长江口滨岸潮滩汞的环境地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口滨岸潮滩是海陆相互作用的重要地带,是全球生产力最高的生态系统之一。进入河口水环境中的Hg,会通过各种迁移转化过程在水体不同介质中重新分配。沉积物是Hg发生累积和富集的主要汇库,累积于沉积物中的Hg会通过甲基化过程生成甲基汞(MeHg),具有一定的生态风险,也可以通过一系列的物理、化学和生物过程释放出来,造成的“二次污染”,对人类健康带来潜在危害。因此,有关河口潮滩中Hg生物地球化学行为的研究一直是环境科学研究的热点问题之一。
     本文在国家自然科学基金“饮用水源地底泥重金属再悬浮释放与水源地水质安全研究”(批准号:40701164),和上海市优秀学科带头人项目“长江口滨岸湿地汞的地球化学循环及其生态危害”(批准号:07XD14010)等项目的支持下,主要选取了长江口滨岸潮滩地区,研究了不同环境介质中Hg的含量水平、时空分布、赋存形态、生物可利用性及其生态风险,探讨了不同盐沼植被芦苇、海三棱藨草和互花米草对沉积物中Hg累积的影响及其机制,分析了短期厌氧条件下沉积物中Hg的动力学过程和机制,揭示了不同环境条件下沉积物中Hg的再悬浮迁移转化过程与机制及其水环境效应。获得的主要研究成果如下:
     (1)长江口近岸水体中溶解态Hg(HgD)的含量在35-421 ng/L之间变化,有53.3%的水样中HgD的含量超过了我国地表水质标准(GB3838-2002)中的Ⅲ类水限值,含量高值主要出现在浒浦-白茆岸段和罗泾-顾路岸段。沉积物中总汞(THg)含量在0.058~0.541μg/g之间变化,位于EC-TEL和EC-PEL之间,对当地水生生物偶尔会有负面效应,含量高值主要出现在浒浦-浏河、罗泾-顾路和芦潮港岸段。柱样沉积物中Hg的含量高值出现在5 cm深度左右,孔隙水中HgD的含量高值出现在表层0.5 cm深度。粘粒和有机质含量是影响沉积物中Hg空间分布的主要因子。沉积物中甲基汞(MeHg)含量在0.05~0.37 ng/g之间变化,在THg中仅占到0.012~0.196%,与THg含量之间不存在相关性,与有机质含量呈正相关(r=0.488),与沉积物平均粒径呈负相关(r=-0.579)。
     (2)元素Hg (Hg-e)和硫化汞(Hg-s)是长江口潮滩沉积物中Hg的主要赋存形态,分别占到THg含量的9.0%-50.3%和37.7%-85.3%。其次是有机螯合态Hg(Hg-o)含量,水溶态(Hg-w) Hg和“人类胃酸”酸溶态(Hg-h) Hg含量最低。用Hg-w、Hg-h和Hg-o三种赋存形态之和表征Hg的生物可利用性,浮桥低潮滩沉积物中Hg的生物可利用性最高,其次是浏河和浦东机场低潮滩,与Hg的总量之间并不存在相关性。地累积指数评价结果显示,利用Hg的形态含量计算的∑Igeo值更能反映沉积物的实际污染水平及其对水生生物的危害大小,沉积物没有受到污染。根据THg的Eri值与Hg赋存形态的∑Eri值评价的沉积物潜在生态风险等级一致,但由生物可利用态Hg带来的生态风险并不依赖于沉积物中THg含量的变化,长江口潮滩沉积物都属于低生态风险等级。
     (3)芦苇带、海三棱藨草带与互花米草带表层沉积物中Hg的含量范围分别为0.009~0.365μg/g、0.020~0.771 gg/g和0.078~0.186μg/g,均明显高于非植被带(p<0.05)。植被的促淤作用可导致沉积物中Hg含量的增加。在沉积物柱样中,三种盐沼植被带在不同深度形成峰值含量。芦苇带沉积物中Hg的含量受根际氧化条件和植被根系周期性生长和死亡影响。互花米草和海三棱藨草带沉积物中Hg的含量主要受植被促淤固沙能力的影响,其次才受到植被根系周期性生理活动的影响。主成分分析和Pearson相关分析发现,在盐沼植被根系参与下,沉积物中的有机质含量、<16μm的细颗粒含量、以及沉积物温度、含水率和电导率等理化指标共同作用,一起影响着互花米草带和海三棱藨草带沉积物中Hg的含量和分布。
     (4)芦苇与互花米草根系中Hg的含量远高于茎叶,Hg的茎叶:根系比值分别为0.32和0.55。海三棱蔗草茎叶中Hg的含量明显高于根系,茎叶:根系比值达到了2.88。芦苇根系吸收的Hg要明显高于互花米草和海三棱藨草,而海三棱藨草茎叶中累积的Hg最高。三种盐沼植被地上与地下组织中Hg的富集系数都在0.55以下。在崇明东滩盐沼带中,三种盐沼植物根系中Hg的储量在0.02~0.11 mg Hg/m2之间,其中芦苇根系中Hg的储量最大,平均值为0.07 mg Hg/m2,其次是互花米草,海三棱藨草最低。三种盐沼植物茎叶中Hg的储量在0.01~0.05 mg Hg/m2之间,海三棱藨草茎叶中Hg的储量最大,平均值为0.03 mg Hg/m2,其次是互花米草,芦苇茎叶中Hg的储量最低。
     (5)崇明东滩夏季盐沼带沉积物柱样中酸同时可提取态Hg (SEM-Hg)和酸可挥发硫(AVS)的平均含量分别在0.66~1.03μmol/kg和0.848~4.381 mmol/kg之间变化,3个植被带之间差异均不显著(p>0.05)。柱样中SEM-Hg含量与AVS含量之间不存在相关性。3个植被带沉积物中SEM/AVS比值在ND~0.066之间,Hg的生物可利用性较低,与利用MeHg的评价结果一致,在柱样中均在2~4 cm深度出现最高值,说明表层沉积物中Hg的生物可利用性相对较高。从空间分布来看,崇明东滩表层沉积物中MeHg在THg中的比例较高,生物可利用性相对较强,沿长江口南岸而下直到浦东机场,Hg的生物可利用性逐渐增强。
     (6)在短期厌氧动力学试验中,沉积物中SEM-Hg的含量占到了THg含量的20.1%~51.9%,在淹水过程中,沉积物中部分Hg被释放出来,但进入孔隙水的HgD的通量值较小,仅有-0.004~0.011μmol/kg·d。在淹水前10天期间,沉积物固相中SEM-Hg的降幅最大,但此时孔隙水中HgD的含量增加并不多,硫酸盐还原释放出的S2-可能与沉积物中释放出来的Hg2+化合形成HgS沉淀固定在沉积物中。沉积物中乙酸钠提取态Hg的含量仅占到THg含量的0.8%~18.5%,在试验中含量均明显降低。在淹水10天以后,沉积物中的Fe、Mn硫化物和有机质也可以吸附部分Hg。淹水后期添加有机质的沉积物孔隙水中HgD的含量比密闭无有机质添加试验低了43%,有机质降解使TOC逐渐增多,对Hg的吸附量增加,降低了系统中Hg的毒性。
     (7)在动力再悬浮试验中,水体中表现为以颗粒态Hg(HgP)的吸附为主,水动力条件是控制水体中Hg分配行为的关键因素。在盐度和盐度×动力耦合再悬浮试验中,上覆水中Hg的log10Kd分别为2.8~3.8和2.7~4.5。在盐度较低的环境条件下,动力条件是影响上覆水中Hg行为的主要因子。当盐度在1‰以上时,上覆水中的HgP出现解吸行为,当动力条件达到250 r/min以上时,解吸作用增强,上覆水中HgD出现正通量,表现为向上覆水的释放。pH和pH×盐度耦合再悬浮试验上覆水中Hg的log10 Kd值分别为2.8~3.9和1.4~4.0。当水体盐度较低而pH值发生变化时,上覆水中有大量HgD被Al、Fe的氢氧化物胶体所吸附。在水体盐度较高的情况下,水体中以OH-离子与Hg2+的反应为主,并生成了HgO发生沉淀。
     (8)中、低潮滩上覆水中Hg的分配系数分别为2.2~4.5和1.8~4.3,中潮滩表层颗粒物被扰动起来以后,对上覆水中Hg的吸附作用要弱于低潮滩,这与中潮滩沉积物相对较粗的颗粒粒径以及较少的有机质含量有关。较高的盐度条件和较大的动力条件耦合在一起,可以促进低潮滩沉积物中的Hg的释放及其在水相中的滞留,上覆水中HgD的总通量与盐度值之间呈非常好的正相关关系(0.990),当盐度值>11.5%o时,上覆水中以HgD的正通量为主,Hg的生物可利用和毒性增强。中潮滩在再悬浮过程中,上覆水中主要以悬浮颗粒对Hg的吸附作用为主,上覆水中HgD的总通量与盐度值之间并不存在线性关系。
     本文的研究特色与创新之处包括以下几点:
     (1)揭示了不同盐沼植被对沉积物中Hg累积特征的差异性影响及其机制;
     (2)明确了短期厌氧条件下沉积物中Hg的动力学过程,弄清了Fe、Mn等金属硫化物和沉积物TOC是影响厌氧条件下Hg迁移转化的主要因子;
     (3)弄清了水体动力条件是影响Hg再悬浮行为的关键因子,当盐度在1‰以上时,较高的动力条件促进了上覆水中HgP的解吸,在水体盐度较高的情况下,pH值增加使水体中的OH-离子与Hg2+反应生成了HgO沉淀。沉积物自身的性质也是决定再悬浮过程中Hg迁移转化行为的重要因素。
Estuarine intertidal flat is an important interaction area between land and sea, and is one of the most productive ecosystems in the world. After being transported into the estuarine water environment, Hg is re-allocated among different media by migration and transformation processes. Sediments are the main storage of Hg in estuary and coastal systems, which may be transformed into methylmercury, a highly bio-accumulative form for organisms and humans, can also be released to the overlying water through a series of physical, chemical and biological processes, causing "secondary pollution" of the water environment and potential hazard to human health. Therefore, the biogeochemical behavior of Hg in estuarine intertidal flat has been a hot topic of scientific research.
     With the support of the National Natural Science Foundation " Heavy metal release during sediment resuspension and the security of water quality in drinking water source " (No.40701164), and the Outstanding Academic Leader Project of Shanghai " Mercury geochemical cycle and its ecological hazard in coastal wetlands of the Yangtze Estuary"(No.07XD14010) and other projects, research work of this paper was carried out in the intertidal flat of the Yangtze estuary. The concentrations, spatial and temporal distribution characteristics, species, bioavailability and ecological risks of Hg in different environmental media were studied, and the effects of different salt marsh vegetation, such as Phragmites australis, Scirpus mariqueter and Spartina alterniflora, on the accumulation characteristics of Hg in sediments and its mechanisms were discussed. Then the dynamics of Hg in sediments under short-term anaerobic conditions and its mechanisms were simulated. Finally, the transport and transformation processes of Hg and its mechanisms during sediment resuspension under different environmental conditions and its effects on water environment were revealed. The main research results obtained are as follows:
     (1) The concentrations of dissolved Hg (HgD) in coastal water of the Yangtze Estuary varied between 35~421 ng/L,53.3% of water samples beyond the classⅢlimits of surface water quality standards in China (GB3838-2002). High Hg values were found in Xupu-Baimao coasts and Luojing-Gulu coasts. The concentrations of total Hg (THg) in sediments varied between 0.058~0.541μg/g, which lies in the limits of EC-TEL and EC-PEL, would occasionally take a negative effect on the local aquatic life. High Hg values were found in Xupu-Liuhe, Luojing-Gulu and Luchaogang coasts. In sediment cores, high levels of Hg were mainly distributed in about 5 cm depth in sediments and in pore water of the top 0.5 cm depth. Clay and organic matter contents were the main factors affecting the spatial distribution of Hg in sediments. The concentrations of methylmercury (MeHg) in sediments varied between 0.05~0.37 ng/g, only accounting to 0.012~0.196% in THg, and has no correlation with THg concentrations, but positively correlated with organic matter content (r=0.488) and negatively correlated with the average sediment grain size (r=-0.579).
