.
     The best protease and its enzymatic hydrolysis conditions in the production of angiotensin I-converting enzyme (ACE) inhibitory peptides derived from OTSM was screened and optimized, respectively. The ACE inhibitory activities and hypotensive effects of these peptides in spontaneously hypertensive rats (SHRs) were assayed. In the screening experiment of protease, the peptides obtained by alcalase showed the lowest IC50(0.96±0.11mg/mL). With the aid of response surface methodology (RSM), the optimum hydrolysis conditions(the pH value 8.1, E/S ratio 1.57%, hydrolysis temperature 50.5℃, and hydrolysis time 6.66 h) and a statistical model for experimental validation were determined. A significant decrease (P<0.05)in systolic blood pressure (SBP) was observed in SHRs following one-shot and long-term oral administration of these peptides at a dose of 100 and 500 mg/kg-bw, respectively. A significantly inhibitory effects(P<0.05) on ACE activity in aorta of SHRs after long-term administration of this hydrolysates were also observed. According to the data showed in this work, it could be concluded that the alcalase peptides derived from OTSM did possess high ACE inhibitory activity and hypotensive effect in SHRs.
     Taking model of hyperlipidemia SD rats as experimental animals, lipidemia-lowering effects of OTSMP (digested by alcalase) were studied by means of three kinds of dose, i.e. 250,500 and 1000 mg/kg·bw. Results showed that low, medium and high dose of OTSMP could effectively reducethe levels of TC & TG(P<0.05), also significantly lessen the value of AI(P<0.05). All of three doses of OTSMP could obviously increase the level of HDL-C in the serum of model rats(P<0.05). These results suggested that OTSMP had highly lipidemia-lowering effects and could effectively decrease the risk of atherosclerosis.
     With spleen lymphocytes proliferation function, index of immune organ, calculation of 50 % hemolysin value (HC50), phagocytic index and phagocytic rate of macrophage as evaluated indices, the immunomodulatory effects of OTSMP (digested by alcalase) on mice were studied with high, medium and low dose (i.e.250,500,1000 mg/kg-bw) of them. Results showed that all of three doses of OTSMP could effectively counteract the immune-lowering-effect of cyclophosphamide on assayed rats (P<0.05). It was suggested that this OTSMP could improve immune function on non-specific and specific immune response of rats with low immune function. Results of delayed type hypersensitivity (DTH) showed that all of three doses of OTSMP could significantly improve immune function on specific immune response of rats with normal immune function (P<0.05).
     Taking E. coli as evaluated microbe, the hydrolysis conditions of OTSM protein for the production of antimicrobial peptides (MW<10 kDa) was optimized using pepsin through RSM. The best hydrolysis conditions were as followings:the enzyme dosage 1.70%, pH value 1.9, reactional temperature 36.8℃, and reactional time 60.10 min. Under these conditions, the inhibitory rate on E. coli was 66.05±0.22%(n=4), without significant difference with the predicted value 67.88%(P>0.05). Then other antibacterial activities of the obtained OTSMP was assayed. Results showed that OTSMP had inhibitory effects on bacteria, yeast and mould to some degree, but significant difference (P<0.05) was observed. The antibacterial activities of OTSMP was stronger, the inhibitory activities on yeast and fungus were lower.
     In order to check the edible safty of OTSMP, tests concerning the acute toxicity, genetic toxicity, and subchronic toxicity were undertaken according to specified procedures. Using a maximum limit method (intaking dosage of 20.00 g/kg·bw), no death of rat was observed during the period of acute toxicity tests. In genetic toxicity tests, all results of Ames, micronucleus, and sperm aberrations assay were negative. It was suggested that OTSMP (digested by alcalase) exhibited no damage effects on chromosome of body and reproductive cells of mammals. In subchronic toxicity trials, OTSMP showed no significant influence on body weight, fooder-taking amount, hematologic indices, blood biochemical indices, and viscera indices. Results obtained in this study indicated that the obtained OTSMP was nontoxic substances.
引文
[1]刘世鹏.油茶籽的开发利用[J].中国油脂,1996,21(4):39-42.
    [2]李玉善.油茶的栽培和利用[M].西安:陕西科学技术出版社,1996.
    [3]国家林业局编.全国油茶产业发展规划(2009-2020年)[M].2009.
    [4]彭邵锋,陈永忠,张日清,等.油茶果形果色分类及经济性状[J].中南林业科技大学学报,2007,27(5):33-39.
    [5]毕先江.浅谈油茶籽的加工[J].中国油脂,2003,28(9):59-60.
    [6]郭华,周建平,廖晓燕.油茶籽的细胞形态和成分及水酶法提取工艺[J].湖南农业大学学报,2007,33(1):83-86.
    [7]黎先胜.我国油茶资源的开发利用研究[J].湖南科技学院学报,2005,26(11):127-129.
    [8]余才鼎.油茶生产的经济效益和生态效益初探[J].科协论坛,2007(7):90-91.
    [9]钟旭美,张百刚,朱杰.我国油茶籽的综合利用[J].粮油食品科技,2007,15(2):34-36.
    [10]岳峰.油茶果的综合利用[J].中国农业信息,2004(2):28-33.
    [11]田洪舟.茶籽多糖提取工艺的研究[J].中国油脂,2004,29(6):27-44.
    [12]王元凤,俞兰,魏新林.从油茶饼粕中提取油茶籽多糖和茶皂素的工艺研究[J].食品工业,2008(6):29-32.
    [13]姜晓光,宋博,迟春萍,等.生物活性肽的生理功能及研究进展[J].微生物学杂志,2006,26(5):82-85.
    [14]庞广吕.生理活性肽-酪蛋白磷酸肽的研究、应用及展望[J].食品科学,1996,6(1):25-29.
    [15]史延平,孙永梅,王万东,等.生物活性肽-一个改变了动物氮代谢观念的新领域[J].丹东纺专学报,2002,9(2):1-3
    [16]蒲首丞,王金水.生物活性肽的制备与应用[J].粮油加工,2005(5):49-51.
    [17]Bamba T, Fus K., Obata H., et al. Efects of small peptides as intraluminal abastrates on transport carriers for amino acids and peptides[J]. J. Cli. Biochem. Nutri.,1999(15): 33-42.
    [18]Chung S. Y, Swaisgood H. E., Catignani G L. Effects of alkili treatment and treatment in the prence of fructose on digestibility of food proteins as determined by and immobilized digestive enzyme assay[J]. J. Agri. Chem,1999(34):579-584.
    [19]Wahb K. E. Glycyl-L-sarcosine absorption across ovine omasal epithelium during coincubation with other peptide substrated and violatile fatty acids[J]. J. Animal Sci., 1999(17):2706-2771.
    [20]陈贵堂.花生蛋白的营养生理功能及其酶解产物抗氧化活性的研究[D].中国农业大学,2006.
    [21]郑建仙.功能性食品(第二卷)[M].北京:中国轻工业出版社,1999.
    [22]Hoelzl C0, Bichler J., Ferk F., et al. Methods for the detection of antioxidants which prevent age related disease:A critical review with with particular emphasis on human intervention studies[J]. J. Physiol.& Pharmacol.,2005,56(2):49-64.
    [23]Finkel T., Holbrook N. J. Oxidants, oxidative stress and the biology of ageing[J]. Nature,2000(408):239-247.
