Fe36Ni合金与SiC/Al复合材料超声波钎焊的界面结构形成机理及接头性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与Fe36Ni合金等传统封装合金相比,高体积分数颗粒增强铝基复合材料,具有低密度,低热导率以及一定范围可调的热膨胀系数等性能优点,正向电子封装领域广泛推展。但由于其表面致密的氧化膜以及大量的陶瓷颗粒,对连接性能造成极大的阻碍,限制了这种复合材料的应用范围。实现Fe36Ni合金与铝基复合材料的连接,不仅能够实现构件的减重,还能提高其导热性能,提高构件的可靠性以及延长寿命等,因此研究Fe36Ni合金和高体积分数颗粒增强铝基复合材料的焊接具有重要的理论意义和潜在的应用价值。本文以Fe36Ni合金和55%SiC_p/A356复合材料为研究对象,以两种材料的中低温连接为研究目标,提出了采用ZnAl和SnZn两种钎料对两种材料的超声波钎焊工艺。
     由于Fe36Ni的良好波传导性,对超声波钎焊工艺的制定有非常大影响。首先对在Fe36Ni合金的超声波传播特性进行了研究,获得Fe36Ni合金板振动场分布,探索合适的钎料放置位置以及超声加载方式。接着研究了ZnAl钎料与Fe36Ni合金的界面反应和组织结构,通过在钎料中增加Si元素,获得了界面结合良好,钎缝无裂纹的接头。其次研究了SnZn与Fe36Ni的界面反应和力学性能,并对固态时效下界面组织的变化进行了系统研究,获得理想的界面结构。然后研究了SnZn与55%SiC_p/A356复合材料的超声波钎焊工艺,通过对Zn含量对接头组织和性能研究,得到界面结合良好高强度的焊缝。最后研究了采用ZnAl和SnZn两种钎料对Fe36Ni合金与55%SiC_p/A356复合材料的超声波钎焊工艺。
     利用Ansys软件对Fe36Ni合金板进行模态、谐响应以及瞬态分析,研究Fe36Ni合金板的振动场分布。振幅最大值位于在距离右端(非超声加载区域)10-20mm的范围内,此处比较适合放置钎料。单次施加超声0.1s时钎料的飞溅比单次1s时小很多,因此单次超声0.1s是比较合适的工艺。也就是短时间多次超声的脉冲加载超声波方式比较适合Fe36Ni的超声波焊接。
     采用ZnAl钎料超声波钎焊Fe36Ni合金时,界面化学反应比较剧烈,焊缝中生成较多致密的化合物,且存在大量垂直于界面的裂纹。经能谱分析和逐层XRD分析可得, ZnAl/Fe36Ni的界面结构为: Fe36Ni/Γ-Fe_4Zn_9/Γ2-Fe_6Ni_5Zn_(89)/Fe-Al+Zn。ZnAlSi钎料超声波钎焊Fe36Ni合金时,在界面处形成约0.1μm的Fe_4Zn_9(SiO_4)_3化合物层。此化合物层表现为稳定性,在焊接温度420-500℃,超声作用2-15s,保温10-60min时形貌和厚度几乎不随工艺参数的变化而变化。其接头压剪强度可达102-115MPa,断裂位置主要位于这一薄层物相中。最后提出了Si元素抑制裂纹产生机理的模型。
     采用SnZn钎料超声波钎焊Fe36Ni合金时,使用Sn20Zn时界面化合物主要为Zn基的化合物,其界面稳定结构为Fe36Ni/Γ-Fe_4Zn_9/FeSn_2/Γ2-Fe_6Ni_5Zn_(89)/Sn20Zn。延长保温时间和提高焊接温度时,界面会出现富Ni Γ2向富Fe Γ2的转变。使用Sn20Zn钎料连接Fe36Ni合金时,其接头的剪切强度可以达到45-55MPa,断裂位置均为于界面化合物层与Sn20Zn钎料的界面上。对Sn20Zn/Fe36Ni的界面进行固态时效研究,Sn20Zn/Fe36Ni的固态时效界面反应层结构稳定,生长速率受扩散机制控制,经计算其界面反应层的生长激活能为6.371kJ/mol。
     通过改变超声作用、焊接温度和保温时间,研究了Sn20Zn钎料在55%SiC_p/A356复合材料的铺展润湿行为。当超声作用1s以上时,氧化膜完全去除,并且SnZn与SiC实现良好的润湿结合。接头最高剪切强度为超声作用10s+10min+10s时,可以达到108MPa,断裂位置位于近界面的钎料中。采用TEM手段在Sn与Al的界面处发现一层200-400nm的Al_2O_3非晶,增强了Sn与Al的界面结合强度。在Sn/SiC的界面存在一层10nm左右的Mg基非晶,提高了Sn与SiC的界面结合强度。随着钎料中Zn含量的增加,接头强度逐渐增加。Sn40Zn钎料的接头剪切强度最高,强度可以达到115MPa。
     综合Fe36Ni合金和55%SiC_p/A356复合材料超声波钎焊工艺,研究了上下板母材位置,超声加载方式对接头组织和性能的影响。Fe36Ni合金放置在下板时,能够同时实现对两种母材的异种连接,其最高接头强度可达到114MPa,断裂位置位于Fe36Ni合金侧界面中。使用SnZn钎料钎焊时,其接头剪切强度不随工艺参数变化,稳定在75MPa左右;其SnZn/Fe36Ni界面反应生成Fe_4Zn_9(SiO_4)_3。随着Zn含量的增加,SiC颗粒迁移进入焊缝,其接头强度保持稳定,断裂位置也位近Fe36Ni合金侧界面钎料中。
Compared with Fe36Ni alloy, which is the traditional material for electronicpackaging, high volume fraction particle reinforced aluminum matrix composites(Al MMCs) have the advantages of low density, low thermal conductivity andadjustable thermal expansion coefficient in certain range, which will be a materialused widely in electronic packaging. But the compact oxide film and numerousceramic particles on the surface are harmful to their weldability, which strictly limittheir application. To realize the joining of Fe36Ni alloy and Al MMCs can not onlyreduce weight, but also increase their thermal conductivity, to improve theirreliability and extend their life. Thus, joining Fe36Ni alloy/Al MMCs hasimportant theoretical significance and potential application. The aim of this paper isto join Fe36Ni alloy and55%SiC_p/A356composites at medium or low temperature.We want to use ultrasonic soldering process with ZnAl and SnZn solder.