     (2) Elemental Hg (Hg-e) and mercuric sulfide (Hg-s) were the main species of Hg in intertidal sediments of the Yangtze estuary, accounting for 9.0%~50.3% and 37.7%~85.3% of the THg concentrations respectively, followed by organo-chelated Hg (Hg-o), and water soluble Hg (Hg-w) and "human stomach acid" soluble (Hg-h) was the lowest. With the total concentration of Hg-w, Hg-h and Hg-o to represent the bioavailability of Hg, the highest bioavailability of Hg in low intertidal sediments was found in Fuqiao coast, followed by Liuhe and Pudong Airport coasts. Concentrations of the above bioavailable Hg were not correlated with THg. Geoacumulation Index evaluation showed that the∑Igeo values calculated based on the species of Hg better reflected the actual pollution levels of sediments and its hazard to aquatic organisms, and the sediments were not contaminated by Hg. According to Eri values of THg and∑Eri values of Hg species, the sediment potential ecological risk levels were consistent, but the ecological risks of bioavailable Hg does not depend on the THg levels in sediments. The intertidal sediments of the Yangtze estuary were at low ecological risk levels evaluated by bioavailable Hg.
     (3) The concentrations of Hg in surface sediments of the P. australis, S. mariqueter and S. alterniflora zone varied between 0.009~0.365μg/g,0.020~0.771μg/g and 0.078~0.186μg/g, respectively, all significantly higher than the values in the non-vegetation zone (p<0.05). Vegetation can lead to sediment deposition and Hg accumulation in sediments. In sediment cores, peak values occurred at different depths in three kinds of salt marsh vegetation zones. The Hg concentrations in sediments of the P. australis zone were influenced by rhizosphere oxidation conditions and by periodic growth and mortality of plant roots. While the Hg concentrations in sediments of the S. mariqueter and S. alterniflora zones were mainly influenced by the sediment retard ability, followed by the vegetation root periodic physiological activities. Principal Component Analysis and Pearson Correlation Analysis results showed that organic matter content,<16μm fine particle content, sediment temperature, water content, electrical conductivity and other physical and chemical indicators together influenced Hg concentrations and distribution in the sediments of S. mariqueter and S. alterniflora zones.
     (4) The concentrations of Hg in roots of P. australis and S. alterniflora were much higher than in stems and leaves, with the leaf:root ratios of 0.32 and 0.55 respectively. While the concentrations of Hg in stems and leaves of S. mariqueter were significantly higher than in roots, with the leaf:root ratio reaching 2.88. The highest concentrations of Hg in roots were found in P. australis and in stems and leaves were found in S. mariqueter. Enrichment factors of Hg in the ground and underground tissues of the three kinds of vegetation were all below 0.55. At Chongming salt marsh zone, the reserves of Hg in three plant roots varied between 0.02~0.11 mg Hg/m2, of which the largest reserves of Hg were in P. australis (0.07 mg Hg/m2), followed by S. alterniflora. the reserves of Hg in three plant stems and leaves varied between 0.01~0.05 mg Hg/m2, of which the largest reserves of Hg were in S. mariqueter (0.03 mg Hg/m2), followed by S. alterniflora.
     (5) The average concentrations of simultaneously ectracted metals (SEM-Hg) and acid volatile sulfide (AVS) varied between 0.66~1.03μmol/kg and 0.848~4.381 mmol/kg in sediment cores of Chongming Dongtan in summer, respectively, both of which had no significant difference among the three vegetation zones (p>0.05). In sediment cores, SEM-Hg concentrations were not correlated with AVS contents. The SEM/AVS ratios in three vegetated sediments varied between ND~0.066, suggesting low bioavailability of Hg, which was consistent with the evaluation results of %MeHg. The highest values of SEM/AVS ratios were in 2~4 cm depths of the sediment cores, showing that the relatively high bioavailability of Hg occurred in surface sediments. From the spatial distribution, the percentages of MeHg in THg in surface sediments were relatively higher in Chongming Dongtan and increased along the south bank of the Yangtze estuary until the Pudong Airport coast, suggesting the increasing bioavailability of Hg in sediments of Chongming Dongtan and Pudong Airport coasts.
     (6) In the short-term anaerobic dynamics tests, the concentrations of SEM-Hg in sediments accounted for 20.1%~51.9% of the THg concentrations. During the flooding process, part of Hg in sediments was released, but the fluxes of HgD into the pore water were only -0.004~0.011μmol/kg·d. During the first 10 days of the flooding, the SEM-Hg concentrations decreased significantly, but HgD concentrations in the pore water only increase little. S2- released from the sulfate reduction may be formed HgS compounds with the released Hg2+ and deposited in sediments. The concentrations of sodium acetate-extractable Hg in sediments only accounted for 0.8%~18.5% of THg, and was significantly reduced during the flooding. After 10 days of the flooding, Fe, Mn sulfides and organic matter can also absorb part of the Hg in sediments. In post-flooding, the concentrations of HgD in pore water of sediment added organic matter were lower by 43% to the sediment with no organic matter under air-closed conditions. The degradation of organic matter resulted in the increase of TOC, and further promoted the adsorption of Hg in sediments, which would reduce the toxicity of Hg in the system.
     (7) In the hydrodynamic resuspension test, the adsorption of Hg to suspended particles was the main process. Hydrodynamic condition was the key factor to control the partition behavior of Hg in water. In salinity and salinityxdynamic coupling resuspension tests, the partition coefficients of Hg (log10Kd) in the overlying water were 2.8-3.8 and 2.7~4.5, respectively. Under the lower salinity conditions, hydrodynamic was the main factor affecting the behavior of Hg in the overlying water. When salinity more than 1‰, desorption of particulate Hg (HgD) occurred in the overlying water. When the dynamic conditions reached to 250 r/min or more, desorption enhanced, and positive fluxes of HgD to the overlying water were found, suggesting that Hg was released or desorbed from the sediments. In pH and pH×salinity coupling resuspension tests, the log10Kd values of Hg in the overlying water were 2.8-3.9 and 1.4~4.0, respectively. When the water pH values varied under lower salinity conditions, a large number of HgD combined with Al, Fe hydroxide colloids by adsorption in the overlying water. In the case of high salinity water, the OH- ion was compounded with Hg2+, and generated the HgO precipitation.
     (8) The log10Kd values of Hg in overlying water of the middle and low intertidal sediments were 2.2~4.5 and 1.8~4.3, respectively. Particles resuspended from the middle intertidal sediments had relatively weaker adsorption of Hg in overlying water than from low intertidal sediments, which was related to the relatively coarse particle size and less organic matter content in the middle intertidal sediments. Under conditions of high salinity coupled with large power, the release of Hg from low intertidal sediments increased and Hg retention in the aqueous phase extended. Total fluxes of HgD to overlying water positively correlated with salinity (0.990). When salinity values more than 11.5%o, positive fluxes of Hg to the overlying water occurred, suggesting the increased bioavailability and toxicity of Hg. During the resuspension of middle intertidal sediments, adsorption of Hg on suspended particles was the main process, and no linear relationship was found between total fluxes of HgD and salinity.
     Innovations of this PhD dissertation are mainly:
     (1) The different effects of three salt marsh vegetations on Hg accumulation characteristics in sediments and its mechanisms were revealed.
     (2) The dynamics of Hg in sediments under short-term anaerobic conditions were determined, and Fe, Mn sulfides and TOC were clarified to be the main factors that affected Hg transport and transformation in sediments under anaerobic conditions.
     (3) Hydrodynamic condition was revealed to be the key factor that affected the resuspension behavior of Hg in water. When salinity more than 1‰, high dynamic conditions promoted desorption of Hgp in the overlying water. In the case of high salinity water, increased pH values resulted in the conformation of HgO precipitation between OH" ion and Hg2+. The character of sediments was also an important factor determining the transport and transformation behavior of Hg during resuspension process.
引文
[1]Almeida C M R, Mucha A P, Vasconcelos M. Influence of the sea rush Juncus maritimus on metal concentration and speciation in estuarine sediment colonized by the plant. Environmental Science & Technology,2004,38:3112-3118.
    [2]Ankley G T, Ditoro D M, Hansen D J, Berry W J. Technical basis and proposal for deriving sediment quality criteria for metals. Environmenta Toxicology and Chemistry,1996,15: 2056-2066.
    [3]Ankley G T, Thomas N A, Di Toro D M, Hansen D J, Mahony J D, Berry W J, Swartz R C, Hoke R A. Assessing potential bioavailability of metals in sediments:a proposed approach. Environmental Management,1994,18:331-337.
    [4]Atkinson C A, Jolley D F, Simpson S L. Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere,2007,69:1428-1437.
    [5]Balcom P H, Hammerschmidt C R, Fitzgerald W F, Lamborg C H, OConnor J S. Seasonal distributions and cycling of mercury and methylmercury in the waters of New York/New Jersey Harbor Estuary. Marine Chemistry,2008,109:1-17.
    [6]Benoit J, Gilmour C, Mason R, Heyes A. Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environmental Science & Technology,1999,33:951-957.
    [7]Benoit J M, Gilmour C C, Heyes A, Mason R P, Miller C L.2003. Geochemical and biological controls over methylmercury production and degradation in aquatic systems. In:Cai, Y., Braids, O.C. (Eds.), Biochemistry of Environmentally Important Trace Elements. American Chemical Society, Washington, DC, pp.262-297.
    [8]Benoit J M, Gilmour C C, Mason R P, Riedel G F, Riedel G S, Sullivan K. Behavior of mercury in the Patuxent River Estuary, MD, USA. Biogeochemistry,1998,40:249-265.
    [9]Benoit J M, Gilmour C C, Mason R P. The influence of sulphide on solid-phase mercury bioavailability for methylation by pure cultures of Desulfobulbus propionicus (1pr3). Environmental Science & Technology,2001,35:127-132.
    [10]Berry W J, Hansen D J, Mahony J D, Robson D L, Di Toro D M, Shipley B P, Rogers B, Corbin J M, Boothman W S. Predicting the toxicity of metal-spiked laboratory sediments using acid-volatile sulfide and interstitial water normalizations. Environmental Toxicology and Chemistry.1996,15:2067-2079.
    [11]Blaabjerg V, Finster K. Sulphate reduction associated with roots and rhizomes of the marine macrophyte Zostera marina. Aquatic Microbial Ecology,1998,15:311-314.
    [12]Brandenberger J M, Crecelius E, Louchouarn P, Gill G A, Kuo L. Atmospheric deposition of trace elements to the near shore ecosystem of Puget Sound, WA, USA. Proceedings from the 2010 AGU Ocean Sciences Meeting.2010,22-26.
    [13]Brassard P, Kramer J R, Collins P V. Dissolved metal concentrations and suspended sediment in Hamilton Harbour. Journal of Great Lakes Research,1997,23:86-96.
    [14]Brumbaugh W G, Arms J W. Quality control considerations for the determination of acid-volatile sulfide and simultaneously extracted metals in sediments. Environmental Toxicology and Chemistry,1996,15(3):282-285.
    [15]Cacador I, Vale C, Catarino F. Seasonal variation of Zn, Pb, Cu and Cd concentrations in the root-sediment system of Spartina maritima and Halimione portulacoides from Tagus estuary salt marshes. Marine Environmental Research,2000,49,3:279-290.
    [16]Caille N, Tiffreau C, Leyval C, Morel J L. Solubility of metals in an anoxic sediment during prolonged aeration. The Science and the Total Environment,2003,301(1-3):239-250.
    [17]Canario J, Vale C, Poissant L, Nogueira M, Pilote M, Branco V. Mercury in sediments and vegetation in a moderately contaminated salt marsh (Tagus Estuary, Portugal). Journal of Environmental Sciences,2010,22(8):1151-1157.
    [18]Cantwell M G, Burgess R M, Kester D R. Release and phase partitioning of metals from anoxic estuarine sediments during periods of simulated resuspension. Environmental science & Technology,2002,36,24:5328-5334.
    [19]Cantwell M G, Burgess R M, King J W. Resuspension of contaminated field and formulated reference sediments Part I:Evaluation of metal release under controlled laboratory conditions. Chemosphere,2008,73,11:1824-1831.
    [20]Coelho J.P., Pereira M.E., Duarte A.C., Pardal M.A. Contribution of primary producers to mercury trophic transfer in estuarine ecosystems:Possible effects of eutrophication. Marine Pollution Bulletin,2009,58:358-365.