    [24]Harman D. Role of free radicals in aging and disease[J]. Ann. N. Y. Acad. Sci., 1992(673):598-620.
    [25]Dreher D., Junod A. F. Role of oxygen free radicals in cancer development J]. Eur. J. Cancer,1996(32):30-38.
    [26]Martin S., Favot L., Matz R., et al. Delphinidin inhibits endothelial cell proliferation and cell cycle progression through a transient activation of ERK-1/-2[J]. Biochem. Pharmacol.,2003(65):669-675.
    [27]Yokomizo A., Takenaka Y., Takenaka T. Antioxidative activity of peptides prepared from okara protein[J]. Food Sci. Technol. Res.,2002,8 (4),357-359.
    [28]陈美珍,余杰,郭慧敏.大豆分离蛋白酶解物清除羟自由基作用的研究[J].食品科学,2002(23):43-46.
    [29]张名位.黑米抗氧化与降血脂成分及其作用机理[D].华南师范大学,2003.
    [30]薛照辉.菜籽肽的制备及其生物活性的研究[D].华中农业大学,2004.
    [31]李干红,丁晓雯.芝麻蛋白酶解条件及其产物抗氧化研究[J].中国粮油学报,2006,21(1):104-108.
    [32]李红敏,周小理.荞麦多肽的制备及其抗氧化活性的研究[J].食品科学,2006,27(10):302-306.
    [33]邓乾春,陈春艳,潘雪梅,等.白果活性蛋白的酶法水解及抗氧化活性研究[J].农业工程学报,2005,22(11):155-159.
    [34]张强,阚国仕,陈红漫.玉米抗氧化肽的分离制备及其体外抗氧化活性的研究[J].中国粮油学报,2005,20(5):36-39.
    [35]林琳,崔凤杰,闫桂强,等.不同分子量小麦面筋蛋白酶解多肽的分离及其抗氧化活性研究[J].粮食与饲料工业,2010(8):33-35.
    [36]刘秀红,张东杰.响应面分析法优化大豆抗氧化肽水解条件的研究[J].黑龙江八一农垦大学学报,2009,21(5):44-49.
    [37]吴永沛,刘明,倪辉.大豆抗氧化活性肽固态发酵工艺优化[J].中国食品学报,2007,7(6):52-57.
    [38]包怡红,盛和静.山核桃蛋白多肽的制备及对羟自由基的清除作用[J].食品科学,2005,26(9):515-518.
    [39]程云辉,文新华,王璋.麦胚抗氧化肽水解用酶的筛选研究[J].中国粮油学报,2007,22(3):29-33.
    [40]刘宇,刘春泉,庄世文,等.鹰嘴豆肽清除自由基作用的研究[J].食品科技,2008,34(3):173-176.
    [41]张晓峰,赵志军,陈庆森.玉米蛋白粉制备功能性短肽的研究[J].食品研究与开发,2007,28(9):88-90.
    [42]张强.酶解玉米蛋白粉制备抗氧化肽[J].食品工业科技,2005,26(6):109-111.
    [43]Kunio S., Jiun R. Isolation and characterization of peptides with antioxidant activity derived from wheat gluten[J]. Food Sci. Technol. Res.,2002,8(3):227-230.
    [44]Atsushi Y, Yoko T., Tetsuo T. Antioxidative activity of peptides prepared from okara protein[J]. Food Sci. Technol. Res.,2002,8(4):357-359.
    [45]Rao G H., Zhao M. M., Lin W. R., et al. Antioxidative activity of tobacco leaf protein hydrolysates[J]. Food Technol. Biotechnol,2007,45(1):80-84.
    [46]何慧,孙颉,谢笔钧,等.灵芝肽对脂质氧化的抑制作用的研究[J].食品研究与开发,2006,27(1):8-10.
    [47]王树英,吴苏喜.粉末食品系统中酶解花生蛋白的抗氧化活性研究[J].食品与机械,1999(4):18-19.
    [48]薛照辉,吴谋成.菜籽肽清除自由基作用的研究[J].食品工业科技,2005,26(10): 71-75.
    [49]潘超,王鹏,朱斌.酶解动物蛋白制备抗氧化多肽研究进展[J].肉类工业,2010(4):27-29.
    [50]Pena. Ramos E. A., Xiong Y. L., Arteaga G. E. Fractionation and characterisation for antioxidant activity of hydrolysed whey protein[J]. J. Sci. Food Agric.,2004(84): 1908-1918.
    [51]Rival S. G, Boeriu C. G, Wichers H. J. Caseins and casein hydrolysates antioxidative properties and relevance to lipoxygenase inhibition [J]. J. Agric. Food Chem.,2001(49): 295-302.
    [52]胡文琴,王恬,霍永久,等.酪蛋白酶解物体外抗氧化作用的研究[J].食品科学,2004(25):158-162.
    [53]胡文琴,王恬,周岩明,等.酪蛋白酶解物对小鼠抗氧化酶活性的影响[J].营养学报,2005,27(1):54-57.
    [54]Je J. Y., Park P. J., Kim S. K. Antioxidant activity of a peptide isolated from Alaska pollack frame protein hydrolysate[J]. Food Res. Inter.,2005(38):45-50.
    [55]Li L., Wang J. S., Zhao M. M. Artificial neural network for production of antioxidant peptides derived from bighead carp muscles with alcalase[J]. Food Technol. Biotechnol.,2006,44(3):441-448.
    [56]汪秋宽,宋琳琳,徐玲,等.牡蛎抗氧化活性肽的酶解工艺研究[J].大连水产学院学报,2009,24(2):95-99.
    [57]杜云建,赵玉巧,李念念.酶解法制备草鱼鱼鳞多肽及其清除羟自由基的研究[J].食品科学,2010,31(7):168-172.
    [58]罗文锋,吴新良,郭勇.酶解对乌骨鸡多肽抗氧化活性影响的研究[J].食品工业科技,2010(4):180-182.
    [59]任娇艳,赵谋明,崔春,等.草鱼蛋白源抗氧化肽的分离及鉴定[J].食品科学,2009,30(13):13-17
    [60]宋茹,谢超,崔晓旭.酶解法制备鱿鱼蛋白抗氧化肽工艺优化[J].浙江海洋学院学报,2009,28(3):311-314.
    [61]何婷,崔春,龙小涛,等.蓝园鲹制备抗氧化肽酶解工艺的研究[J].食品科技,2008(2):70-74.
    [62]涂宗财,郑明,陈钢,等.酶解鱼鳞蛋白制备抗氧化肽的研究[J].食品工业科技,2009(7):202-206.
    [63]Riichiro O., Tomoaki D., Minekazu K., et al. Antioxidative effect of enzymatic hydrolysate of horn and hoof in rat[J]. Food Sci. Technol, Res.,2003,9(2):152-154.
    [64]Silva S. V., Pihlanto A., Malcata F. X. Bioactive peptides in ovine and caprine cheeselike systems prepared with proteases from cynara cardunculus[J]. J. Dairy Sci., 2006,89(9):3336-3344.
    [65]Guo H., Yoshiaki K., Masami Y. Isolation and properties of antioxidative peptides from water-soluble royal jelly protein hydrolysate[J]. Food Sci. Technol. Res.,2005, 11(2):222-230.
    [66]Kim S. K., Kim Y T., Byun H. G, et al. Purification and characterization of antioxidative peptides from bovine skin[J]. J. Biochem. Molecular Biol.,2001,34 (3): 219-224.