     The excellent wave conductivity of Fe36Ni greatly effects on making a suitableultrasonic soldering process. Firstly, propagation characteristics of ultrasonic waveon the Fe36Ni surface was studied to get the vibration field distribution of Fe36Nialloy plate, and to optimize the suitable location for solder as well as ultrasonicloading mode. Secondly, interface reaction and microstructure of ZnAl/Fe36Niwas investigated. With the addition of Si element into solder, joints were obtainedwith good interfacial bonding, and free of crack. Thirdly, interface reaction andmechanical properties of Sn20Zn/Fe36Ni, as well as interface microstructure aftersolid aging, were systematically investigated, and ideal interface microstructure wasobtained. Forthly, ultrasonic soldering of55%SiC_p/A356composites with SnZnsolder was researched. By studying the effect of Zn content on joints’ microstructureand properties, joints with good interfacial bonding and high strength were realized.Finally, ultrasonic soldering of Fe36Ni alloy and55%SiC_p/A356composites withZnAl and SnZn solder is studied.
     Software Ansys was approached the modal analysis, harmonic response analysis,and transient analysis of Fe36Ni alloy plate, to get the vibration field distribution.Location with maximum amplitude is located in10-20mm far away from the rightside (area without ultrasonic loading), which was the suitable position for solder.The spatter loss of solder with ultrasonic time of0.1s was much smaller than that of1s. Thus, ultrasonic time of0.1s was the suitable applying ultrasonic process forFe36Ni, which was to say that multiple short ultrasonic time loading method.
     The interface reaction of ultrasonic soldering Fe36Ni alloy with ZnAl was so dramatic that lots of compact intermetallic compounds (IMCs) with cracksperpendicular to the interface were observed in joints. The interface structure ofZnAl/Fe36Ni is Fe36Ni/Γ-Fe_4Zn_9/Γ2-Fe_6Ni_5Zn_(89)/Fe-Al+Zn by EDS andlayer-by-layer XRD analysis. A0.1μm thick IMC layer of Fe_4Zn_9(SiO_4)_3compoundwas formed on the interface during ultrasonic soldeing Fe36Ni alloy with ZnAlSi.They appaered stable and their morphology and thickness did not change with theparameters. The compression shear strength of the joints can get up to102-115MPa,and fracture occured at the thin IMC layer. Lastly, model of crack inhibitionmechanism with Si element is raised.