    [21]Comm. Toxicol. Eff. Methylmercury, Board Environ. Stud. Toxicol., Comm. Life Sci., US Natl. Res.Counc. Toxicological Effects of Methylmercury. Washington, DC. National Academies Press.2000.
    [22]Compeau G C, Bartha R. Sulfate-reducing bacteria:principal methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology,1985,50:498-502.
    [23]Conaway C H, Mason R P, Steding D J, Flegal A R. Estimate of mercury emission from gasoline and diesel fuel consumption, San Francisco Bay area, California. Atmospheric Environment,2005,39:101-105.
    [24]Conaway C H, Squire S, Mason R P, Flegal A R. Mercury speciation in the San Francisco Bay estuary. Marine Chemistry,2003,80:199-225.
    [25]Conrad C F, Chisholm-Brause C J. Spatial survey of trace metal contaminants in the sediments of the Elizabeth River, Virginia. Marine Pollution Bulletin,2004,49:319-324.
    [26]Coquery M, Cossa D, Sanjuan J. Speciation and sorption of mercury in two macrotidal estuaries. Marine Chemistry,1997,58:213-227.
    [27]Cossa D, Gobeil C. Mercury speciation in the Lower St. Lawrence Estuary. Canadian. Journal of Fisheries and Aquatic Sciences,2000,57, S1:138-147.
    [28]Cossa D, Coquery M, Gobeil C, Martin J-M. Mercury fluxes at the ocean margins. In:Baeyens, W., et al. (Ed.), Global and Regional Mercury Cycles:Sources, Fluxes, and Mass Balances, 1996, pp,229-247.
    [29]Covelli S, Emili A, Acquavita A, Koron N, Faganeli J. Benthic biogeochemical cycling of mercury in two contaminated northern Adriatic coastal lagoons. Continental Shelf Research, 2011,31:1777-1789.
    [30]Creach V, Schricke M T, Bertru G, Mariotti A. Stable isotopes and gut analyzes to determine feeding relationships in saltmarsh macroconsumers. Estuarine, Coastal and Shelf Science,1997, 44:599-611.
    [31]Ding Z H, Liu J L, Li L Q, Lin H N, Wu H, Hu Z Z. Distribution and speciation of mercury in surficial sediments from main mangrove wetlands in China. Marine Pollution Bulletin,2009,58: 1319-1325.
    [32]Doyle M O, Otte M L. Organism-induced accumulation of iron, zinc and arsenic in wetland soils. Environmental pollution,1997,96:1-11.
    [33]Drott A, Lambertsson L, Bjorn E, Skyllberg U. Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments. Environmental science & Technology,2007,41:2270-2276.
    [34]Fabbri D, Locatelli C, Snape C E, Tarabusi S. Sulfur speciation in mercury-contaminated sediments of a coastal lagoon:the role of elemental sulphur. Journal of Environmental Monitoring,1991,3:483-486.
    [35]Feng X, Shang L, Wang S, Tang S, Zheng W. Temporal variation of total gaseous mercury in the air of Guiyang, China. Journal of Geophysical Research,2004,109, D03303, doi:10.1029/2003JD00419.
    [36]Ferre B, Durrieu de Madron X, Estournel C, Ulses C, Le Corre G. Impact of natural (waves and currents) and anthropogenic (trawl) resuspension on the export of particulate matter to the open ocean Application to the Gulf of Lion (NW Mediterranean). Continental Shelf Research,2008, 28:2071-2091
    [37]Fitzgerald W F., Clarkson T W. Mercury and monomethylmercury:present and future concerns. Environmental Health Perspectives,1991,96:159-166.
    [38]Fitzgerald W F, Lamborg C H, Hammerschmidt C R. Marine biogeochemical cycling of mercury. Chemical Reviews,2007,107:641-662.
    [39]Gagnon C, Pelletier E, Mucci A. Behavior of anthropogenic mercury in coastal marine sediments. Marine Chemistry,1997,59:159-176.
    [40]Gerritse R G, Wallbrink P J, Murray A S. Accumulation of phosphorus and heavy metals in the Peel-Harvey Estuary in western Australia:results of a preliminary study. Estuarine, Coastal and Shelf Science,1998,47:679-693
    [41]Gilmour C, Henry E. Mercury methylation in aquatic systems affected by acid deposition. Environmental Pollution,1991,71:131-169.
    [42]Gordeev V V, Rachold V, Vlasova I E. Geochemical behaviour of major and trace elements in suspended particulate material of the Irtysh river, the main tributary of the Ob river, Siberia. Applied Geochemistry,2004,19:593-610.
    [43]Guo Y, Feng X, Li Z, He T, Yan H, Meng B, Zhang J, Qiu G. Distribution and wet deposition fluxes of total and methyl mercury in Wujiang River Basin, Guizhou, China. Atmospheric Environment,2008,42:7096-7103.
    [44]Haines T A, May T W, Finlayson R T, Mierzykowski S E. Factors affecting food chain transfer of mercury in the vicinity of the Nyanza Site, Sudbury River, Massachusetts. Environmental Monitoring and Assessment,2003,86:211-232.
    [45]Hammerschmidt C R, Fitzgerald W F. Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environmental science & Technology,2004, 38:1487-1495.
    [46]Hammerschmidt C R, Fitzgerald W F. Methylmercury cycling in sediments on the continental shelf of southern New England. Geochimica et Cosmochimica Acta,2006,70:918-930.
    [47]Hammerschmidt C R, Fitzgerald W F, Lamborg C H, Balcom P H, Visscher P T. Biogeochemistry of methylmercury in sediments of Long Island Sound. Marine Chemistry, 2004,90:31-52.
    [48]Han S, Obraztsova A, Pretto P, Deheyn D D, Gieskes J, Tebo B M. Sulfide and iron control on mercury speciation in anoxic estuarine sediment slurries. Marine Chemistry,2008,111(3-4): 214-220.
    [49]Harada M. Minamata disease:methylmercury poisoning in Japan caused by environmental pollution. Critical Reviews in Toxicology,1995,25:1-24.
    [50]Heyes A, Miller C, Mason R P. Mercury and methylmercury in Hudson River sediment:impact of tidal resuspension on partitioning and methylation. Marine Chemistry,2004,90(1-4):75-89.
    [51]Hines M E, Faganeli J, Adatto I, Horvat M. Microbial mercury transformations in marine, estuarine and freshwater sediment downstream of the Idrija Mercury Mine, Slovenia. Applied Geochemistry,2006,21:1924-1939.
    [52]Hintelmann H, Wilken R D. Levels of total mercury and methylmercury compounds in sediments of the polluted Elbe River:influence of seasonally and spatially varying factors. Science of the Total Environment,1995,166:1-8.
    [53]Hissler C, Probst J L. Impact of mercury atmospheric deposition on soils and streams in a mountainous catchment (Vosges, France) polluted by chlor-alkali industrial activity:The important trapping role of the organic matter. Science of the Total Environment,2006,361: 163-178.
    [54]Jain C K, Sharma M K. Distribution of trace metals in the Hindon River system, India. Journal of Hydrology,2001,253:81-90.
    [55]Je C H, Hayes D F, Kim K S. Simulation of resuspended sediments resulting from dredging operations by a numerical flocculent transport model. Chemosphere,2007,70(2):187-195.
    [56]Jones D L. Organic acids in the rhizosphere-a critical review. Plant Soil,1998,205:25-44.
    [57]Kern U, Li C-C, Westrich B. Assessment of sediment contamination from pollutant discharge in surface waters. Water Science and Technology,1998,37(6-7):1-8.
    [58]Kim E H, Mason R P, Porter E T, Soulen H L. The impact of resuspension on sediment mercury dynamics, and methylmercury production and fate:A mesocosm study. Marine Chemistry,2006, 102:300-315.
    [59]Kim E-H, Mason R P, Porter E T, Soulen H L. The effect of resuspension on the fate of total mercury and methyl mercury in a shallow estuarine ecosystem:a mesocosm study. Marine Chemistry,2004,86:121-137.
    [60]Kularatne S, Pattiaratchi C. Turbulent kinetic energy and sediment resuspension due to wave groups. Continental Shelf Research,2008,28:726-736.
    [61]Lacerda L D, Goncalves G O. Mercury distribution and speciation in waters of the coastal lagoons of Rio de Janeiro, SE Brazil. Marine Chemistry,2001,76(1-2):47-58.
    [62]Lai T, Qiu S. A preliminary study on the mercury contents in sediments and macrobenthos of Yingluo Bay mangrove area, Guangxi. Journal of Guangxi Academy of Sciences,1998,14(4): 27-31.
    [63]Lambertsson L, Nilsson M. Organic material:the primary control on mercury methylation and ambient methylmercury concentrations in estuarine sediments. Environmental science & Technology,2006,40:1822-1829.
    [64]Landis M S, Keeler G J, Al-Wali K I, Stevens R K. Divalent inorganic reactive gaseous mercury emissions from a mercury cell chlor-alkali plant and its impact on near-field atmospheric dry deposition. Atmospheric Environment,2004,38:613-622.
    [65]Latimer J S, Davis W R, Keith D J. Mobilization of PAHs and PCBs from in-place contaminated marine sediments during simulated resuspension events. Estuary, Coastal and Shelf Science,1999,49:577-595.
    [66]Lillebo A I, Flindt M R, Pardal M A, Marques J C. The effect of macrofauna, meiofauna add microfauna on the degradation of Spartina maritima detritus from a salt marsh area. Acta Oecologica-International Journal of Ecology,1999,20:249-258.
    [67]Lindberg S, Bullock R, Ebinghaus R, Engstrom D, Feng X B, Fitzgerald W, Pirrone N, Prestbo E, Seigneur C. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition, A Journal of the Human Environment,2007,36(1):19-33.
    [68]Liu J, Valsaraj K T, Devai I, DeLaune R D. Immobilization of aqueous Hg(Ⅱ) by mackinawite (FeS). Journal of Hazardous Materials,2008,157:432-440.
    [69]Lyons W B, Fitzgibbon T, Welch K A, Carey A E. Mercury geochemistry of the Scioto River, Ohio:impact of agriculture and urbanization. Applied Geochemistry,2006,21:1880-1888.
    [70]Marsh D O, Clarkson T W, Cox C, Myers G J, Amin-Zaki L, Al-Tikriti S A A. Fetal methylmercury poisoning:Relationship between concentration in single strands of maternal hair and child effects. Arch Neurol,1987,44,10:1017-1022.
    [71]Martino M, Turner A, Nimmo M, Millward G. E. Resuspension, reactivity and recycling of trace metals in the Mersey Estuary, UK. Marine Chemistry,2002,77(2-3):171-186.
    [72]Mason R P, Lawson N M, Lawrence A L, Leaner J J, Lee J G, Sheu G R. Mercury in the Chesapeake Bay. Marine Chemistry,1999,65:77-96.
    [73]Mason R P, Lawson N M, Sheu G R. Annual and seasonal trends in mercury deposition in Maryland. Atmospheric Environment,2000,34:1691-1701.
    [74]Mason R P, Benoit J M. Organomercury compounds in the environment. In:Craig, P. (Ed.), Organometallics in the Environment. John Wiley & Sons, New York,2003, pp.57-99.
    [75]Mason R P, Fitzgerald W F. Sources, sinks and biogeochemical cycling of mercury in the ocean. In:Baeyens, W., et al. (Ed.), Global and Regional Mercury Cycles:Sources, Fluxes and Mass Balances. Kluwer Academic, Netherlands,1996, pp.249-272.
    [76]Mason R P, Fitzgerald W F, Morel F M M. The biogeochemical cycling of elemental mercury, anthropogenic influences. Geochimica et Cosmochimica Acta,1994,58:3191-3198.
    [77]Mason R P, Kim E H, Cornwell J, Heyes D. An examination of the factors influencing the flux of mercury, methylmercury and other constituents from estuarine sediment. Marine Chemistry, 2006,102:96-110.
    [78]Mason R P, Lawrence A L. Concentration distribution and bioavailability of mercury and methylmercury in sediments of Baltimore Harbour and Chesapeake Bay, Maryland, USA. Ecotoxicology & Pollution Science,1999,18,11:2438-2447.
    [79]Mason R P, Rolfhus K R, Fitzgerald W F. Mercury in the North Atlantic. Marine Chemistry, 1998,61:37-53.
    [80]Mayer L M, Chen Z, Findlay R H, Fang J, Sampson S, Self R F L, Jumars P A, Quetel C, Donard O F X. Bioavailability of sedimentary contaminants subject to deposit-feeder digestion. Environment and Science Technology,1996,30:2641-2645.