    [67]黎观红.食物蛋白源血管紧张素转化酶抑制肽的研究[D].江南大学,2005.
    [68]Hirose A., Miyashita K. Inhibition effect of proteins and their hydrolysates on the oxidation of triacyglycerols containing docosahexaenoic acids in emulsion[J]. J. Japan Society of Food Sci. Technol.,1999(46):799-805.
    [69]倪莉,陶冠军,戴军,等.血管紧张素转化酶抑制剂-丝索肽的分离、纯化和结构鉴定[J].色谱,2001,19(3):222-225.
    [70]Motohiro M, Masahiko S., Mitsutaka K., et al. Improvement in the intestinal absorption of soy protein by enzymatic digestion to oligopeptide in healthy adult men[J]. Food Sci. Technol. Res.,2007,13(1):45-53.
    [71]Zaelk S., Yu R., Park S., et al. His-His-Leu, an angiotensin I-converting enzyme inhibitory peptide derived from Korean soybean paste, exerts antihypertensive activity in vivo[J]. Agric. Food Chem.,2001,49(6):3004-3009.
    [72]李志忠.大豆多肽的功能与开发研究[J].甘肃科技,2006,22(4):179-181.
    [73]David C. The angiotension converting enzyme (ACE)[J]. The Inter. J. Biochem.& Cell Biol.,2003,35(1):769-773.
    [74]包媛嫒.大豆多肽的生理功能及在食品工业中应用前景探讨[J].食品研究与开发,2006,27(2):141-144.
    [75]史云丽,刘芳,潘曼,等.大米生物活性肽研究进展[J].食品与机械,2009,25(2):167-171.
    [76]何慧,郭会侠,孔林,等.用玉米大豆复配蛋白制备降血压肽水解酶筛选研究[J].中国粮油学报,2005,20(6):25-29.
    [77]李世敏.玉米降血压肽的分离纯化研究[J].食品科学,2006,27(7):69-71.
    [78]Vermeirssen J., Van Camp K., Decroos, et al. The impact of fermentation and in vitro digestion on the formation of angiotensin-Ⅰ-converting enzyme inhibitory activity from pea and whey protein[J]. Am. Dairy Sci. Association,2003(86):429-438.
    [79]Murakami M., Tonouchi H., Takahashi R, et al. Structural analysis of a new anti-hypertensive peptide (P-Lactosin B) isolated from a commercial whey product[J]. Am. Dairy Sci. Association,2004(87):1967-1974.
    [80]徐怀德,王莉,王兴.酶解魔芋飞粉蛋白制备ACE抑制肽[J].食品科学,2010,31(1):157-160.
    [81]Hayes M., Stanton C., Slattery H., et al. Casein fermentate of Lactobacillus Animalis DPC6134 contains a range of novel propeptide angiotensin-converting enzyme inhibitors[J]. Appl. Environ. Microbiol.,2007,73(14):4658-4667.
    [82]Miguel M., Recio I., Ramos M., et al. Antihypertensive effect of peptides obtained from enterococcusfaecalis-fermented milk in rats[J]. Am. Dairy Sci. Association, 2006(89):3352-3359.
    [83]李朝慧,罗永康,王全宇,等.乳清蛋白酶解制备ACE抑制肽的研究[J].中国乳制品工业,2005,33(2):8-11.
    [84]Lee S. H., Qian Z. J., Kim S. K., et al. A novel angiotensin-Ⅰ converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats [J]. Food Chem.,2010,118(1):96-113.
    [85]Yoshitaka N., Kazuhiro F., Ryoko Y, et al. Determination of antihypertensive peptides from an izumi shrimp hydrolysate[J]. Biosci. Biotechnol. Biochem.,2008,72(3): 861-864.
    [86]Majumder K., Wu J. P. Angiotensin I-converting enzyme inhibitory peptides from simulated in vitro gastrointestinal digestion of cooked eggs[J]. J. Agric. Food Chem., 2009,57(2):471-477.
    [87]Saiga A., Okumura T., Makihara T., et al. Action mechanism of an angiotensin-I converting enzyme inhibitory peptide derived from chicken breast muscle[J]. J. Agric. Food Chem.,2008,54(3):942-945.
    [88]Nii Y., Fukuta K., Yoshimoto R., et al. Determination of antihypertensive peptides from an izumi shrimp hydrolysate[J]. Biotechnol. Biochem.,2008,72(3):861-864.
    [89]章超桦,曹文红,吉宏武,等.中国毛虾ACE抑制肽的初步研究[J].水产学报,2005,29(1):97-102.
    [90]Nakashima Y. Antihypertention activities of peptides derived from porcine skeletal muscle myosin in spontaneously hypertensive rats[J]. J. Food Sci.,2002,67(1): 434-437.
    [91]Suetsuna K., Chen J. R. Identification of antihypertensive peptides from peptic digest of two microalgae, Chlorella Vulgaris and Spirulina Platensis[J]. Marine Biotechnol.,2001(3):305-309.
    [92]肖红,段玉峰,刘平,等.食品蛋白降血压及其研究进展[J].食品研究与开发,2004,25(5):3-7.
    [93]张佳程,王海燕,褚庆环,等.发酵乳中ACE抑制剂的超滤分离[J].中国乳品工业,2004,32(1):32-34.
    [94]Byun H. G, Kin S. K. Puritication and characterization of angiotension Ⅰ-coverting enzyme inhibitory peptides from alaska pollack (Theragra chalcogramma) skin[J]. Process Biochem.,2001,36(12):1155-1162.
    [95]安桂香,庄桂东,徐振凯,等.食物中血管紧张素转化酶抑制肽的研究进展[J].食品研究与开发,2006,27(6):173-175.
    [96]黄家音,朱禹洁,沈金玉,等.ACE抑制肽的研究进展[J].食品与发酵工业,2006,32(6):81-86.
    [97]贾俊强,马海乐,王振斌,等.ACE抑制肽的构效关系研究[J].中国粮油学报,2009,24(5):110-114.
    [98]Li G H., Le G W., Shi Y. H., et al. Angiotensin Ⅰ-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects[J]. Nutri. Res.,2004,24(7):469-486.
    [99]Marta M., Amaya A. Antihypertensive peptides derived from egg proteins[J]. J Nutri., 2006,136(6):1457-1460.
    [100]Zhao Y. H., Li B. F., Liu Z.Y., et al. Antihypertensive effect and purification of an ACE inhibitory peptide from sea cucumber gelatin hydrolysate[J]. Process Biochem.,2007, 42(12):1586-1591.
    [101]Mizuno S., Nishimura S., Matsuura K., et al. Release of short and proline-rich antihypertensive peptides from casein hydrolysate with an aspergillus oryzae protease[J]. J. Dairy Sci.,2004,87(10):3183-3188.
    [102]吴炜亮,吴国杰,梁道双,等.ACE抑制肽的生理功能和研究进展[J].现代食品科技,2006,22(3):251-254.
    [103]曹文红,章超桦.食品蛋白降血压肽及其酶法制备(二)[J].食品科技,2002(5):11-13.
    [104]何海伦,陈秀兰,孙彩云,等.血管紧张素转化酶抑制肽的研究进展[J].中国生物工程杂志,2004,24(9):7-10.
    [105]赵元晖,李八方,刘艺杰,等.食源性ACE抑制肽体外活性检测方法的改进及应用[J].中国海洋药物杂志,2009,28(4):5-8.