     SnZn solder was used to ultrasonic soldering Fe36Ni. Interface IMCs weremainly Zn-based compounds with Sn20Zn, and the interface structure of Sn20Zn/Fe36Ni were Fe36Ni/Γ-Fe_4Zn_9/Γ2-Fe_6Ni_5Zn_(89)/Sn20Zn. With increasing thesoldering tempreture and prolonging the holding time, Γ2rich in Ni could transformto Γ2rich in Fe. Shear strength of Sn20Zn/Fe36Ni joints could be up to45-55MPa,fracture occured between the IMC layer and Sn20Zn solder. The interface ractionlayer of Sn20Zn/Fe36Ni after solid aging was stable, the grown rate of which wascontrolled by diffusion, and the grown activation energy of which was6.371kJ/mol.
     Spreading and wetting behaviors of Sn20Zn solder on55%SiC_p/A356composites were studied with various ultrasonic time, soldering temperature andholding time. When ultrasonic time was more than1s, the oxide film was broken upcompletely, and good wetting between SnZn and SiC was obtained. Maximum shearstrength can be up to108MPa with applying ultrasonic10s+10min+10s. Fractureoccured in the solder near the interface. An amorphous layer of Al_2O_3with200-400nm thick was formed at the interface of Sn and Al by TEM, which strengthenedthe interface bond. An Mg-based amorphous layer was also found at the Sn/SiCinterface. Joints strength of55%SiC_p/A356composites were increased with theinceeasing of Zn content in the solder, and the maximum strength can be up to115MPa with Sn40Zn.
     Based on ultrasonic soldering of Fe36Ni alloy and55%SiC_p/A356composites,effects of base metal’s position and ultrasonic loading modes on microstructure andproperties of the joints were studied. When the Fe36Ni alloy was the lower plate,and55%SiC_p/A356composites was the upper layer, the joint of two base metals canbe realized, the strength of which can be up to90-114MPa, and fracture occurs atFe36Ni alloy interface. As to SnZn solder, strength of the joints did not change withthe parameters, and was stable at75MPa. A Fe_4Zn_9(SiO_4)_3compound layer wasformed on the SnZn/Fe36Ni interface. With the increasment of Zn content, SiC wasmigrated to the joint by ultrasonic wave. The strength of the joints with Sn40Zn did not change with compared to that with Sn20Zn, and fracture also occurred in thesolder near Fe36Ni alloy interface.
引文
[1]饶勤.从F-22看第四代战斗机机载设备制造技术[J].航空精密制造技术,1996,30(2):1-7.
    [2]向华,曲选辉,肖平安,等. SiCp/Al电子封装复合材料的现状和发展[J].材料导报,2003,17(2):54-57.
    [3] J. M. Molina, E. Pinero, J. Narciso, et al. Liquid metal infiltration into ceramicparticle preforms with bimodal size distributions [J]. Current Opinion in SolidState and Mater Sci,2005,9:202-210.
    [4] S. C. Hogg, A. Lambourne, A. Ogilvy, et al. Microstructural characterizationof spray formed Si-30Al for thermal management applications [J]. ScriptaMater.,2006,55:111-114.
    [5]罗相尉.电子封装用铝基复合材料的钎焊研究[D].郑州:郑州大学硕士学位论文,2010:9.
    [6]李进军.气压浸渗SiCp/Al电子封装外壳的制备与性能[D].西安:西北工业大学硕士学位论文,2007:4.
    [7]张洋.超声波作用下SiC与Zn-Al连接界面行为及焊缝强化机理[D].哈尔滨:哈尔滨工业大学博士学位论文,2009:55,70.
    [8]李青禄,胡笛川.因瓦合金的特性及应用前景[J].机械管理开发,2007,(6):34-35.
    [9]戴闻.殷钢中热膨胀系数的微观机制[J].中国科学技术,2000,(5):317-318.
    [10]沈婕,王晓军,夏天东.因瓦效应及因瓦合金的研究现状[J].功能材料,2007,38:3198-3200.
    [11]毕梦熊.因瓦合金100年[J].上海冶金情报,1997,(7):20-26.