    [81]Mehrotra A S.; Horne A J, Sedlak D L. Reduction of net mercury methylation by iron in Desulfobulbus propionicus (1pr3) cultures:Implications for engineered wetlands. Environmental science & Technology,2003,37 (13),3018-3023.
    [82]Mehrotra A S, Sedlak D L. Decrease in net mercury methylation rates following iron amendment to anoxic wetland sediment slurries. Environmental science & Technology,2005, 39 (8),2564-2570.
    [83]Millward G E, Liu Y P. Modelling metal desorption kinetics in estuaries. The Science of the Total Environment,2003,314-316:613-623.
    [84]Moorhead K K, Reddy K R. Oxygen transport through selected aquatic macrophytes. Journal of Environmental Quality,1988,17:138-142.
    [85]Munthe J, McElroy W J. Some aqueous reactions of potential importance in the atmospheric chemistry of mercury. Atmospheric Environment,1992,26A:553-557.
    [86]Nakagawa R, Yumita Y. Change and behavior of residual mercury in paddy soil and rice of Japan. Chemosphere,1998,37:1483-1487.
    [87]Ogrinc N, Monperrus M, Kotnik J, Fajon V, Vidimova K, Amouroux D, Kocman D, Tessier E, Zizek S, Horvat M. Distribution of mercury and methylmercury in deep-sea surficial sediments of the Mediterranean Sea. Marine Chemistry,2007,107:31-48.
    [88]Ouddane B, Mikac N, Cundy A B, Quillet L, Fischer J C. A comparative study of mercury distribution and methylation in mudflats from two macrotidal estuaries:The Seine (France) and the Medway (United Kingdom). Applied Geochemistry,2008,23:618-631.
    [89]Pacyna E G, Pacyna J M, Steenhuis en F, Wilson S. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment,2006,40:4048-4063.
    [90]Pacyna E G, Pacyna J M, Sundseth K, Munthe J, Wilson S, Steenhuisen F, Maxson P. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmospheric Environment,2010,44:2487-2499.
    [91]Pia Di Nanno M, Curutchet G, Ratto S. Anaerobic sediment potential acidification and metal release risk assessment by chemical characterization and batch resuspension experiments. Journal of Soils and Sediments,2007,7:187-194.
    [92]Rothenberg S E, Ambrose R F, Jay J A. Mercury cycling in surface water, pore water and sediments of Mugu Lagoon, CA, USA. Environmental Pollution,2008,154:32-45.
    [93]Ryther J H. Photosynthesis and fish production in the sea. Science,1969,166:72-76.
    [94]Schafer J, Blanc G, Audry S, Cossa D, Bossy C. Mercury in the Lot-Garonne River system (France):Sources, fluxes and anthropogenic component. Applied Geochemistry,2006,21: 515-527.
    [95]Seigneur C, Vijayaraghavan K, Lohman K, Karamchandani P, Scott C. Global source attribution for mercury deposition in the United States. Environmental Science& Technology, 2004,38:555-569.
    [96]Selin N E.Cycling of mercury:a review. The Annual Review of Environment and Resources, 2009,34:43-63.
    [97]Sferra J C, Fuchsman P C, Wenning R J, Barber T R. A site-specific evaluation of mercury toxicity in sediment. Archives of Environmental Contamination and Toxicology,1999,37(4): 488-495.
    [98]Sheu G R, Mason R P. An examination of methods for the measurements of reactive gaseous mercury in the atmosphere. Environmental Science & Technology,2001,35:1209-1216.
    [99]Shi J, Liang L, Yuan C, He B, Jiang G. Methylmercury and total mercury in sediments collected from the East China Sea. Bulletin of Environmental Contamination and Toxicology, 2005,74:980-987.
    [100]Simpson S L, Apte S C, Batley G E. Effect of short-term resuspension events on trace metal speciation in polluted anoxic sediments. Environmental Science & Technology,1998,32(5): 620-625.
    [101]Skov H, Christensen J H, Goodsite M E, Heidam N Z, Jensen B, Wahlin P, Geernaert G. Fate of elemental mercury in the Arctic during atmospheric mercury depletion episodes and the load of atmospheric mercury to the Arctic. Environmental Science & Technology,2004,38:2373-2382.
    [102]St. Louis V L, Rudd J W M, Kelly C A, Beaty K G, Bloom N S, Flett R J. Importance of wetlands as sources of methylmercury boreal forest ecosystem. Canadian. Journal of Fisheries and Aquatic Sciences,1994,51:1065-1076.
    [103]Stordal M C, Gill G A, Wen L S, Santschi P H. Mercury phase speciation in the surface waters of three Texas estuaries:importance of colloidal forms. Limnology and Oceanography,1996, 41:52-61.
    [104]Suchanek T H, Eagles-Smith C A, Harner E J. Is Clear Lake methyl mercury distribution decoupled from bulk mercury loading? Ecological Applications,2008,18(Supplement): A107-A127.
    [105]Taylor S R. Abundance of chemical elements in the continental crust:A new table. Geochimica et Cosmochimica Acta,1964,28,8:1273-1285.
    [106]Turner A, Millward G E, Le Roux S M. Significance of oxides and particulate organic matter in controlling trace metal partitioning in a contaminated estuary. Marine Chemistry,2004b,88: 179-192.
    [107]Turner A, Millward G E, Le Roux S M. Speciation and partitioning of Cd and Zn in two contrasting estuaries:the role of hydrophobic organic matter. Limnology and Oceanograph, 2004a,49:11-19.
    [108]Turner A. Trace metal contamination in sediments from UK estuaries:an empirical evaluation of the role of hydrous iron and manganese oxides. Estuarine,Coastal and Shelf Science,2000, 50:355-371.
    [109]Ullrich S M, Tanton T W, Abdrashltova S A. Mercury in the aquatic environment:a review of factors affecting methylation. Crit. Rev. Environmental science & Technology,2001,31: 241-293.
    [110]Ulrich P D, Sedlak D L. Impact of Iron Amendment on Net Methylmercury Export from Tidal Wetland Microcosms. Environmental science & Technology,2010,44:7659-7665.
    [111]USEPA. Estimated per capita fish consumption in the United States, August 2002. United States Environmental Protection Agency,2002.
    [112]Valega M, Lillebo A I, Pereira M E, Duarte A C, Pardal M. Long term effects of mercury in a salt marsh:hysteresis in the distribution of vegetation following recovery from contamination. Chemosphere,2008,71:765-772.
    [113]Vane C H, Jones D G, Lister T R. Mercury contamination in surface sediments and sediment cores of the Mersey Estuary, UK. Marine Pollution Bulletin,2009,58:940-946.
    [114]Vinogradov A P. Average contents of chemical elements in the principal types of igneous rocks of the Earth's crust. Geokhimya,1962,7:641-664.
    [115]Wang S, Jia Y, Wang S, Wang X, Wang H, Zhao Z, Liu B. Total mercury and monomethylmercury in water, sediments, and hydrophytes from the rivers, estuary, and bay along the Bohai Sea coast, northeastern China. Applied Geochemistry,2009,24:1702-1711.
    [116]Wedepohl K H. The composition of the continental crust. Geochimica et Cosmochimica Acta, 1995,59,7:1217-1232.
    [117]Weis J S, Weis P. Metal uptake, transport and release by wetland plants:implications for phytoremediation and restoration. Environment International,2004,30:685-700.
    [118]Windham L, Weis J S, Weis P. Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Estuarine, Coastal and Shelf Science,2003,56:63-72.
    [119]Wu Y, Streets D G, Wang S, Hao J. Uncertainties in estimating mercury emissions from coal-fired power plants in China. Atmospheric Chemistry and Physics,2010,10:2937-2947.
    [120]Wu Y, Wang S, Street D G, Hao J, Chan M, Jiang J. Trends in anthropogenic mercury emissions in china from 1995 to 2003. Environmental science & Technology,2006,40:5312-5318.
    [121]Xiu G L, Jin Q, Zhang D, Shi S, Huang X, Zhang W, Bao L, Gao P, Chen B. Characterization of size-fractionated particulate mercury in Shanghai ambient air. Atmospheric Environment,2005, 39:419-427.
    [122]Yin Y J. Adsorption of mercury(Ⅱ) by soil:effects of pH, chloride, and organic matter. Journal of Environmental Quality,1996,25(6):837-844.
    [123]Zhang L, Wong M H. Environmental mercury contamination in China:Sources and impacts. Environment International,2007,33:108-121.
    [124]Zhang S M, Zhen S Q, Pang X Z. Mercury in the Changjiang River estuary water. Marine Sciences,1989,5:40-43.
    [125]Zhong H, Wang W X. Effects of sediment composition on inorganic mercury partitioning, speciation and bioavailability in oxic surficial sediments. Environmental pollution,2008,151: 222-230.
    [126]Zwolsman J J G, Van Eck B T M, Van Der Weijden C H. Geochemistry of dissolved trace metals (Cadmium, Copper, Zinc) in the Scheldt estuary, southwestern Netherlands:Impact of seasonal variability. Geochimica et Cosmochimica Acta,1997,61:1635-1652.
    [127]陈业材.环境汞的来源与迁移转化规律的研究.矿物岩石地球化学通报,1994,3:135-137.
    [128]迟清华.汞在地壳、岩石和疏松沉积物中的分布.地球化学,2004,33(6):641-648.
    [129]冯新斌,仇广乐,付学吾,何天容,李平,王少锋.环境汞污染.化学进展,2009,21(2/3): 436-457.
    [130]刘俊华,陈乐恬,王文华,申哲民,彭安.北京市区及郊区大气中的汞沉降的估算.环劈群学学报,2001,21(5):643-645.
    [131]刘永懋.松花江汞与甲基汞污染综合防治及其研究成果.水资源保护,1995,(3):7-12.
    [132]杨忠平,卢文喜,龙玉桥.长春市城区重金属大气干湿沉降特征.环境科学研究,2009,22(1):28-34.
    [133]郑刘根,刘桂建,齐翠翠,陈怡伟,张莹.中国煤中汞的环境地球化学研究.中国科学技术才学学报,2007,37(8):953-963.
    [134]锺寰,王文雄.沉积物中汞的生物可利用性研究进展.环境化学,2011,30(1):165-178.
    [1]Chen J Y, Zhu H F, Dong Y F, Sun J M. Development of the Changjiang Estuary and its submerged delta. Continental Shelf Research,1985,4:47-56.
    [2]Chen X Q. Changjiang (Yangtze) river delta, China. Journal of Coastal Research,1998,14: 838-858.
    [3]Yang S L. Sedimentation on a growing intertidal island in the Yangtze River mouth. Estuarine, Coastal and Shelf Science,1999,49:401-410.
    [4]陈吉余,杨启伦.1988.上海市海岸带和海涂资源综合调查报告.上海:科学技术出版社.
    [5]陈满荣,韩晚非,刘水芹.上海市围海造地效应分析与海岸带可持续发展.中国软科学,2000,12:115-120.
    [6]陈启明,仇玉芹,陈邦林,陈吉余.长江口悬浮物和沉积物的物相分析.华东师范大学学报(自然群学版),2001,1:77-83.
    [7]柳林.上海滨岸潮滩沉积物重金属时空分布规律及其环境效应.华东师范大学硕士学位论文,2000.
    [8]茅志昌,李九发,吴华林.上海市滩涂促淤圈围研究.泥沙研究,2003,2:77-80.
    [9]茅志昌,潘定安,沈焕庭.长江河口悬沙的运动方式与沉积形态特征分析.地理研究,2001,20(2):170-177.
    [10]人民长江报,2009, http://www.ahsl.gov.cn/sgj/xw/2009xw/0909111.htm.
    [11]施玉麒,王寒梅,李金柱.上海市海岸带资源现状与未来趋势.上海地质,2003,1:8-16.
    [12]水利部长江水利委员会.长江泥沙公报.2003-2008.
    [13]孙振华,高峻,赵仁泉.崇明东滩候鸟自然保护区的滩涂植被.上海环境科学,1992,11(3):22-25.
    [14]王卿.长江口盐沼植物群落分布动态及互花米草入侵的影响.复旦大学博士学位论文,2007.
    [15]王天厚,钱国桢.长江口及杭州湾北部滩涂的生物群落特征分析.生态学杂志,1987,6(2):35-38.