    [106]Vermeirssen V., Van Camp J., Verstraete W., et al. Optimisation and validation of an angiotensin-converting enzyme inhibition assay for the screening of bioactive peptides[J]. J. Biochem. Biophysi. Methods,2002,51(1):75-87.
    [107]金化民,张茨,陈葳,等.酶偶联法测定血清血管紧张素转换酶[J].中国医学检验杂志,1998,21(6):362-365.
    [108]刘景侠,仇宏伟,庄桂东,等.海蜇降压肽制备工艺及体内降压效果的研究[J].食品科学,2009,30(11):227-231.
    [109]Hiroyuki T., Iwao S., Jun K., et al. A buckwheat protein product suppresses gallstone formation and plasma cholesterol more strongly than soy protein isolate in hamsters[J]. Biochem & Molecular Action of Nutrients,2000(130):1670-1674.
    [110]刘健敏,钟芳,麻建国.大豆蛋白酶解产物降胆固醇活性的初步研究[J].河南工业大学学报,2005,26(3):41-44.
    [111]Ryosuke M., Mamoru K., Ayano M., et al. Mechanism for the cholesterol-lowering action of egg white protein in rats[J]. Biosci. Biotechnol. Biochem.,2008,72 (6): 1506-1512.
    [112]朱碧英,毛秀珍.鲢鱼蛋白酶解肽分子组成及其降血脂作用的初步研究[J].营养学报,2005,27(5):422-424.
    [113]Sugano M., Goto S. Cholesterol-lowering activity of various undigested fractions of soybean protein in young rats[J]. J. Am. Nutri.,1990,120(9):977-985.
    [114]Satoshi N., Keiji M., Michiko E., et al. Soy protein peptic hydrolysate with bound phospholipids decreases micellar solubility and cholesterol absorption in rats and caco-2 cells[J]. Am. Society Nutri. Sci.,1999(125):1725-1730.
    [115]刘忆梅,陈朝晖.大豆蛋白肽降血脂功能性的研究[J].大豆通报,2004(3):22.
    [116]Wergedahl H., Liaset B., Gudbrandsen O. A., et al. Fish protein hydrolysate reduces plasma total cholesterol, increases the proportion of HDL cholesterol, and lowers Acyl-CoA:cholesterol acyltransferase activity in liver of Zucker rats[J]. Biochem. and Molecular Actions of Nutrients,2004(134):1320-1327.
    [117]荣建华.大豆多肽及其生物活性的研究[D].华中农业大学,2001.
    [118]华欲飞,国明明,黄文凯,等.酶水解制备具有潜在免调节活性大豆肽的研究[J].中国粮油学报,2006,21(4):55-59.
    [119]王静,郝再彬.大豆肽的特性和功能及研究进展[J].黑龙江农业科学,2004,32(5):32-34.
    [120]Bng T., Patrick H. K., Ngai. The trypsin-inhibitory immunostimulatory and anti-proliferative activities of a napin-like polypeptide from Chinese cabbage seeds[J]. J. Peptide Sci.,2005(10):103-108.
    [121]曾晓波,吴谋成.菜籽肽对小鼠肿瘤生长抑制及免疫功能的影响[J].营养学报,2002,24(4):401-404.
    [122]Gauthier S. F., Boutin Y., Montoni A., et al. Immunomodulating properties of a whey protein isolate, its enzymatic digest and peptide fractions[J]. Intern. Dairy J.,2008(18): 260-270.
    [123]王磊,成雪,毛学英.乳清蛋白及其活性多肽的生物学功能研究进展[J].中国农业科技导报,2010,12(5):30-35.
    [124]焦宇知.酪蛋白磷酸肽新生产工艺及其功能性质研究[D].江南大学,2004.
    [125]张雪梅.大豆蛋白酶解产物中的糖肽及其对小鼠脾细胞增殖效果的研究[D].中国农业大学,2003.
    [126]林兰,刘建文.胸腺肽制剂及临床应用研究现状[J].中国药事,2009,23(7):706-709.
    [127]Boman H. G. Antibactericidal peptides:key components needed in immunity[J]. Cell, 1991(65):205-207.
    [128]Hultmark D. Drosophila immunity:paths and pattems[J]. Curr. Opin. Immunol.,2003, 15(1):12-19.
    [129]Floris R., Redo I., Berkhout B., et al. Antibacterial and antiviral effects of milk proteins and derivatives thereof[J]. Curr. Pharm. Des.,2003(9):1257-1273.
    [130]Epand R. C., Vogel H. J. Diversity of antimicrobial peptides and their mechanisms of action[J]. Biochem. Biophysiol. Acta.,1999,146(2):11-28.
    [131]宋茹,韦荣编,汪东风.食物源蛋白酶解制备抗菌肽研究进展[J].食品科学,2009,30(11):284-288.
    [132]Rizzello C. G., Losito I., Gobbetti M., et al. Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties[J]. J. Dairy Sci.,2005(88): 2348-2360.
    [133]Bechinger B. Structure and functions of channel-forming peptides:Magainins, cecropins, melittin and alamethicin[J]. J. Membr. Biol.,1997(156):197-211.
    [134]Steiner H. D., Hultmark D., Engstro M., et al. Sequence and specificity of two antibacterial proteins involved in insect immunity[J]. Nature,1981(292):246-248.
    [135]Bolscher J. G. M., Vander K. M., Nazmi K.,et al. A one-enzyme strategy to release an antimicrobial peptide from the LF-ampindomain of bovine lactoferrin[J]. Peptides, 2006(27):1-9.
    [136]Malkoski M., Dashper S. G., O'Brien-Simpson N. M., et al. Kappacin, a novel antibacterial peptide from bovine milk[J]. Antimicrobial Agents and Chemotherapy, 2001(45):2309-2315.
    [137]吴琼英,茅妍.乳源抗菌肽的抑菌活性及其影响因素[J].江苏科技大学学报,2010,24(2):184-187.
    [138]赵晓宇,冯兴军,孟利强,等.抗菌肽Lactoferricin B的原核表达及其纯化[J].东北农业大学学报,2010,41(9):67-71.
    [139]Pellegrini A., Hulsmeier A. J., Hunziker P., et al. Proteolytic fragments of ovalbumin display antimicrobial activity[J]. Biochem. Biophysi. Acta.,2004,1672(2):76-85.
    [140]安利国,杨桂文.牙鲆不同组织抗菌肽的提取及部分性质检测[J].水产科学,2007,26(2):87-90.
    [141]Park I. Y., Park C. B., Kim M. S., et al. Parasin-Ⅰ, an antimicrobial peptide derived from histone H2A in the catfish, parasilurus asotus[J]. FEBS Lett.,1998,437(3): 258-262.
    [142]王战勇,李宁,苏婷婷.中国林蛙皮抗菌肽的提取纯化及抑菌活性检测[J].食品科技,2010,31(3):132-135.
    [143]Jose A. L., Calbet, Dave A., et al. Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans[J]. J. Nutri.,2002(132):2174-2182.
    [144]盛清凯.苦瓜多肽-P的分离及其降糖活性[J].食品与生物技术学报,2005,24(1):49-51.
    [145]朱蓓薇.学生专用多肽豆奶的研制[J].饮料工业,2001,4(6):5-8.