    [12]陆建生,沈黎明. Fe-36Ni因瓦合金研究进展[J].功能材料,2004,35:3424-3427.
    [13] C. E. Witherell. Welding nickel-iron alloys of the invar type [J]. WeldingJournal,1964,43(4):161-169.
    [14] J. L. Corbacho, J. C. Suárez, F. Molleda. Grain coarsening and boundarymigration during welding of invar Fe-36Ni alloy [J]. MaterialsCharacterization,1998,41(1):27-34.
    [15]尹波.殷钢厚板材料激光焊接技术实验研究[D].大连:大连理工大学硕士学位论文,2009:20-70.
    [16] J. H. Kuang, M. T. Sheen, S. C. Wang. Crack formation mechanism in laser-welded Au-coated invar materials for semiconductor laser packaging [J]. IEEETransactions on Advanced Packaging,1999,22(1):94-99.
    [17] S. C. Wang, C. Wang, Y. K. Tu, et al. Effect of Au coating on joint strength inlaser welding for invar-invar packages [C]//Electronic Components andTechnology Conference,1996. Proceedings.46th. IEEE,1996:942-945.
    [18]陈铮.陶瓷-金属活性金属钎焊研究的现状和进展[J].华东船舶工业学院学报(自然科学版),2001,15(2):1-7.
    [19] Z. S. Yu, P. Yang, K. Qi, et al. Effects of Mo interlayer on suppressing cracksinAl2O3/Kovar brazed joint [J]. Rare Metal Materials and Engineering,2008,37(12):2118-2121.
    [20] Z. S. Yu, P. Yang, R. F. Li. Crack formation mechanisms in Al2O3/Kovarbrazed joint [J]. Materials Science and Technology,2006,22(7):864-866.
    [21] Y. Wang, J. C. Feng, L. X. Zhang. Microstructure of alumina ceramic/Ag-Cu-Ti brazing alloy/Kovar alloy joint [J]. Materials Science and Technology,2007,23(3):320-322.
    [22]张玲艳,秦明礼,曲选辉,等. AlN陶瓷与可伐合金的活性封接[J].真空电子技术,2009,(4):7.
    [23] C. G. Zhang, G. J. Qiao, Z. H. Jin. Active brazing of pure alumina to Kovaralloy based on the partial transient liquid phase (PTLP) technique with Ni-Tiinterlayer [J]. Journal of the European Ceramic Society,2002,(22):2181-2186.
    [24] G. J. Qiao, C. G. Zhang, Z. H. Jin. Thermal cyclic test of alumina/kovar jointbrazed by Ni-Ti active filler [J]. Ceramics International,2003,29:7-11.
    [25]张志远,黄继华,张华,等. Si/SiC复相陶瓷与殷钢钎焊接头组织结构研究[J].稀有金属材料与工程,2009,38(A01):493-496.
    [26]田亮,黄继华,张志远,等.用Ti50Cu+W钎料连接Si/SiC复相陶瓷与殷钢的研究[J].材料工程,2008,(9):71-75.
    [27] K. Suganuma, T. Kamoto, M. Koizumi. Joining of silicon nitride to siliconnitride and to Invar alloy using an aluminium interlayer [J]. Journal ofMaterials Science,1987,22(4):1359-1364.
    [28] G. W. Liu, F. Valenza, M. L. Muolo, et al. SiC/SiC and SiC/Kovar joining byNi-Si and Mo interlayers [J]. J. Mater. Sci.,2010,45(16):4299-4307.
    [29]李莉娜. YG20与因瓦合金真空扩散焊接技术的研究[D].大连:大连交通大学硕士学位论文,2009:28-29.
    [30]胡忠武,王警卫,杨清海.玻璃-金属封接技术[J].电源技术,2000,24(4):251.
    [31]穆道斌,程辉,冷文波,等.金属-玻璃封接中4J29可伐合金的氧化研究[J].材料与表面处理,2003,10:38-41.
    [32] P. Abendroth. Oxide formation and adherence on an Iron-Cobalt-Nickel glasssealing alloy [J]. Materials Research&Standards,1965,5(9):459-466.
    [33] J. J. Shmidt, J. L. Carter. Using Nitrogen based atmosphere for glass-to-metalsealing [J]. Metal Progress,1985,7:29.