    [16]吴新华.长江口南支河段水质污染特性分析.水利水电快报,2001,22(15):11-13.
    [17]许世远,1997.长江三角洲地区风暴潮沉积研究.北京:科学出版社.
    [18]杨世伦,时钟,赵庆英.长江口潮沼植物对动力沉积过程的影响.海洋学报,2001,23(4):75-80.
    [19]杨世伦,姚炎明,贺松林.长江口冲积岛岸滩剖面形态和冲淤规律.海洋与湖沼,1999,30(6):764-769.
    [20]由文辉.上海地区的湿地资源及其保护.上海环境科学,1997,16(7):6-8.
    [21]袁兴中,陆健健.长江口潮滩湿地大型底栖动物群落·的生态学特征.长江流域资源与环境,2002,11(5):414-419.
    [22]袁兴中,陆健健.长江口岛屿湿地的底栖动物资源研究.自然资源学报,2001,1:37-41.
    [1]Bloom N.S., Eve P., Jodie K., Misti H. Selective extractions to assess the biogeochernically relevant fractionation of inorganic mercury in sediments and soils. Analytica Chimca Acta,2003, 479:233-248.
    [2]Cantwell M.G., Burgess R.M. Variability of parameters measured during the resuspension of sediments with a particle entrainment simulator. Chemosphere,2004,56:51-58.
    [3]Caricchia A.M., Minervini G, Soldati P., Chiavarini S., Ubaldi C., Morabito R.. GC-ECD determination of methylmercury in sediment samples using a SPB-608 capillary column after alkaline digestion. MicrochemicalJournal,1997,55:44-55.
    [4]Kolmert A., Wikstrom P., Hallberg K.B. A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures. Journal of Microbiological Methods,2000,41:179-184.
    [5]Lee B.-G., Griscom S.B., Lee J.-S., Choi H.J., Koh C.-H., Luoma S.N., Fisher N.S. Influences of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediments. Science, 2000,282:282-284.
    [6]Liang L., Horvat M., Cernichiari E., Gelein B., Balogh S. Simple solvent extraction technique for elimination of matrix interferences in the determination of methylmercury in environmental and biological samples by ethylation-gas chromatography-cold vapor atomic fluorescence spectrometry, Talanta,1996,43:1883-1888.
    [7]Mao Z., Shen H., Liu T., Eisma D. Types of saltwater intrusion of the Changjiang Estuary. Science of China (Series B),2001,44:150-157.
    [8]Ramalhosa E., Rio Segade S., Pereira E., Vale C., Duarte A. Simple methodology for methylmercury and inorganic mercury determinations by high-performance liquid chromatography-cold vapour atomic fluorescence spectrometry. Analytica Chimica Acta,2001, 448:135-143.
    [9]Shi J.-B., Liang L.-N., Jiang G.-B., Jin X.-L. The speciation and bioavailability of mercury in sediments of Haihe River, China. Environment International,2005,31:357-365.
    [10]Tsai C.H., Lick W. A portable device for measuring sediment resuspension. Journal of Great Lake Research,1986,12:314-321.
    [11]毕春娟.长江口滨岸潮滩重金属环境生物地球化学研究.华东师范大学博士学位论文,2004,33-35.
    [12]国家环境保护总局.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002:139-141.
    [13]林玉环,郭明新,庄岩.底泥中酸性挥发硫及同步浸提金属的测定.环境学学报,1997,17(3):353-358.
    [14]吕超,刘丽萍,董慧茹,李筱薇.盐酸提取-液相色谱-原子荧光联用技术检测水产品中甲基汞等汞化合物.分析试验室,2010,29(2):64-68.
    [15]钱嫦萍,陈振楼,胡玲珍,邓焕广.崇明东滩沉积物再悬浮对沉积物-水界面氮、磷交换行为的影响.环境科学,2003,24:114-119.
    [1]Ankley, G.T., Di Toro, D.M., Hansen, D.J., Berry, W.J. Technical basis and proposal for deriving sediment quality criteria for metals. Environmental Toxicology and Chemistry,1996,15: 2056-2066.
    [2]ANZECC (Australian and New Zealand Environment and Conservation Council) ANZECC interim sediment quality guidelines. Report for the Environmental Research Institute of the Supervising Scientist. Sydney, Australia,1997.
    [3]Benoit, J., Gilmour, C., Mason, R., Heyes, A. Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environmental Science & Technology,1999,33:951-957.
    [4]Benoit, J.M., Gilmour, C.C., Heyes, A., Mason, R.P., Miller, C.L. Geochemical and biological controls over methylmercury production and degradation in aquatic systems. In:Cai, Y., Braids, O.C. (Eds.), Biochemistry of Environmentally Important Trace Elements. American Chemical Society, Washington, DC,2003, pp:262-297.
    [5]Benoit, J.M., Gilmour, C.C., Mason, R.P. The influence of sulphide on solid-phase mercury bioavailability for methylation by pure cultures of Desulfobulbus propionicus (1pr3). Environmental Science & Technology,2001,35:127-132.
    [6]Benoit, J.M., Gilmour, C.C., Mason, R.P., Riedel, G.S., Riedel, G.F. Behaviour of mercury in Patuxent River estuary. Biogeochemisty,1998,40:249-265.
    [7]Blaabjerg, V., Finster, K. Sulphate reduction associated with roots and rhizomes of the marine macrophyte Zostera marina. Aquatic Microbial Ecology,1998,15:311-314.
    [8]Bloom, N.S., Eve, P., Jodie, K., Misti, H. Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Analytica Chimica Acta,2003, 479:233-248.
    [9]Bryan, G.W., Gibbs, P.E., Huggett, R.J., Curtis, L.A., Bailey, D.S., Dauer, D.M. Effects of tributyltin pollution on the mud snail, Ilyanassa obsoleta, from the York River and Sarah Creek, Chesapeake Bay. Marine Pollution Bulletin,1989,20:458-462.
    [10]Canario, J., Vale, C., Caetano, M. Distribution of monomethylmercury and mercury in surface sediments of the Tagus Estuary (Portugal). Marine Pollution Bulletin,2005,50:1142-1145.
    [11]Canario, J., Vale, C., Nogueira, M. The pathway of mercury in contaminated waters determined by association with organic carbon (Tagus Estuary, Portugal). Applied Geochemistry,2008,23: 519-528.
    [12]Cantwell, M.G., Burgess, R.M., King, J.W. Resuspension of contaminated field and formulated reference sediments Part Ⅰ:Evaluation of metal release under controlled laboratory conditions. Chemosphere,2008,73:1824-1831.
    [13]Chen, Z., Liu, P., Xu, S., Liu, L., Yu, J. and Yu, L. Spatial distribution and accumulation of heavy metals in tidal flat sediments of Shanghai coastal zone. Science in China (Series B),2001, 44(Supp.):197-208.
    [14]Choe, K.Y., Gill, G.A., Lehman, R.D., Han, S., Heim, W.A., Coale, K.H. Sediment-water exchange of total mercury and monomethyl mercury in the San Francisco Bay-Delta. Limnol Oceanogr,2004,49:1512-1527.
    [15]Compeau, G.C., Bartha, R. Sulfate-reducing bacteria:principal methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology,1985,50:498-502.
    [16]Conaway C.H., Squire S., Mason R.P., Flegal A.R. Mercury speciation in the San Francisco Bay estuary. Marine Chemistry,2003,80:199-225.
    [17]Coquery, M.Biogeochemistry of mercury in estuarine and coastal environments. Ph.D. thesis, Univ. Paris 06,1994, France.
    [18]Coquery, M., Cossa, D., Sanjuan, J. Speciation and sorption of mercury in two macrotidal estuaries. Marine Chemistry,1997,58:213-227.
    [19]Ding, Z., Wang, W., Liu, C., Tang, Q., Zhuang, M. Distribution and Species of Mercury in Water and Sediments from Huangpu River. Chinese Journal of Environmental Science,2005,26: 62-66.
    [20]Ding, Z.H., Liu, J.L., Li, L.Q., Lin, H.N., Wu, H., Hu, Z.Z. Distribution and speciation of mercury in surficial sediments from main mangrove wetlands in China. Marine Pollution Bulletin,2009,58:1319-1325.
    [21]Fabbri, D., Locatelli, C., Snape, C.E., Tarabusi, S. Sulfur speciation in mercury-contaminated sediments of a coastal lagoon:the role of elemental sulphur. Journal of Environmental Monitoring,1991,3:483-486.
    [22]Feng, H., Han X., Zhang W., Yu L. A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization. Marine Pollution Bulletin,2004,49:910-915.
    [23]Gagnon, C., Pelletier, E., Mucci, A Behavior of anthropogenic mercury in coastal marine sediments. Marine Chemistry,1997,59:159-176.
    [24]Gao S., Luo T., Zhang B., Zhang H., Han Y, Zhao Z., Hu Y. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta,1998, 62(11):1959-1975.
    [25]Gerritse, R.G., Wallbrink, P.J., Murray, A.S. Accumulation of Phosphorus and Heavy Metals in the Peel-Harvey Estuary in Western Australia:Results of a Preliminary Study. Estuarine, Coastal and Shelf Science,1998,47:679-693.
    [26]Gilmour, C., Henry, E. Mercury methylation in aquatic systems affected by acid deposition. Environmental Pollution,1991,71:131-169.
    [27]Hakanson, L. An ecological risk index for aquatic pollution control:a sediment biological approach. Water Research,1980,14(8):975-1001.
    [28]Hammerschmidt, C.R., Fitzgerald, W.F. Methylmercury cycling in sediments on the continental shelf of southern New England. Geochimica et Cosmochimica Acta,2006,70:918-930.
    [29]Hammerschmidt, C.R., Fitzgerald, W.F., Lamborg, C.H., Balcom, P.H., Visscher, P.T. Biogeochemistry of methylmercury in sediments of Long Island Sound. Marine Chemistry,2004, 90:31-52.
    [30]Heyes, A., Miller, C., Mason, R.P. Mercury and methylmercury in Hudson River sediment: impact of tidal resuspension on partitioning and methylation. Marine Chemistry,2004,90: 75-89.
    [31]Horowitz, A.J., Elrick, K.A. The relation of stream sediment surface area, grain size and composition to element chemistry. Applied Geochemistry,1987,2:437-451.
    [32]Kannan K., Falandysz J. Speciation and concentrations of mercury in certain coastal marine sediments. Water Air and Soil Pollution,1998,103:129-136.
    [33]Lacerda, L.D., Goncalves, G.O. Mercury distribution and speciation in waters of the coastal lagoons of Rio de Janeiro, SE Brazil. Marine Chemistry,2001,76:47-58.
    [34]Lai, T., Qiu, S. A preliminary study on the mercury contents in sediments and macrobenthos of Yingluo Bay mangrove area, Guangxi. Journal of Guangxi Academy of Sciences,1998,14 (4): 27-31.
    [35]Lambertsson, L., Nilsson, M. Organic material:the primary control on mercury methylation and ambient methylmercury concentrations in estuarine sediments. Environmental Science & Technology,2006,40:1822-1829.
    [36]Lindberg, S.E., Hariss, R.C. Release of mercury and organics from resuspended near-Shore shore sediments. Journal (Water Pollution Control Federation),1977,49:2479-2487.
    [37]Long, E.R., Macdonald, D.D., Smith, S.L., Calder, F.D. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management,1995,19:81-97.
    [38]Mason, R.P., Benoit, J.M. Organomercury compounds in the environment. In:Craig, P.J. (Ed.), Organometallic Compounds in the Environment. John Wiley & Sons,2003, pp:57-100.
    [39]Mason, R.P., Kim, E.H., Cornwell, J., Heyes, D. An examination of the factors influencing the flux of mercury, methylmercury and other constituents from estuarine sediment. Marine Chemistry,2006,102:96-110.
    [40]Mason, R.P., Lawrence, A.L. Concentration, distribution, and bioavailability of mercury and methylmercury in sediments of Baltimore Harbor and Chesapeake Bay, Maryland, USA. Environmental Toxicology and Chemistry,1999,18:2438-2447.
    [41]Mason, R.P., Lawson, N.M., Lawrence, A.L., Leaner, J.J., Lee, J.G., Sheu, G-R. Mercury in the Chesapeake Bay. Marine Chemistry,1999,65:77-96.