    [146]岳丽.大豆多肽酸奶的研制[J].食品与发酵工业,2004(1):23-28.
    [147]龚树立.大豆多肽运动饮料的研制[J].食品与发酵工业,2003(4):41-43.
    [148]陈菽,乐超银,刘海军,等.大豆多肽运动饮料的研制[J].现代食品.2010,26(1):100-101.
    [149]邵伟,唐明,吴炜.大豆多肽咀嚼片的研制[J].中国酿造,2010(6):170-172.
    [150]张琳静,辛岩,赵亚东,等.黑豆多肽制备及其功能乳饮料的研究[J].食品研究与开发,2010,31(11):93-96.
    [151]齐海萍,胡文忠,姜爱丽,等.菠萝乳清多肽饮料的研制[J].食品与发酵工业,2010,36(7):201-204.
    [152]黎先胜.我国油茶资源的开发利用研究[J].湖南科技学院学报,2005,26(11):127-129.
    [153]聂海瑜.油茶籽的综合利用[J].粮油加工与食品机械,2004(6):39-41.
    [154]周素梅,王强.我国茶籽资源的开发利用及前景分析[J].中国食物与营养,2004(3):13-16.
    [155]朱文鑫,相海,刘期成.油茶籽制油及综合利用[J].粮油加工与食品机械,2004(11):42-43.
    [156]钟旭美,张百刚,朱杰.我国油茶籽的综合利用[J].粮油食品科技,2007,15(2):34-36.
    [157]蔡金,蔡妙颜,肖凯军.茶皂素的提取过程中的色素抑制研究[J].现代食品科技,2005,21(2):180-181.
    [158]周金沙,刘红梅.油茶籽的综合利用现状及前景分析[J].农产品加工,2006(7):58-60.
    [159]丁丹华,彭光华,夏辉.油茶籽粕蛋白提取工艺研究[J].食品科学,2010,31(8):102-105.
    [160]龚吉军,李忠海,钟海雁,等.茶籽多肽的制备及抗氧化活性研究[J].食品研究与开发,2007,28(10):59-61.
    [161]龚吉军,李忠海,钟海雁,等.油茶粕蛋白酶解条件的响应曲面法优化研究[J].中国粮油学报,2010,25(7):80-84.
    [162]张水华.食品分析[M].北京:中国轻工业出版社,2007.
    [163]侯如燕,宛晓春,黄继珍.油茶皂甙标准品的制备及定量方法的比较[J].食品与发酵工业,2005,31(31):62-65.
    [164]Cagampang G B. Studies on the extraction and compositions of rice proteins [J]. Cereal Chem.,1966,43(2):145-155.
    [165]邵佩兰,徐明.提取大豆分离蛋白的工艺研究[J].粮油加工与食品机械,2005(9):47-51.
    [166]葛新石,叶宏译.传热和传质基本原理[M].北京:化学工业出版社,2007.
    [167]Beckman K. B., Ames B. N. The free radical theory of aging matures[J]. Physiol. Rev., 1998(78):547-581.
    [168]Oxman T., Shapira M., Diver A., et al. A new method of long-term preventive cardioprotection using Lactobacillus[J]. Am. J. Physiol. Heart Circ. Physiol.,2000 (278):1717-1724.
    [169]Terahara M, Kurama S., Takemoto N. Prevention by lactic acid bacteria of the oxidation of human LDL[J]. Biosci. Biotechnol. Biochem.,2001(65):1864-1868.
    [170]Kullisaar T., Songisepp E., Mikelsaar M., et al. Antioxidative probiotic fermented goats'milk decreases oxidative stress-mediated atherogenity in human subjects[J]. Br. J. Nutri.,2003(90):449-456.
    [171]Asako T., Hideyuki A., Yuki K. Reduction of paraquat-induced oxidative stress in rats by dietary soy peptide[J]. Biosci. Biotech. Biochem.,2003,67(2):278-283.
    [172]Pena-Ramos E. A., Xiong Y. L. Antioxidative activity of whey protein hydrolysate in a liposomal system[J]. J. Dairy Sci.,2001(84):2577-2583.
    [173]Virtanen T., Pihlanto A., Akkanen S. Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria[J]. J. Appl. Microbiol.,2007(102): 106-115.
    [174]Penga X. Y, L.Xiong Y L., Kong B. H. Antioxidant activity of peptide fractions from whey protein hydrolysate as measured by electron spin resonance[J]. Food Chem., 2009,113(1):196-201.
    [175]Wei J. T., Chiang B. H. Bioactive peptide production by hydrolysis of porcine blood proteins in a continuous enzymatic membrane reactor[J]. J. Sci. Food and Agri.,2009, 89(3):372-378.
    [176]Pedroche J., Yust M. M., Lqari H., et al. Obtaining of Brassica Carinata protein hydrolysate enriched in bioactive peptides using immobilized digestive proteases[J]. Food Res. Inter.,2007(40):931-938.
    [177]Nielsen P. M., Petersen D., Dambmann C. Improved method for determining food protein degree of hydrolysis[J]. J. Food Sci.,2001(66):642-646.
    [178]Adler-Nissen J. Enzymatic hydrolysis of food proteins[M]. New York (USA):Elsevier Applied Science Publishers,1986.
    [179]Robak J., Gryglewski I. R. Flavonoids are scavengers of superoxide anions[J]. Biochem. Pharmacol.,1988(37):837-841.
    [180]Nagai T., Suzuki N., Nagashima T. Autolysate and enzymatic hydrolysate from yam (Dioscorea opposita Thunb.) tuber mucilage tororo have antioxidant and angiotensin Ⅰ-converting enzyme inhibitory activities[J]. J. Food Agric. Environment,2007,5(1): 39-43.
    [181]Cheng F. Y, Wan T. C., Huang C. W, et al. The effects of chicken leg bone extract on antioxidative properties under different heating Condition[J]. Asian-Aust. J. Anim. Sci., 2008,21(12):1815-1820.
    [182]方俊.猪血多肽的制备及其生物活性研究[D].湖南农业大学,2006.
    [183]Chen Y. C., Chang H. S., Wang C. T., et al. Antioxidative activities of hydrolysate from duck egg white using enzymatic hydrolysis[J]. Asian-Aust. J. Anim. Sci.,2009, 22(11):1587-1593.
    [184]Liu J. R., Lin Y. Y, Chen M. J., et al. Antioxidative activities of kefir[J]. Asian-Aust. J. Anim. Sci.,2005(18):567-573.
    [185]Adebiyi A. P., Adebiyi A.O., Ogawa T., et al. Purification and characterisation of antioxidative peptides from unfractionated rice bran protein hydrolysate[J]. Intern. J. Food Sci. Technol.,2008(43):35-43.
    [186]Yu L., Haley S., Perret J., et al. Antioxidant properties of hard winter wheat extracts[J]. Food Chem.,2002(78):457-463.
    [187]Ren J. Y, Zhao M. M., Shi J., et al. Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry[J]. Food Chem.,2008(108):727-736.
    [188]游丽君.泥鳅蛋白抗氧化肽的分离纯化及抗疲劳、抗癌功效研究[D].华南理工大学,2010.
    [189]Qian Z. J., Jung W. K., Byun H. G., et al. Protective effect of an antioxidative peptide purified from gastrointestinal digests of oyster, crassostrea gigas against free radical induced DNA damage[J]. Bioresource Technol.,2008,99(9):3365-3371.