    [34] D. W. Luo, Z. S. Shen. Oxidation behavior of kovar alloy in controlledatmosphere [J]. Acta Metall. Sin.,2008,21(6):409-418.
    [35] C. Chanmuang, M. Naksat, T. Chairuangsri. Microscopy and strength ofborosilicate glass-to-Kovar alloy joints [J]. Materials Science and Engineering:A,2008,474(1):218-224.
    [36]张启运,庄鸿寿.钎焊手册[M].北京:机械工业出版社,2008:128.
    [37] L. Zhang, J. J. Guo, A. P. Xian, et al. Solderability of Ni, Fe elemental andalloy platings by SnAgCu [C]//High Density packaging and MicrosystemIntegration,2007. HDP'07. International Symposium on. IEEE,2007:1-5.
    [38] Q. S. Zhu, J. J. Guo, J. K. Shang, et al. Shear of Sn-3.8Ag-0.7Cu solder ballson electrodeposited FeNi Layer [C]//Electronic Packaging Technology&High Density Packaging,2008. ICEPT-HDP2008. International Conferenceon. IEEE,2008:1-4.
    [39] Q. S. Zhu, J. J. Guo, J. K. Shang, et al. Effects of aging on interfacialmicrostructure and reliability between SnAgCu solder and FeNi/Cu UBM [J].Advanced Engineering Materials,2010,12(6):497-502.
    [40] X. F. Zhang, J. D. Guo, J. K. Shang. Growth kinetics of intermetalliccompounds between Sn-9Zn solder and electroplated Fe-42Ni metallization [J].Journal of Alloys and Compounds,2009,487(1):776-780.
    [41] E. Saiz, C. W. Hwang, K. Suganuma, et al. Spreading of Sn-Ag solders onFeNi alloys [J]. Acta Materialia,2003,51(11):3185-3197.
    [42] C. W. Hwang, K. Suganuma, J. G. Lee, et al. Interface microstructure betweenFe-42Ni alloy and pure Sn [J]. J. Mater. Res.,2003,18(5):1202-1210.
    [43]崔岩.碳化硅颗粒增强铝基复合材料的航空航天研究应用[J].材料工程,2002,6(3):3-6.
    [44]秦振凯.无压浸渗制备双尺寸颗粒SiCp/Al电子封装材料的研究[D].西安:西北工业大学硕士学位论文,2005:6.
    [45]孙晓晔,汪涛.电子封装用低膨胀高导热SiCp/Al复合材料研究进展[J].电子与封装,2012,12(5):6-10.
    [46] Y. Coo. Effect of in situ reaction on microstructure of TIG welding SiCp/A356with Ti as filler metal [J]. Materials Science and Technology,2007,23(8):917-922.
    [47] K. U. Bhat, M. K. Surappa. Microstructural studies in low specific energylaser surface treated Al (A356)-SiCpcomposites [J]. Journal of materialsscience,2004,39(8):2795-2799.
    [48]牛济泰,王幕珍,刘黎明,等.扩散焊条件下Al2O3p/6061Al复合材料中氧化膜的行为[J].材料研究学报,2000,14(3):244-248.
    [49] X. P. Zhang, L. Ye, Y. W. Mai, et al. Investigation on diffusion bondingcharacteristics of SiC particulate reinforced aluminium metal matrixcomposites (Al/SiCp-MMC)[J]. Composites Part A: Applied Science andManufacturing,1999,30(12):1415-1421.
    [50] A. Ure a, J. M. Gómez de Salazar, M. D. Escalera. Diffusion bonding ofdiscontinuously reinforced SiC/Al matrix composites: the role of interlayers[J]. Key Engineering Materials,1995,104:523-540.
    [51] A. Ure a, J. M. Gómez de Salazar, M. D. Escalera. Diffusion bonding of anAluminium-Copper alloy reinforced with silicon carbideparticles(AA2014/SiC/13p) using metallic interlayers [J]. Scripta Materialia,1996,35(11):1285-1293.
    [52] A. Ure a, J. M. Gómez de Salazar, M. D. Escalera, et al. Diffusion bonding ofalumina reinforced6061alloy metal matrix composite using Al-Li interlayer[J]. Materials Science and Technology,2000,16(1):103-109.
    [53]陈铮,金朝阳,邹家生,等. Cu箔中间层瞬间液相连SiCp/Al复合材料的界面现象与连接强度[J].焊接学报,2001,22(5):27-30.