    [42]Muller, G Index of geoaccumulation in sediments of the Rhine River. Geojournal,1969, 2(3):108-118.
    [43]Miiller, G. Die Schwermetallbelastung der sedimente des Neckars und seiner Nebenflusse:eine Bestandsaufnahme. Chemical Zeitung,1981,105:157-164.
    [44]NOAA (National Oceanic and Atmospheric Administration) (1999) Screening quick reference tables (SquiRTs) http://response.restoration.noaa.gov/cpr/sediment/squirt/squirt.html
    [45]Ouddane, B., Mikac, N., Cundy, A.B., Quillet, L., Fischer, J.C. A comparative study of mercury distribution and methylation in mudflats from two macrotidal estuaries:The Seine (France) and the Medway (United Kingdom). Applied Geochemistry,2008,23:618-631.
    [46]Rothenberg, S.E., Ambrose, R.F., Jay, J.A. Mercury cycling in surface water, pore water and sediments of Mugu Lagoon, CA, USA. Environmental Pollution,2008,154:32-45.
    [47]Shi, J., Liang, L., Jiang, G, Jin, X.. The speciation and bioavailability of mercury in sediments of Haihe River, China. Environment international,2005a,31:357-365.
    [48]Shi, J., Liang, L., Yuan, C., He, B., Jiang, G. Methylmercury and total mercury in sediments collected from the East China Sea. Bulletin of Environmental Contamination and Toxicology, 2005b,74:980-987.
    [49]Smith, S.L., MacDonald, D.D., Keenleyside, K.A., Ingersoll, C.G., Field, J. A preliminary evaluation of sediment quality assessment values for freshwater ecosystems. Journal of Great Lakes Research,1996,22:624-638.
    [50]St. Louis, V.L., Rudd, J.W.M., Kelly, C.A., Beaty, K.G., Bloom, N.S., Flett, R.J. Importance of wetlands as sources of methylmercury boreal forest ecosystem. Canadian Journal of Fisheries and Aquatic Sciences,1994,51:1065-1076.
    [51]Stordal, M.C., Gill, G.A., Wen, L.S., Santschi, P.H. Mercury phase speciation in the surface waters of three Texas estuaries:importance of colloidal forms. Limnology and Oceanography, 1996,41:52-61.
    [52]Sunderland, E.M., Gobas, F.A.P.C., Branfireun, B.A., Heyes, A. Environmental controls on the speciation and distribution of mercury in coastal sediments. Marine Chemistry,2006,102: 111-123.
    [53]Ullrich, S.M., Tanton, T.W., Abdrashltova, S.A. Mercury in the aquatic environment:a review of factors affecting methylation. Crit. Rev. Environmental Science & Technology,2001,31: 241-293.
    [54]Vane, C.H., Jones, D.G., Lister, T.R. Mercury contamination in surface sediments and sediment cores of the Mersey Estuary, UK. Marine Pollution Bulletin,2009,58:940-946.
    [55]Wang, S., Jia, Y., Wang, S., Wang, X., Wang, H., Zhao, Z., et al. Total mercury and monomethylmercury in water, sediments, and hydrophytes from the rivers, estuary, and bay along the Bohai Sea coast, northeastern China. Applied Geochemistry,2009,24:1702-1711.
    [56]Wangersky, P.J. Biological Control of trace metal residence time and speciation:a review and synthesis. Marine Chemistry,1986,18:269-297.
    [57]Xiu, G., Jin, Q., Zhang, D., Shi, S., Huang, X., Zhang, W., et al. Characterization of size-fractionated particulate mercury in Shanghai ambient air. Atmospheric Environment,2005, 39:419-427.
    [58]Xiu, G, Shi, S., Zhang, D. Preliminary study of characteristics of particulate mercury in fine particle in ambient air. Shanghai Environment Science,2003,22:310-312.
    [59]Yang, S.L., Zhang, J., Zhu, J., Smith, J.P., Dai, S.B., Gao, A. Impact of Dams on Yangtze River Sediment Supply to the Sea and Delta Wetland Response. Journal of Geophysical Research, 2005,110, F03006, doi:10.1029/2004JF000271.
    [60]Zhang, W., Feng, H., Chang, J., Qu, J., Xie, H., Yu, L. Heavy metal contamination in surface sediments of Yangtze River intertidal zone:An assessment from different indexes. Environmental Pollution,2009,157:1533-1543.
    [61]Zhang, S.M., Zhen, S.Q., Pang, X.Z. Mercury in the Changjiang River estuary water. Marine sciences,1989,5:40-43.
    [62]Zhong, H., Wang, W.X.. Effects of sediment composition on inorganic mercury partitioning, speciation and bioavailability in oxic surficial sediments. Environmental Pollution,2008,151: 222-230.
    [63]Zwolsman, J.J.G., Van Eck, B.T.M., Van Der Weijden, C.H. Geochemistry of dissolved trace metals (Cadmium, Copper, Zinc) in the Scheldt estuary, southwestern Netherlands:Impact of seasonal variability. Geochimica et Cosmochimica Acta,1997,61:1635-1652.
    [64]毕春娟.长江口滨岸潮滩重金属环境生物地球化学研究.华东师范大学博士学位论文,2004.
    [65]黄向青,梁开,刘雄.珠江口表层沉积物有害重金属分布及评价.海洋湖沼通报,2006,(3):27-36.
    [66]廉雪琼.广西近岸海域沉积物中重金属污染评价.海洋环境科学,2002,21(3):39-42.
    [67]刘宪斌,姜中鹏,张光玉,刘占广,曹佳莲,许崇彦,刘菁.天津塘沽潮间带沉积物中重金属的潜在生态危害评价.农业环境科学学报,2008,27(2):731-735.
    [68]秦延文,苏一兵,郑丙辉,张雷,万峻.渤海湾表层沉积物重金属与污染评价.海洋科学,2007,31(12):28-33.
    [69]汪雅谷.上海地区绿色食品蔬菜的土壤环境质量标准.上海农业学报,1997,13(3):11-15.
    [70]魏复盛,陈静生,吴燕玉,郑春江.中国土壤环境背景值研究.环境科学,12(4):12-19.
    [71]赵一阳,鄢明才.中国浅海沉积物地球化学[M].北京:科学出版社,1994.
    [1]Almeida, C.M.R., Mucha, A.P., Vasconcelos, M. Influence of the sea rush Juncus maritimus on metal concentration and speciation in estuarine sediment colonized by the plant. Environmental Science & Technology,2004,38:3112-3118.
    [2]Almeida, C.M.R., Mucha, A.P., Vasconcelos, M.T.S.D. Comparison of the role of the sea club-rush Scirpus maritimus and the sea rush Juncus maritimus in terms of concentration, speciation and bioaccumulation of metals in the estuarine sediment. Environmental Pollution, 2006,142:151-159.
    [3]Best, E.P.H., Hintelmann, H., Dimock, B., Bednar, A.J. Natural Cycles and Transfer of Mercury Through Pacific Coastal Marsh Vegetation Dominated by Spartina foliosa and Salicornia virginica. Estuaries and Coasts,2008,31(6):1072-1088.
    [4]Cacador, I., Vale, C., Catarino, F. Accumulation of Zn, Pb, Cu, Cr and Ni in sediments between roots of the Tagus Estuary salt marshes, Portugal. Estuarine, Coastal and Shelf Science,1996,42: 393-403.
    [5]Cacador, I., Vale, C., Catarino, F. Seasonal variation of Zn, Pb, Cu and Cd concentrations in the root-sediment system of Spartina maritima and Halimione portulacoides from Tagus estuary salt marshes. Marine Environmental Research,2000,49:279-290.
    [6]Caetano, M., Vale, C. Retention of arsenic and phosphorus in iron-rich concretions of Tagus salt marshes. Marine Chemistry,2002,79:261-271.
    [7]Canario, J., Caetano, M., Vale, C., Cesario, R. Evidence for elevated production of methylmercury in salt marshes. Environmental Science and Technology,2007,41:7376-7382.
    [8]Canario, J., Vale, C., Poissant, L., Nogueira, M., Pilote, M., Branco, V. Mercury in sediments and vegetation in a moderately contaminated salt marsh (Tagus Estuary, Portugal). Journal of Environmental Sciences,2010,22(8):1151-1157.
    [9]Castro, R., Pereira, S., Lima, A., Corticeiro, S., Valega, M., Pereira, E., Duarte, A., Figueira, E. Accumulation, distribution and cellular partitioning of mercury in several halophytes of a contaminated salt marsh. Chemosphere,2009,76:1348-1355.
    [10]Chen, Z.Y., Li, B., Zhong, Y., Chen, J.K. Local competitive effects of introduced Spartina alterniflora on Scirpus mariqueter at Dongtan of Chongming Island, the Yangtze River estuary and their potential ecological consequences. Hydrobiologia,2004,528:99-106.
    [11]Chung, C.H. Thirty years of ecological engineering with Spartina plantations in China. Ecological Engineering,1993,2:261-289.
    [12]Coelho, J.P., Pereira, M.E., Duarte, A.C., Pardal, M.A. Contribution of primary producers to mercury trophic transfer in estuarine ecosystems:Possible effects of eutrophication. Marine Pollution Bulletin,2009,58:358-365.
    [13]Creach, V, Schricke, M.T., Bertru, G., Mariotti, A. Stable isotopes and gut analyzes to determine feeding relationships in saltmarsh macroconsumers. Estuarine, Coastal and Shelf Science,1997, 44:599-611.
    [14]Dellwig, O., Hinrichs, J., Hild, A., Brumsack, H.-J. Changing sedimentation in tidal flat sediments of the southern North Sea from the Holocene to the present:a geochemical approach. Journal of Sea Research,2000,44:195-208.
    [15]Doyle, M.O., Otte, M.L. Organism-induced accumulation of iron, zinc and arsenic in wetland soils. Environmental Pollution,1997,96:1-11.
    [16]Drifmeyer, J.E., Cross, F.A., Zieman, J.C. Sorption and desorption of trace elements by Spartina alterniflora detritus. Plant and Soil,1982,66:69-80.
    [17]Dypvik, H., Harris, N.B. Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr+Rb)/Sr ratios. Chemical Geology,2001,181:131-146.
    [18]Fralick, P.W., Kronberg, B.I. Geochemical discrimination of clastic sedimentary rock sources. Sedimentary Geology,1997,113:111-124.
    [19]Hung, G.A., Chmura, G.L. Mercury accumulation in surface sediments of salt marshes of the Bay of Fundy. Environmental Pollution,2006,142:418-431.
    [20]Jiang, L., Luo, Y., Chen, J., Li, B. Ecophysiological characteristics of invasive Spartina alterniflora and native species in salt marshes of Yangtze River estuary, China. Estuarine, Coastal and Shelf Science,2009,81:74-82.
    [21]Jones, D.L. Organic acids in the rhizosphere-a critical review. Plant and Soil,1998,205:25-44.
    [22]Li, B., Liao, C.Z., Zhang, X.D., Chen, H.L., Wang, Q., Chen, Z.Y., Gan, X.J., Wu, J.H., Zhao, B., Ma, Z.J., Cheng, X.L., Jiang, L.F., Chen, J.K. Spartina alterniflora invasions in the Yangtze River estuary, China:an overview of current status and ecosystem effects. Ecological Engineering,2009,35:511-520.
    [23]Liao, C.Z., Luo, Y.Q., Fang, C.M., Chen, J.K., Li, B. Litter pool sizes, decomposition, and nitrogen dynamics in Spartina alterniflora-invaded and native coastal marshlands of the Yangtze Estuary. Oecologia,2008,156:589-600.
    [24]Lilleb(?), A.I., Flindt, M.R., Pardal, M.A., Marques, J.C. The effect of macrofauna, meiofauna add microfauna on the degradation of Spartina maritima detritus from a salt marsh area. Acta Oecologica-International Journal of Ecology,1999,20:249-258.
    [25]Marins, R.V., Lacerda, L.D., Goncalves, GO., de Paiva, E.C. Effect of root metabolism on the post-depositional mobilization of mercury in salt marsh soils. Bulletin of Environmental Contamination and Toxicology,1997,58:733-738.
    [26]Molina, J.A., Oyarzun, R., Esbri, J.M., Higueras, P. Mercury accumulation in soils and plants in the Almad'en mining district, Spain:one of the most contaminated sites on earth. Environmental Geochemistry and Health,2006,28:487-498.