    [190]Guo H., Yoshiaki K., Masami Y. Structures and properties of antioxidative peptides derived from royal jelly protein[J]. Food Chem.,2009,113(1):238-245.
    [191]Yokomizo A., Takenaka Y., Takenaka T. Antioxidative activity of peptides prepared from okara protein[J]. Food Sci. Technol. Res.,2002,8(4):357-359.
    [192]Kudo K., Onodera S., Takeda Y., et al. Antioxidative activities of some peptides isolated from hydrolyzed potato protein extract[J]. J. Functional Foods,2009,1(2): 170-176.
    [193]Kheradmand A., Alirezaei M., Asadian P. Antioxidant enzyme activity and MDA level in the rat test following chronic administration of ghrelin[J]. Andrologia,2009, (41)6:335-340.
    [194]张红梅,李红卫,田俊学.高原圣果牌清妍胶囊抗氧化作用的动物实验研究[J].国际沙棘研究与开发,2005,3(1):5-7.
    [195]刘安军,王维君,曹东旭,等.胶原蛋白多肽-铬(Ⅲ)螯合物对小鼠肝脏SOD表达的影响[J].食品研究与开发,2007,28(12):22-25.
    [196]Xue Z. H., Yu W. C., Wu M. C., et al. In vivo antitumor and antioxidative effects of a rapeseed meal protein hydrolysate on an S180 tumor-bearing murine model[J]. Biosci. Biotechnol. Biochem,2009,73(11):2412-241.
    [197]Hang G, Ekusa A., Iwai K., et al. Royal jelly peptide inhibit lipid peroxidation in vitro and in vivo[S]. J. Nutri. Sci.& Vitaminol.,2008(54):191-195.
    [198]Javid B., Macary P.A., Oehlmann W., et al. Peptides complexed with the protein HSP70 generate efficient human cytolytic T-lymphocyte responses[J]. Biochem. Society Trans.,2004,32 (4):622-625.
    [199]Ichimura T., Yamanaka A., Otsuka T., et al. Antihypertensive effect of enzymatic hydrolysate of collagen and Gly-Pro in spontaneously hypertensive rats[J]. Biosci. Biotechnol. Biochem.,2009,73(10):2317-2319.
    [200]Antonio J. E., Manuel A., Javier V., et al. Health-promoting activities of ultrafiltered okara protein hydrolysates released by in vitro gastrointestinal digestion:identification of active peptide from soybean lipoxygenase[J]. Eur. Food Res. Technol.,2010(230): 655-663.
    [201]Henriksen E. J., Jacob S. Modulation of metabolic control by angiotensin converting enzyme (ACE) inhibition[J]. J. Cell Physiol.,2003(196):171-179.
    [202]Andereia F., Ricardo S., Genia P. B., et al. Stunting growth:association of the blood pressure levels and ACE activity in early childhood[J]. Pediatric Nephrol.,2009(24): 379-386.
    [203]Kim J. E., Hwang K., Lee S. P. ACE inhibitory and hydrolytic enzyme activities in textured vegetable protein in relation to the solid state fermentation period using bacillus subtilis HA[J]. Food Sci. Biotechnol.,2010,19 (2):487-495.
    [204]Yoo E. J., Choi M. R., Lim H. S. The relationship between ACE inhibitory activity and degradation of sulfur containing materials in dolsan leaf mustard juice[J]. Biotechnol. Bioprocess Engineering,2004(9):400-404.
    [205]Nagai T., Suzuki N., Tanue Y., et al. Angiotensin Ⅰ-converting enzyme inhibitory activities of enzymatic hydrolysates from lees as by-product produced during sake making using fugu muscle and fin[J]. J. Food Agric.& Environment, 2008,6 (3&4): 19-22.
    [206]Zhu Z. B., Qiu N. X., Yi J. H. Production and characterization of angiotensin converting enzyme (ACE) inhibitory peptides from apricot (Prunus armeniaca L.) kernel protein hydrolysate[J]. Eur. Food Res. Technol.,2010(231):13-19.
    [207]Ferreira S. H., Bartelt D. C., Greene L. J. Isolation of bradykinin-potentiating peptides from Bothrops jararaca venom[J]. Biochem.,1970(9):2583-2593.
    [208]Wu J. P., Ding X. L. Characterization of inhibition and stability of soy-protein-derived angiotensin I-converting enzyme inhibitory peptides[J]. Food Res. Inter.,2002(35): 367-375.
    [209]Je J. Y., Park P. J., Kwon J. Y., et al. A novel angiotensin I-converting enzyme inhibitory peptide from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate[J]. J. Agric. Food Chem.,2004(52):7842-7845.
    [210]Li G.H., Shi Y.H., Liu H. Antihypertensive effect of alcalase generated mung bean protein hydrolysates in spontaneously hypertensive rats[J]. Eur. Food Res. Technol., 2006(222):733-736.
    [211]Li Y. Y., Li T. J., Zhao X. H., Preparation of alcalase-catalyzed casein plasteins in the presence of proline addition and the ACE-inhibitory activity of the plasteins in vitro[J]. Eur. Food Res. Technol.,2010(231):197-207.
    [212]Miguel M., Recio I., Ramos M., et al. Antihypertensive effect of peptides obtained from Enterococcus faecalis-fermented milk in rats[J]. J. Dairy Sci.,2006(89): 3352-3359.
    [213]Cushman D. W., Cheung H. S. Spectrophotometric assay and properties of the angiotensin Ⅰ-converting enzyme of rabbit lung[J]. Biochem. Pharmacol.,1971(20): 1637-1648.
    [214]Masuda O., Nakamura Y., Takano T. Antihypertensive peptides are present in aorta after oral administration of sour milk containing these peptides to spontaneously hypertensive rats[J]. J. Nutri.,1996(126):3063-3068.
    [215]Guo S. G., Zhao M. M., Cui C., et al. Optimized nitrogen recovery and non-bitter hydrolysates from porcine hemoglobin[J]. Food Sci. Technol. Res.,2008(14):39-48.
    [216]Lu X. X., Xie C. Y., Gu Z. X. Optimisation of fermentative parameters for GABA enrichment by Lactococcus lactis[J]. Czech J. Food Sci.,2009,27(6):433-442.
    [217]Zhang B., Chen Y. Z., Wei X. F, et al. Optimization of conditions for collagen extraction from the swim bladders of grass carp (Ctenopharyngodon idella) by response surface methodology [J]. Inter. J. Food Engineering,2010,5(3):1-18.
    [218]Tang D. S., Tian Y. J., He Y. Z., et al. Optimisation of ultrasonic-assisted protein extraction from brewer's spent grain[J]. Czech J. Food Sci.,2010,28 (1):9-17.
    [219]Mizuno S., Nishimura S., Matsura K., et al. Release of short and proline-rich antihypertensive peptides from casein hydrolysate with an Aspergillus oryzae protease[J]. J. Dairy Sci.,2004(87):3183-3188.
    [220]Lee N. Y., Chemg J. T., Enomoto T., et al. Antihyper-tensive effect of angiotensin-converting enzyme inhibitory peptide obtained from hen ovotransferrin[J]. J. Chinese Chemical Society,2006(53):495-501.
    [221]Itou K., Nagahashi R., Saitou M., et al. Antihypertensive effect of narezushi, a fermented mackerel product, on spontaneously hypertensive rats[J]. Fisheries Sci., 2007(73):1344-1352.