    [54] S. Akio, Y. J. Xing. Diffusion brazing of short Al2O3fiber-reinforcedaluminium composite [J]. Materials Transactions-JIM,1996,37(5):1109-1115
    [55]陈铮,金朝阳,赵其章. SiCp颗粒增强Al基复合材料的瞬间液相连接[J].焊接学报,2001,22(6):57-60.
    [56] R. Klehn, T. W. Eagar. Joining of6061aluminium matrix-ceramic particlereinforced composites [J]. W R C Bulletin,1993,385:1-26.
    [57] H. Uzun. Friction stir welding of SiC particulate reinforced AA2124aluminium alloy matrix composite [J]. Materials&design,2007,28(5):1440-1446.
    [58] F. Rotundo, L. Ceschini, A. Morri, et al. Mechanical and microstructuralcharacterization of2124Al/25vol.%SiCpjoints obtained by linear frictionwelding (LFW)[J]. Composites Part A: Applied Science and Manufacturing,2010,41(9):1028-1037.
    [59]邹僖.钎焊(M).北京:机械工业出版社,1991:1.
    [60] F. Tao, S. N. Lou, L. H. Wu, et al. Interface structure and mechanical propertyof aluminum cooler vacuum brazing joint [J]. Trans. Nonferrous. Met. Soc.China,2006,16: s1388-s1391.
    [61] A. Ure a, L. Gil, E. Escriche, et al. High temperature soldering of SiCparticulate aluminium matrix composites (series2000) using Zn-Al filleralloys [J]. Science and Technology of Welding&Joining,2001,6(1):1-11.
    [62] X. P. Zhang, G. F. Quan, W. Wei. Preliminary investigation on joiningperformance of SiCp-reinforced aluminium metal matrix composite (Al/SiCp-MMC) by vacuum brazing [J]. Composites: Part A,1999,(30):823-827.
    [63]邹家生,赵其章,陈铮. SiC颗粒增强铝基复合材料钎焊技术研究[J].轻合金加工技术,2004,32(3):48-52.
    [64]牛济泰,陈思杰,李强,等.高体积分数碳化硅颗粒增强铝基复合材料的火焰软钎焊方法[P].中国专利. CN101733494A,2010.
    [65]徐冬霞,陈龙,牛济泰,等. SiC颗粒增强铝基复合材料的真空钎焊性研究[J].热加工工艺,2013,42(05):161-163.
    [66] M. Wu, X. B. He. Effect of various Ni plating layers and aging microstructureand shear strength of Sn-2.5Ag-2.0Ni solder joint [J]. Surface and CoatingsTechnology,2009,203(20):3011-3018.
    [67] W. Mao, X. H. Qu, X. B He, et al. Interfacial reactions between Sn-2.5Ag-2.0Ni solder andelectroless Ni(P) deposited on SiCp/Al composites [J]. Trans.Nonferrous Met. Soc. China,2010,20(6):958-965.
    [68]冯若,李化茂.声化学及其应用[M].合肥:安徽科技出版社,1999:45.
    [69] W. B. Jenkins. Fluxless soldering of aluminum heat exchangers [J]. WeldingJournal,1976,55(1):28-35.
    [70] H. R. Faridi, J. H. Devletian, H. P. Le. A new look at flux-free ultrasonicsoldering [J]. Welding Journal,2000,79(9):41-45.
    [71] T. Watanabe. Soldering of high strength aluminum alloys with the aid ofultrasonic vibration [C]//Inter-national Brazing&Soldering ConferenceProceedings, Albuquerque, USA.2000:523-530.
    [72] H. E. Mohamed, M. H. Khalid, M. Naka. Ultrasonic Brazing of Aluminum toStainless Steel [J]. Trans. JWRI,2003,32(1):143-146.
    [73] M. Naka, K. M. Hafez. Applying of ultrasonic waves on brazing of alumina tocopper using Zn-Al filler alloy [J]. Journal of Materials Science,2003,38(16):3491-3494.
    [74] M. H. Khalid, M. Naka. Application of ultrasonic waves during brazing ofalumina/copper using Zn-Sn filler [J]. Trans. of JWRI,2003,32(1):139-142.