    [27]Moorhead, K.K., Reddy, K.R. Oxygen transport through selected aquatic macrophytes. Journal of Environmental quality,1988,17:138-142.
    [28]Padmalal, D., Maya, K., Seralathan. Geochemistry of Cu, Co, Ni, Zn, Cd and Cr in the surficial sediments of a tropical estuary, southwest coast of India:a granulometric approach. Environmental Geology,1997,31(1/2):85-93.
    [29]Quan, W.M., Han, J.D., Shen, A.L., Ping, X.Y., Qian, P.L., Li, C.J., Shi, L.Y., Chen, Y.Q. Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China. Marine Environmental Research,2007,64:21-37.
    [30]Rasmussen, P.E. Current methods of estimating atmospheric mercury fluxes in remote areas. Environmental science & technology,1994,28:2233-2241.
    [31]Sanchez, J.M., SanLeon, D.G., Izco, J. Primary colonization of mudflat estuaries by Spartina maritima (Curtis) Fernald in Northwest Spain:vegetation structure and sediment accretion. Aquatic Botany,2001,69:15-25.
    [32]Soto-Jimenez, M.F., Paez-Osuna, F. Distribution and normalization of heavy metal concentrations in mangrove and lagoonal sediments from Mazatlan Harbor (SE Gulf of California). Estuarine, Coastal and Shelf Science.2001,53:259-274.
    [33]Sundby, B., Vale, C., Caetano, M., Luthe,r G. Redox chemistry in the root zone of a salt marsh sediment in the Tagus Estuary. Aquatic Geochemistry,2003,9:257-271.
    [34]Turner, A. Diagnosis of chemical reactivity and pollution sources from particulate trace metal distributions in estuaries. Estuarine, Coastal and Shelf Science,1999,48:177-191.
    [35]Valega, M., Lilleb(?), A.I., Pereira, M.E., Duarte, A.C., Pardal, M. Long term effects of mercury in a salt marsh:hysteresis in the distribution of vegetation following recovery from contamination. Chemosphere,2008,71:765-772.
    [36]Wang, R., Yuan, L., Zhang, L. Impacts of Spartina alterniflora invasion on the benthic communities of salt marshes in the Yangtze Estuary, China. Ecological Engineering,2010,36: 799-806.
    [37]Wang, J.Q., Zhang, X.D., Nie, M., Fu, C.Z., Chen, J.K., Li, B. Exotic Spartina alterniflora provides compatible habitats for native estuarine crab Sesarma dehaani in the Yangtze River estuary. Ecological Engineering,2008,34:57-64.
    [38]Weis, J.S., Windham, L., Santiago-Bass, C., Weis, P. Growth, survival, and metal content of marsh invertebrates fed diets of detritus from Spartina alterniflora Loisel. and Phragmites australis Cav. Trin. ex Steud. from metal-contaminated and clean sites. Wetlands Ecology and Management,2002,10:71-84.
    [39]Weis, J.S., Weis, P. Metal uptake, transport and release by wetland plants:implications for phytoremediation and restoration. Environment International,2004,30:685-700.
    [40]Windham, L., Weis, J.S., Weis, P. Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Estuarine, Coastal and Shelf Science,2003,56:63-72.
    [41]Yang, S.L. The role of scirpus marsh in attenuation of hydrodynamics and retention of fine sediment in the Yangtze Estuary. Estuarine, Coastal and Shelf Science,1998,47:227-233.
    [42]Yang, S.L., Li, H., Ysebaert, T., Bouma, T.J., Zhang, W.X., Wang, Y.Y., Li, P., Li, M., Ding, P.X. Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta:On the role of physical and biotic controls. Estuarine, Coastal and Shelf Science,2008,77(4):657-671.
    [43]Zawislanski, P.T., Chau, S., Mountford, H., Wong, H.C., Sears, T.C. Accumulation of selenium and trace metals on plant litter in a tidal marsh. Estuarine, Coastal and Shelf Science,2001,52: 589-603.
    [44]毕春娟.长江口滨岸潮滩重金属环境生物地球化学研究.华东师范大学博士学位论文,2004.
    [45]陈中义,付萃长,王海毅,李博,吴纪华,陈家宽.互花米草入侵东滩盐沼对大型底栖无脊 椎动物群落的影响.湿地科学,2005,3:1-7.
    [46]陈中义.互花米草入侵国际重要湿地崇明东滩的生态后果.复旦大学博士学位论文,2004.
    [47]董德明,李鱼,花修艺,张菁菁.自然水体中生物膜不同化学组分与铅、镉最大吸附量的关系.高等学校化学学报,2001,22(8):1379-1381.
    [48]高云芳.长江口盐沼湿地植物多样性及分布格局—以九段沙和崇明东滩为例.上海师范大学硕士学位论文,2009.
    [49]黄华梅,张利权,高占国.上海滩涂植被资源遥感分析研究.生态学报,2005,25:2686-2693.
    [50]欧善华,宋国元.海三棱蕉草的形态、分布与资源.上海师范大学学报(自然科学版),1992,增刊:4-9.
    [51]孙平跃,陆健健.长江口湿地资源生物的可持续利用.长江流域资源与环境,1998,7(4):330-336.
    [52]王卿.长江口盐沼植物群落分布动态及互花米草入侵的影响.复旦大学博士学位论文,2007.
    [53]吴雨华,王晓丽,董德明,路永正,伏亚萍,胡林林,李鱼.南湖水体多相介质中重金属元素的分布特征.吉林大学学报:理学版,2006,44(1):130-136.
    [54]徐炳声.上海植物志:上海科学技术文献出版社,1998.
    [1]Ankley, G. T., Di Toro D. M., Hansen D. J., Berry W. J. Technical basis and proposal for deriving sediment quality criteria for metals. Environmental Toxicology and Chemistry,1996,15: 2056-2066.
    [2]Ankley, G. T., Thomas N. A., Di Toro D. M., Hansen D. J., Mahony J. D., Berry W. J., Swartz R. C., Hoke R. A. Assessing potential bioavailability of metals in sediments:a proposed approach. Environmental Management,1994,18:331-337.
    [3]Benoit, J., Gilmour, C., Mason, R., Heyes, A. Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environmental Science & Technology,1999,33:951-957.
    [4]Benoit, J.M., Gilmour, C.C., Mason, R.P. The influence of sulphide on solid-phase mercury bioavailability for methylation by pure cultures of Desulfobulbus propionicus (1pr3). Environmental Science & Technology,2001,35:127-132.
    [5]Berner, R.A. Sedimentary pyrite formation, American Journal of Science,1970,268L:1-23.
    [6]Berry, W.J., Hansen, D.J., Mahony, J.D., Robson, D.L., Di Toro, D.M., Shipley, B.P., Rogers, B., Corbin, J.M., Boothman, W.S. Predicting the toxicity of metal-spiked laboratory sediments using acid-volatile sulfide and interstitial water normalizations. Environmental Toxicology and Chemistry,1996,15:2067-2079.
    [7]Brumbaugh, W.G, Arms, J.W. Quality control considerations for the determination of acid-volatile sulfide and simultaneously extracted metals in sediments. Environmental Toxicology and Chemistry,1996,15(3):282-285.
    [8]Canario, J. Poissant, L., O'Driscoll, N., Ridal, J., Delongchamp, T., Pilote, M., Constant, P., Blais, J., Lean, D. Mercury Partitioning in Surface Sediments of the Upper St. Lawrence River (Canada):Evidence of the Importance of the Sulphur Chemistry. Water, Air, & Soil Pollution, 2008,187:219-231.
    [9]Canfield, D.E., Raiswell, R., Bottrell, S. The reactivity of sedimentary iron minerals toward sulfide, American Journal of Science,1992,292:659-683.
    [10]Chen, C.Y., Dionne, M., Mayes, B.M., Ward, D.M., Sturup, S., Jackson, B.P. Mercury Bioavailability and Bioaccumulation in Estuarine Food Webs in the Gulf of Maine. Environmental Science & Technology,2009,43:1804-1810.
    [11]Compeau, G.C., Bartha, R. Sulphate-reducing bacteria:principal methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology,1985,50:498-502.
    [12]Di Toro, D.M., J. D.Mahony, D. J. Hansen, K. J. Scott,M. B. Hicks, S. M. Mays, and M. S. Redmond. Toxicity of cadmium in sediments:the role of acid volatile sulfide. Environmental Toxicology and Chemistry,1990,9:1489-1504.
    [13]Drott, A., Lambertsson, L., Bjorn, E., Skyllberg, U. Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments. Environmental Science & Technology,2007,41:2270-2276.
    [14]Gilmour, C.G., Henry, E.A., Mitchell, R. Sulfate stimulation of mercury methylation in freshwater sediments. Environmental Science & Technology,1992,26:2281-2287.
    [15]Haines, T.A., May, T.W., Finlayson, R.T., Mierzykowski, S.E. Factors affecting food chain transfer of mercury in the vicinity of the Nyanza Site, Sudbury River, Massachusetts. Environmental Monitoring and Assessment,2003,86:211-232.
    [16]Hammerschmidt, C.R., Fitzgerald, W.F. Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environmental Science & Technology,2004, 38:1487-1495.
    [17]Hammerschmidt, C.R., Fitzgerald, W.F. Methylmercury cycling in sediments on the continental shelf of southern New England. Geochimica et Cosmochimica Acta,2006,70:918-930.
    [18]Hammerschmidt, C.R., Fitzgerald, W.F., Lamborg, C.H., Balcom, P.H., Visscher, P.T. Biogeochemistry of methylmercury in sediments of Long Island Sound. Marine Chemistry,2004, 90:31-52.
    [19]Han, S., Obraztsova, A., Pretto, P., Deheyn, D.D., Gieskes, J., Tebo, B.M. Sulfide and iron control on mercury speciation in anoxic estuarine sediment slurries. Marine Chemistry,2008, 111(3-4):214-220.
    [20]Han, Y., Kingston, H.M., Boylan, H.M., Rahman, G.M.M., Shah, S., Richte,r R.C., Link, D.D., Bhandari, S. Speciation of mercury in soil and sediment by selective solvent and acid extraction. Analytical and Bioanalytical Chemistry,2003,375:428-36.
    [21]Hare, L., Carignan, R., Huerta-Diaz, M.A. A field study of metal toxicity and accumulation by benthic invertebrates:implications for the acid-volatile sulfide (AVS) model. Limnology and Oceanography,1994,39:1653-1668.
    [22]Hines, M.E., Faganeli, J., Adatto, I., Horvat, M. Microbial mercury transformations in marine, estuarine and freshwater sediment downstream of the Idrija Mercury Mine, Slovenia. Applied geochemistry,2006,21:1924-1939.
    [23]Hintelmann, H., Wilken, R.D. Levels of total mercury and methylmercury compounds in sediments of the polluted Elbe River:influence of seasonally and spatially varying environmental factors. Science of the Total Environment,1995,166:1-8.
    [24]Kirk, G. The Biogeochemistry of Submerged Soils. Wiley, Chichester,2004.
    [25]Libes, S.M. An Introduction to Marine Biogeochemistry. John Wiley & Sons, New York, NY, 1992.
    [26]Liu, J., Valsaraj, K.T., Devai, I., DeLaune R.D. Immobilization of aqueous Hg(Ⅱ) by mackinawite (FeS). Journal of Hazardous Materials,2008,157:432-440.
    [27]Mason, R.P., Lawrence, A.L. Concentration distribution and bioavailability of mercury and methylmercury in sediments of Baltimore Harbour and Chesapeake Bay, Maryland, USA. Environmental Toxicology and Chemistry,1999,18:2438-2447.
    [28]Mayer, L.M., Chen, Z., Findlay, R.H., Fang, J., Sampson, S., Self, R.F.L., Jumars, P.A., Quetel, C., Donard, O.F.X. Bioavailability of sedimentary contaminants subject to deposit-feeder digestion. Environment and Science Technology,1996,30:2641-2645.
    [29]Mehrotra, A.S., Home, A.J., Sedlak, D.L. Reduction of net mercury methylation by iron in Desulfobulbus propionicus (1pr3) cultures:Implications for engineered wetlands. Environmental Science & Technology,2003,37 (13):3018-3023.
    [30]Mehrotra, A.S., Sedlak, D.L. Decrease in net mercury methylation rates following iron amendment to anoxic wetland sediment slurries. Environmental Science & Technology,2005,39 (8):2564-2570.