    [222]Murakami M., Tonouchi H., Takahashi R., et al. Structural analysis of a new anti-hypertensive peptide (β-Lactosin B) isolated from a commercial whey product[J]. J. Dairy Sci.,2004(87):1967-1974.
    [223]Maeno M., Yamamoto N., Takano T., Identifiication of an antihypertensive peptide from casein hydrolysate produced by a proteinase from lactobacillus helveticus CP790[J]. J. Dairy Sci.,1996(79):1316-1321.
    [224]Geerlings A., Villar I. C., Hidalgo Zarco F., et al. Identification and characterization of novel angiotensin-converting enzyme inhibitors obtained from goat milk[J]. J. Dairy Sci.,2006(89):3326-3335.
    [225]Enari H., Takahashi Y., Kawarasaki M., et al. Identification of angiotensin I-converting enzyme inhibitory peptides derived from salmon muscle and their antihypertensive effect[J]. Fisheries Sci,2008(74):911-920.
    [226]Daisuke N., Kyoichi O., Masazumi M., et al. Antihy-pertensive effect of angiotensin Ⅰ-converting enzyme inhibitory peptides from a sesame protein hydrolysate in spontaneously hypertensive rats[J]. Biosci. Biotechnol. Biochem.,2006,70 (5): 1118-1126.
    [227]Nakamura Y, Masuda O., Takano T. Decrease of tissue angiotensin Ⅰ-converting enzyme activity upon feeding sour milk in spontaneously hypertensive rats[J]. Biosci. Biotechnol. Biochem.,1996(60),488-489.
    [228]Chen Y. H., Liu Y. H., Yang Y. H., et al. Antihypertensive effect of an enzymatic hydrolysate of chicken essence residues[J]. Food Sci. Technol. Res.,2002,8 (2): 144-147.
    [229]Unger T., Ganten D., Lang R. E., et al. Persistent tissue converting enzyme inhibition following chronic treatment with Hoe498 and MK421 in spontaneously hypertensive rats[J]. J. Cardiova. Pharmacol.,1985(7):36-41.
    [230]Sanchez Muniz F. J., Bastida S., Viejo J. M., et al. Small supplements of N-3 fatty acids change serum low density lipoprotein composition by decreasing phospholipid and apolipoprotein B concentrations in young adult women[J]. Eur. J. Nutri.,1999(38): 20-27.
    [231]董玉枝,王素敏,王微,等.大豆低聚糖对高脂大鼠脂质过氧化的影响[J].中国老年杂志,1996,16(8):242.
    [232]王云来,樊守艳,韩进.山楂丹参合用调节血脂作用的实验研究[J].浙江中医药大学学报,2006,30(5):467-468.
    [233]Depres J. P., Moorjani S., Lupien P. J., et al. Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease[J]. Arteriosclerosis,1990(10):497-511.
    [234]阿依古丽·艾合买提,王颖,韩海霞.野山杏降血脂作用的研究[J].新疆农业科学,2006,43(3):248-251.
    [235]蔡秀成,王力光,刑立新,等.松籽油对大鼠血脂及脂质过氧化的影响[J].食品科学,1999,20(6):54-57.
    [236]秦璃.花葱水煎液对试验性高脂血症动物作用的研究[J].吉林农业大学学报,2005,27(3):296-298.
    [237]程霜,郭长江,杨继军,等.石榴皮多酚提取物降血脂效果的试验研究[J].解放军预防医学杂志,2005,23(3):160-163.
    [238]Bremond J., Bonte D., Orosco M., et al. Variations of plasma lipid fractions in relation to age in two models of obesity [J]. Inter. J. Obes.1983(7):467-475.
    [239]Krief S., Bazin R. Genetic obesity:is the defect in thesympathetic nervous system? A review through developmental studies in thepreobese Zucker rat[J]. Proc. Soc. Exp. Biol. Med.,1991(198):528-538.
    [240]Wergedahl H., Liaset B., Gudbrandsen 0. A., et al. Fish protein hydrolysate reduces plasma total cholesterol, increases the proportion of HDL cholesterol, and lowers Acyl-CoA:cholesterol acyltransferase activity in liver of Zucker rats[J]. J. Nutri., 2004(134):1320-1327.
    [241]吴谋成.功能食品研究与应用[M].北京:化学工业出版社,2004.
    [242]Sugano, M., Yamada, Y., Yoshida, K., et al. The hypocholesterolemic action of undigested fraction of soybean protein in rats[J]. Atherosclerosis,1988(72):115-122.
    [243]Sugano M., Goto S. Y, Yoshida, et al. Cholesterol-lowering activity of various undigested fractions of soybean protein in rats [J]. J. Nutri.,1990,120(9):977-985.
    [244]Choi Y. S., Goto S., Ikeda I., et al. Interaction of dietary cholesterol and age on lipid metabolism in rat[J]. Br. J. Nutri.,1989(61):531-543.
    [245]Van Raaij J. M., Katan M. B., West C. E., et al. Influence of diets containing casein, soy isolate, and soy concentrate on serum cholesterol and lipoprotein in middle-aged volunteers[J]. Am. J. Clin. Nutri.,1982(35):925-934.
    [246]Nagaoka S., Awano R., Nagata N., et al. Serum cholesterol reduction and cholesterol absorption inhibition in Caco-2 cells by a soyprotein peptic hdrolyzate[J]. Biosci. Biotechnol. Biochem.,1997(61):354-356.
    [247]Sugano M., Koba K. Dietary protein and lipid metabolism:a multifunctional effect[J]. Ann. N.Y. Acad. Sci.,1993(676):215-222.
    [248]马俪珍,甄润英,张建荣,等.具免疫活性的鲶鱼胶原多肽酶解工艺研究[J].食品工业科技,2008,29(4):152-155.
    [249]周国华.牛和羊胎盘肽的制备及其生物活性的研究[J].中国生化药物杂志,2006,27(3):172-175.
    [250]刘士山,张子周,朱和平,等.羊胚胎盘功能测试[J].中国生化药物杂志,2002,23(5):236-238.
    [251]吴开平.羊胎盘提取液及其组分(SPIF-1)的免疫活性研究[J].氨基酸和生物资源, 2006,28(3):62-64.
    [252]Hajime O., Kouichi N., Takeshi K. Stimulatory effect of a dietary casein phosphopeptide preparation on the mucosal IgA response of mice to orally ingested lipopolysaccharide from Salmonella typhmurium[J]. Biosci. Biotechnol. Biochem., 2003,67(4):729-735.
    [253]Barbara W., Lucjan J., Gyongyi H., et al. Influence of alcalase and transglutaminase on immunoreactivity of cow milk whey proteins[J]. Czech J. Food Sci.,2008,26(1): 15-23.
    [254]Leblanc J. G., Matar C., Valdez J. C., Immunomodulating effects of peptidic fractions issued from milk fermented with Lactobacillus helveticus[J]. J. Dairy Sci.,2002(85): 2733-2742.
    [255]代卉,乐国伟,孙进,等.小麦肽对受环磷酰胺免疫抑制小鼠的免疫调节及抗氧化功能[J].生物工程学报,2009,25(4):549-553.
    [256]张丽萍,卞春,马中苏.水解处理后的牛乳对小鼠的非特异性免疫功能和生长的影响[J].食品科学,2006,27(12):754-756.