    [75] B. Wielage, I. Hoyer, S. Weis. Soldering aluminum matrix composites [J].Welding Journal,2007,86(3):67-70.
    [76]许志武.铝基复合材料超声辅助钎焊的润湿及钎缝复合化机理[D].哈尔滨:哈尔滨工业大学博士学位论文,2008:73-98.
    [77] Z. W. Xu, J. C. Yan, W. Chen, et al. Effect of ultrasonic vibration on the grainrefinement and SiC particle distribution in Zn-based composite filler metal [J].Materials Letters,2008,62(17):2615-2618.
    [78]张洋,闫久春. SiCp/A356复合材料超声波辅助钎焊[J].焊接学报,2008,30(3):1-4.
    [79] Y. Zhang, J. C. Yan, Q. Wu. Ultrasonic brazing of high fraction volume of SiCparticulate reinforced aluminium matrix composites [J]. Materials Science andTechnology,2009,25(3):379-382.
    [80] Z. P. Ma, W. W. Zhao, J. C. Yan, et al. Interfacial reaction of intermetalliccompounds of ultrasonic-assisted brazed joints between dissimilar alloys ofTi-6Al-4V and Al-4Cu-1Mg [J]. Ultrasonics Sonochemistry,2011,18(5):1062-1067.
    [81]牛济泰,罗相尉,陈思杰,等.高体积分数碳化硅颗粒增强铝基复合材料与可伐合金异种材料的硬钎焊方法[P].中国专利. CN101733497A,2010.
    [82]牛济泰,卢金斌,冯强,等.高体积分数碳化硅颗粒增强铝基复合材料与可伐合金的软钎焊方法[P].中国专利. CN101733498A,2010.
    [83]何新波,吴茂,任淑彬,曲选辉.微电子封装用铝碳化硅复合材料与可伐合金的钎焊方法[P].中国专利. CN101502904A,2009.
    [84] V. Raghavan. Fe-Zn (Iron-Zinc)[J]. Journal of Phase Equilibria,2003,24(6):544-545.
    [85] V. Raghavan. Fe-Ni-Zn (Iron-Nickel-Zinc)[J]. Journal of Phase Equilibria,2003,24(6):558-560.
    [86]朱力.热镀锌合金钢板[J].鞍钢技术,2000,(1):58-62.
    [87]杨云,余宗森.稀土对液态Zn+5wt%A1合金与工业纯铁板反应的抑制作用[J].金属学报,1993,29(12):541-545.
    [88] C. E. Jordan, A. R. Marder. Fe-Zn phase formation in interstitial-free steel hot-dip galvanized at450°C Part I0.00wt%Al-Zn baths [J]. Journal of MaterialsScience,1997,32(21):5593-5602.
    [89] C. E. Jordan, A. R. Marder. Fe-Zn phase formation in interstitial-free steelshot-dip galvanized at450°C Part II0.20wt%Al-Zn baths [J]. Journal ofMaterials Science,1997,32(21):5603-5610.
    [90] C. E. Jordan, K. M. Goggins, A. R. Marder. Interfacial layer development inhot-dip galvanneal coatings on interstitial free (IF) steel [J]. Metallurgical andMaterials Transactions A,1994,25(10):2101-2109.
    [91] P. Perrot, G. Reumont. Thermodynamic description of dross formation whengalvanizing silicon steels in zinc-nickel baths [J]. Journal of Phase Equilibria,1994,15(5):479-482.
    [92]张三慧.大学物理学第四册波动与光学[M].北京:清华大学出版社,2000:84-85.
    [93]马大猷.现代声学基础理论[M].北京:科学出版社,2004:28-30.
    [94]邵曼君.环境扫描电镜原位研究纯Fe表面氧化过程[J].金属学报,2000,36(3):230-234.
    [95]吴祝民.热轧带钢氧化铁皮的成因及对策[J].轧钢,2007,24(3):56-58.
    [96]陈芸琪,林彰达,吴迷尧,等.铁表面氧化的研究[J].物理学报,1987,36(10):1371-1374.
    [97] B. Cruz, J. A. Tabares. A CEMS study of surface oxidation of Fe-Ni alloys [J].Hyperfine Interactions,1997,110(1-2):7-10.
    [98] N. Y. Tang, X. P. Su, J. M. Toguri. Experimental study and thermodynamicassessment of the Zn-Fe-Ni system [J]. Calphad,2001,25(2):267-277.