    [31]Morel, F.M.M., Kraepiel, A.M.L., Amyot, M. The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology and Systematics,1998,29:543-66.
    [32]National Research Council. Bioavailability of contaminants in soils and sediments. Washington D C:National Academies Press,2003.
    [33]NIST. Database 46:NIST Critically selected stability constants of metal complexes database, Version 7. National Institute of Standards and Technology,2003.
    [34]Ouddane, B., Mikac, N., Cundy, A.B., Quillet, L., Fischer, J.C. A comparative study of mercury distribution and methylation in mudflats from two macrotidal estuaries:The Seine (France) and the Medway (United Kingdom). Applied Geochemistry,2008,23:618-631.
    [35]Parmar, N., Gorby, Y.A., Beveridge, T.J., Ferris, F.G Formation of green rust and immobilization of nickel in response to bacterial reduction of hydrous ferric oxide. Geomicrobiology Journal. 2001,18:375-385.
    [36]Poulton, S.W., Canfield, D.E. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chemical Geology,2005, 214:209-221.
    [37]Ravichandran, M. Interactions between mercury and dissolved organic matter-a review. Chemosphere,2004,55:319-31.
    [38]Reddy, K.R., DeLaune, R.D. Biogeochemistry of Wetlands:Science and Applications. CRC Press, Boca Raton,2008.
    [39]Rickard, D., Morse, J.W. Acid volatile sulfide. Marine Chemistry,2005,97:141-197.
    [40]Rothenberg, S.E., Ambrose, R.F., Jay, J.A. Mercury cycling in surface water, pore water and sediments of Mugu Lagoon, CA, USA. Environmental Pollution,2008,154:32-45.
    [41]Sferra, J.C., Fuchsman, P.C., Wenning, R.J., Barber, T.R. A site-specific evaluation of mercury toxicity in sediment. Archives of Environmental Contamination and Toxicology,1999,37(4): 488-495.
    [42]Suchanek, T.H., Eagles-Smith, C.A., Harner, E.J. Is Clear Lake methyl mercury distribution decoupled from bulk mercury loading? Ecological Applications,2008,18(Supplement): A107-A127.
    [43]Sunderland, E.M., Gobas, F.A.P.C., Heyes, A., Branfireun, B.A., Bayer, A.K., Cranston, R.E., Parsons, M.B. Speciation and bioavailability of mercury in well-mixed estuarine sediments. Marine Chemistry,2004,90:91-105.
    [44]Sunderland, E.M., Gobas, F.A.P.C., Branfireun, B.A., Heyes, A. Environmental controls on the speciation and distribution of mercury in coastal sediments. Marine Chemistry,2006,102: 111-123.
    [45]Tessier, A., Campbell, P.G.C., Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical chemistry,1979,51:844-851.
    [46]Ulrich, P.D., Sedlak, D.L. Impact of Iron Amendment on Net Methylmercury Export from Tidal Wetland Microcosms. Environmental Science & Technology,2010,44:7659-7665.
    [47]Weber, F.-A., Voegelin, A., Kretzschmar, R. Multi-metal contaminant dynamics in temporarily flooded soil under sulfate limitation. Geochimica et Cosmochimica Acta,2009,73:5513-5527.
    [48]Zachara, J.M., Fredrickson, J.K., Smith, S.C., Gassman, P.L. Solubilization of Fe(Ⅲ) oxide-bound trace metals by a dissimilatory Fe(III) reducing bacterium. Geochimica et Cosmochimica Acta,2001,65:75-93.
    [49]周栋,王东启,陈振楼,孙月娣,毕春娟,李九发,许世远.上海市滨岸带沉积物中酸挥发性硫化物垂直分布及空间变化特征.环境群学研究,2009,22(2):138-144.
    [50]锺寰,王文雄.沉积物中汞的生物可利用性研究进展.环境化学,2011,30(1):165-178.
    [1]Acevedo-Figueroa D, Jimenez B D, Rodriguez-Sierra C J. Trace metals in sediments of two estuarine lagoons from Puerto Rico. Environmental Pollution,2006,141:336-342.
    [2]Ankley G T, Di Toro D M, Hansen D J, Berry W J. Technical basis and proposal for deriving sediment quality criteria for metals. Environmental Toxicology and Chemistry,1996,15: 2056-2066.
    [3]Atkinson C A, Jolley D F, Simpson S L. Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere,2007,69:1428-1437.
    [4]Benoit J M, Gilmour C C, Mason R P, Riedel G S, Riedel G F. Behaviour of mercury in Patuxent River estuary. Biogeochemisty,1998,40:249-265.
    [5]Brassard P, Kramer J R, Collins P V. Dissolved metal concentrations and suspended sediment in Hamilton Harbour. Journal of Great Lakes Research,1997,23:86-96.
    [6]Cantwell M G, Burgess R M, Kester D R. Release and Phase Partitioning of Metals from Anoxic Estuarine Sediments during Periods of Simulated Resuspension. Environmental Science & Technology,2002,36(24),5328-5334.
    [7]Cantwell M G, Burgess R M, King J W. Resuspension of contaminated field and formulated reference sediments Part Ⅰ:Evaluation of metal release under controlled laboratory conditions. Chemosphere,2008,73 (11):1824-1831.
    [8]Chen S, Zhang G, Yang S. Temporal and spatial changes of suspended sediment concentration and resuspension in the Yangtze River estuary. Journal of Geographical Sciences,2003,13: 498-506.
    [9]Comans R N J, Van Dijk C P J. Role of complexation processes in cadmium mobilization during estuarine mixing. Nature,1988,336:151-154.
    [10]Coquery M, Cossa D, Sanjuan J. Speciation and sorption of mercury in two macro-tidal estuaries. Marine Chemistry,1997,58(1-2):213-227.
    [11]De Groot A J, De Goeij J J M, Zegers C. Contents and behaviour of mercury as compared with other heavy metals in sediments from the rivers Rhine and Ems. Geologie en Mijnbouw,1971,50: 393-398.
    [12]Ferre B, Durrieu de Madron X, Estournel C, Ulses C, Le Corre G. Impact of natural (waves and currents) and anthropogenic (trawl) resuspension on the export of particulate matter to the open ocean Application to the Gulf of Lion (NW Mediterranean). Continental Shelf Research,2008, 28:2071-2091.
    [13]Gerritse R G, Wallbrink P J, Murray A S. Accumulation of Phosphorus and Heavy Metals in the Peel-Harvey Estuary in Western Australia:Results of a Preliminary Study. Estuarine, Coastal and Shelf Science,1998,47:679-693.
    [14]Heyes A, Miller C, Mason R P. Mercury and methylmercury in Hudson River sediment:impact of tidal resuspension on partitioning and methylation. Marine Chemistry,2004,90(1-4):75-89.
    [15]Je C H, Hayes D F, Kim K S. Simulation of resuspended sediments resulting from dredging operations by a numerical flocculent transport model. Chemosphere,2007,70(2):187-195.
    [16]Kim E-H, Mason R P, Porter E T, Soulen H L. The impact of resuspension on sediment mercury dynamics, and methylmercury production and fate:A mesocosm study. Marine Chemistry,2006, 102:300-315.
    [17]Kim E-H, Mason R P, Porter E T, Soulen H L. The effect of resuspension on the fate of total mercury and methyl mercury in a shallow estuarine ecosystem:a mesocosm study. Marine Chemistry,2004,86:121-137.
    [18]Kularatne S, Pattiaratchi C. Turbulent kinetic energy and sediment resuspension due to wave groups. Continental Shelf Research,2008,28:726-736.
    [19]Lacerda L D, Goncalves G O. Mercury distribution and speciation in waters of the coastal lagoons of Rio de Janeiro, SE Brazil. Marine Chemistry,2001,76(1-2):47-58.
    [20]Mao Z, Shen H, Liu T, Eisma D. Types of saltwater intrusion of the Changjiang Estuary. Science China (Ser B),2001,44:150-157.
    [21]Martino M, Turner A, Nimmo M, Millward G E. Resuspension, reactivity and recycling of trace metals in the Mersey Estuary, UK. Marine Chemistry,2002,77:171-186.
    [22]Mason R P, Lawson N M, Lawrence A L, Leaner J J, Lee J G, Sheu G R. Mercury in the Chesapeake Bay. Marine Chemistry,1999,65:77-96.
    [23]Mason R P, Sullivan K A. Mercury and methylmercury transport through an urban watershed. Water Research,1998,32:321-330.
    [24]Pia Di Nanno M, Curutchet G, Ratto S. Anaerobic sediment potential acidification and metal release risk assessment by chemical characterization and batch resuspension experiments. Journal of Soils and Sediments,2007,7:187-194.
    [25]Schafer J, Blanc G, Audry S, Cossa D, Bossy C. Mercury in the Lot-Garonne River system (France):Sources, fluxes and anthropogenic component. Applied Geochemistry,2006,21: 515-527.
    [26]Simpson S L, Apte S C, Batley G E. Effect of short-term resuspension events on trace metal speciation in polluted anoxic sediments. Environmental Science & Technology,1998,32(5): 620-625.
    [27]Simpson S L, Apte S C, Batley G.E. Effect of short-term resuspension events on the oxidation of cadmium lead, and zinc sulfide phases in anoxic estuarine sediments. Environmental Science & Technology,2000,34(21):4533-4537.
    [28]Turner A, Roux S M Le, Millward G.E. Adsorption of cadmium to iron and manganese oxides during estuarine mixing. Marine Chemistry,2008,108(1-2):77-84.
    [29]Wang J S, Huang P M, Liaw W K, Hammer U T. Kinetics of the desorption of mercury from selected freshwater sediments as influenced by chloride. Water, Air,& Soil Pollution,1991,56: 533-542.
    [30]Wang S, Jia Y, Wang S, Wang X, Wang H, Zhao Z, Liu B. Total mercury and monomethylmercury in water, sediments, and hydrophytes from the rivers, estuary, and bay along the Bohai Sea coast, northeastern China. Applied Geochemistry,2009,24:1702-1711.
    [31]Wang Z L, Liu C Q. Distribution and partition behavior of heavy metals between dissolved and acid-soluble fractions along a salinity gradient in the Changjiang Estuary, eastern China. Chemical Geology,2003,202:383-396.
    [32]Yin Y.J. Adsorption of Mercury(Ⅱ) by Soil:Effects of pH, Chloride, and Organic Matter. Journal of Environmental Quality.1996,25(6):837-844.
    [33]Zhang S M, Zhen S Q, Pang X Z. Mercury in the Changjiang River estuary water. Marine sciences,1989,5:40-43.
    [34]Zwolsman J J G, Van Eck B T M, Van Der Weijden C H. Geochemistry of dissolved trace metals (Cadmium, Copper, Zinc) in the Scheldt estuary, southwestern Netherlands:Impact of seasonal variability. Geochimica et Cosmochimica Acta,1997,61:1635-1652.
    [35]毕春娟,陈振楼,沈军,孙玮玮.再悬浮作用下长江河口沉积物中Hg的迁移与释放.环境科学,2009,30:3256-3261.
    [36]毕春娟,陈振楼,许世远,贺宝根,李丽娜,陈晓枫.河口近岸水体中颗粒态重金属的潮周期变化.环境科学,2006,27:132-136.
    [37]车越,何青,吴阿娜.河口泥沙再悬浮对悬沙中重金属元素的影响.长江流域资源与环境,2003,12(5):440-444.
    [38]陈松,廖文卓,潘皆再.长江口重金属元素的固液界面过程Ⅰ.沉积相中Pb、Cu和Cd的行为和沉积机理.海洋学报,1984,6(2):180-85.
    [39]陈业材.环境汞的来源与迁移转化规律的研究.矿物岩石地球化学通报,1994,3:135-137.
    [40]成凌,程和琴,杜金洲,戴志军,江红,陈中原.长江口底沙再悬浮对重金属迁移的影响.海洋环境群学,2007,26(4):317-320.
    [41]胡昌新.上海台风暴潮的周期性及其前兆探讨.水资源研究,2009,30(4):31-32.
    [42]时钟.长江口细颗粒泥沙过程.泥沙研究,2000,6:72-81.
    [43]许世远.长江三角洲风暴潮沉积.北京:科学出版社,1997.
    [44]张战平,朱广伟,孙小静,高永霞.水动力扰动作用对太湖水体胶体相痕量金属浓度影响的模拟.环境科学学报,2008,28(8):1674-1680.