    [257]孙秀娥,昌友权,吴润娇,等.多年生藤本豆多糖对小鼠免疫功能的影响[J].食品科学,2006,27(12):739-741.
    [258]杨萍,蔡本利,洪鹏志,等.黄鳍金枪鱼头蛋白酶解液及其分级组分对小鼠免疫功能的影响[J].食品与生物技术学报,2009,28(1):131-135.
    [259]李荣,李文平.蚯蚓肽对小鼠非特异性免疫功能的影响[J].经济动物学报,2008,12(2): 83-86.
    [260]徐大伦,黄晓春,杨文鸽.浒苔多糖的分离纯化及其对非特异性免疫功能的体外实验研究[J].中国食品学报,2006,6(5):17-21.
    [261]邹德庆,郑淑湘,李全宏,等.柞蚕雄蛾浓缩液成分及免疫调节功能的研究[J].食品科学,2006,27(5):231-234.
    [262]张卉,杨占森,雷晓燕,等.姬松茸保健饮液的研制及其免疫调节功能评价[J].食品科学,2008,29(7):405-407.
    [263]魏涛,唐粉芳,王卫平,等.金属硫蛋白抗氧化及增强免疫作用的研究[J].中国食品添加剂,2000(2):74-77.
    [264]张海晖,段玉清,邓乾春,等.莲房原花青素对小鼠S180肉瘤及其免疫功能影响 的研究[J].食品科学,2005,26(11):220-223.
    [265]肖红波.儿茶素微胶囊的毒理学、药物动力学及其对动物免疫功能的调节作用的研究[D].湖南农业大学,2004.
    [266]戴汉慧,田庆伟,王永明,等.大豆异黄酮对衰老模型小鼠免疫功能的影响[J].中国食品添加剂,2003(5):50-53.
    [267]李春美,谢笔钧.儿茶素氧化聚合物体内外抗肿瘤作用及对正常小鼠免疫功能的影响[J].食品科学,2001,22(11):23-27.
    [268]陈昌福,陈查,陈超然,等.β-葡聚糖的特性及其对动物免疫功能的调节[J].华中农业大学学报,2003,22(1):95-100.
    [269]Yang R. Y, Zhang Z. F., Pei X. R., et al. Immunomodulatory effects of marine oligopeptide preparation from chum salmon (Oncorhynchus Keta) in mice[J]. Food Chem.,2009,113(2):464-470.
    [270]曹向宇.麦麸多肽的制备及生物活性的研究[D].沈阳农业大学,2009.
    [271]荣建华.大豆多肽及其生物活性的研究[D].华中农业大学,2001.
    [272]张鸣镝,管晓,姚惠源.玉米胚芽蛋自酶解物对小鼠免疫功能的影响[J].食品科学,2007,28(2):302-305.
    [273]王一飞,江金花,王庆端,等.冬凌草多糖的抗肿瘤及其免疫增强作用[J].中国病理生理杂志,2002,18(11):1341-1343.
    [274]陈洪亮,李伯涛,张家样,等.免疫活性多糖的免疫调节作用及机制研究进展[J].中国药理学通报,2002,18(1):249-252.
    [275]Haruki K., Kumiko Y., Masanori T., et al. Enzymatic digestion of the milk protein β-casein releases potent chemotactic peptide(s) for monocytes and macrophages[J]. Inter. Immunopharmacol.,2007,7(9):1150-1159.
    [276]张丽丽,张竞遗,聂宏刚,等.不同浓度细辛提取物体外免疫抑制作用的实验研究[J].中华中西医杂志,2003,4(4):481-482.
    [277]唐小云,梁存赋,扬丽群,等.地龙肽对小鼠免疫功能的影响[J].中国医科大学学报,2003,32(1):21-23.
    [278]林慧彬,林建强,杨建群,等.山东产四种冤丝子免疫增强作用的比较研究[J].中西医结合学报,2003,1(1):51-53.
    [279]张晓峰.玉米蛋白酶解产物的分离及功能特性的研究[D].天津商学院,2006.
    [280]祝骥,高飞,易喻,等.抗菌肽的研究进展[J].生命科学,2008,20(4):605-610.
    [281]Michael Z. Antimicrobial peptides of multicellular organisms[J]. Nature,2002 (415): 389-395.
    [282]Simmaco M., Mignogna G., Barra D. Antimicrobial peptides from amphibian skin: what do they tell us[J]? Biopolymers,1998,47(6):435-450.
    [283]Floris R., Recio I., Berkhout B., et al. Antibacterial and antiviral effects of milk proteins and derivatives thereof[J]. Curr. Pharm. Des.,2003(9):1257-1273.
    [284]Song N., Zhang J. Y., Li C. L., et al. Bacteriostatic action and immunoregulation of antibacterial peptides[J]. Ani. Husbandry and Feed Sci.,2010,31(8):106-108.
    [285]高莹,张坤生,任云霞.甘薯叶提取物提取工艺及其抑菌作用的研究[J].食品研究与开发,2007,28(1):74-78.
    [286]李珂,杨秀华,扈麟.响应曲面法骨胶原蛋白酶解条件的优化[J].食品科学,2009,30(7):135-140.
    [287]喻峰,熊华,吕培蕾,等.核桃粕酶解工艺研究[J].食品与发酵工业,2006,32(5):89-91.
    [288]张宇昊,王强Alcalase酶水解花生蛋白制备花生短肽的研究[J].农业工程学报,2007,23(4):258-263.
    [289]姚朔影,李超能,谢浩良.抗菌肽杀菌机理与杀菌特性研究[J].中国食品添加剂,2003(4):36-37.
    [290]Jaynes J. M., Burton C. A., Barr S. B., et al. In vitro cytocidal effect of novel lytic peptides on plasmodium falciparum and trypanosom a cruzfi[J]. The FASEB J.,1989, 12(2):2878-2883.
    [291]Pellegrini A., Dettling C., Thomas U., et al. Isolation and characterization of four bactericidal domains in the bovine β-lactoglobulin[J]. Biochem. Biophysi. Acta.,2001, 152(62):131-140.
    [292]石彦国,林宇红.外啡肽与大豆肽食品安全[J].食品工业科技,2006,27(1):186-188.
    [293]中华人民共和国卫生部.食品安全性毒理学评价程序[S].GB15193-2003.
    [294]中华人民共和国卫生部.保健食品安全性毒理学评价程序和检验方法规范[M].北京:中国标准出版社,2003.
    [295]张爱军,沈继红.葡萄籽油毒性评价的研究[J].中国食品添加剂,2006(5):86-89.
    [296]罗蒨,葛兴,郑燕英,等.N.P红食用天然色素的主要成分鉴定及毒理学评价[J].北京农学院学报,2007,22(2):51-53.
    [297]周波,王晓红,郭连营.玉米紫色植株色素的食品安全性毒理学评价[J].中国食品学报,2007,7(6):141-143.
    [298]金宗濂.功能食品教程[M].北京:中国轻工业出版社,2005.
    [299]肖文军,许道军,任国谱.高蛋白低聚肽奶粉的毒理学安全性评价[J].中国乳品工业,2009,37(11):4-6.
    [300]马洪波,宋春梅,王长文.克糖养心口服液食品安全性毒理学试验研究[J].吉林医药学院学报,2006,27(1):10-12.
    [301]刘宁,沈明浩.食品毒理学[M].北京:中国轻工业出版社,2007.