    [99] F. Peng, F. C. Yin, X. P. Su, et al.560°C isothermal section of Zn-Fe-Nisystem at the Zn-rich corner [J]. J Alloy Compd,2005,402(1):124-129.
    [100] G. V. Raynor, J. D. Noden. A note on the zinc-rich alloys of the system zinc-iron-nickel [J]. J. Inst. Met.,1957-58,86:269-271.
    [101] P. Perrot, I. W. Churg, G. Reumont, et al. Phase equilibria in the Zn rich cornerof rich corner of the Fe-Ni-Zn system [C]//Compt. Rend. Acad. Sci. Ser. IIPairs, France1989,308(16):1413-1417.
    [102]许乔瑜.含硅低碳钢与液态锌镍合金的反应及微观行为的研究[D].广州:华南理工大学博士学位论文,2003:56.
    [103] Y. Morimoto, E. Mcdevitt, M. Meshii. Characterization of the Fe-Al inhibitionlayer formed in the initial stages of hot-dip galvannealing [J]. ISIJInternationnal,1997,37(9):906-913.
    [104] Y. Adachi, M. Arai. Transformation of Fe-Al phase to Fe-Zn phase on pureiron during galvanizing [J]. Materials Science and Engineering: A,1998,254:305-310.
    [105] J. T. Lu, C. S. Che, G. Kong, et al. Influence of silicon on the-Fe/Γ interfaceof hot-dip galvanized steels [J]. Surface and Coatings Technology,2006,200(18):5277-5281.
    [106] C. S. Che, J. T. Lu. Role of silicon in steels on galvanized coatings [J]. ActaMet. Sin.(Eng. Lett.),2009,22(2):138-145.
    [107] Y. Y. Chang, W. J. Cheng, C. J. Wang. Growth and surface morphology of hot-dip Al-Si on9Cr-1Mo steel [J]. Mater. Char.,2009,60(2):144-149.
    [108] Y. Shinohara, K. Kisara, H. Suzuki. Prospect of YAG laser medium for laserspace solar power system and possible application of graded structure forefficient cooling system [J]. Materials Science Forum,2010,631:9-14.
    [109]王保文,赵海波,郑瑛,等.惰性载体Al2O3对Fe2O3及CuO氧载体煤化学链燃烧的影响[J].中国电机工程学报,2011,31(32):53-61.
    [110] A. Kochmanska, J. Kubicki, P. Kochmanski. Carbon diffusion protective Al-Sicoatings on high temperature creep resistant cast steel [J]. Acta MetallurgicaSlovaca, Special Issue,2007,(1):873-878.
    [111] M. zenba, H. Güler. Formation of Al-Si intermetallic phases [J]. ChemicalEngineering Communications,2003,190(5-8):911-924.
    [112] J. F. Moulder. Handbook of X-ray photoelectron spectroscopy [M]. EdenPrairie, MN: Physical Electronics,1992:80-81.
    [113] V. G. Myagkov, K. P. Polyakova, G. N. Bondarenko, et al. Self-propagatinghigh-temperature synthesis and magnetic features of Fe-Al2O3granulatedfilms [J]. Physics of the Solid State,2003,45(1):138-140.
    [114] S. Prowans, M. Bohatyrewicz. Uk ad aluminium-cyna-cynk [J]. Arch Hutn,1968,13:217.
    [115] Y. Takaku, K. Makino, K. Watanabe, et al. Interfacial reaction between Zn-Al-based high-temperature solders and Ni substrates [J]. J. Electro. Mater.,2009,38(1):54-60.
    [116] G. F. Ma, H. L. Zhang, H. F. Zhang, et al. Interfacial characteristics of moltenBi-43Sn alloy on amorphous and crystalline Fe78B13Si9[J]. Materials Letters,2008,62(12):1853-1855.
    [117]马志鹏.钛合金与铝基复合材料连接界面化合物形成机制与钎焊工艺研究
    [D].哈尔滨:哈尔滨工业大学博士学位论文,2011:124.
    [118]李远星.超声波作用下Sn、Zn与Al的界面接合机理研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2012:93-110.
    [119] S. Takahashi. Study on contact angles of Au, Ag, Cu, Sn, Al andAl alloys toSiC [J]. Jouenal of Materials Science,1996,31(7):1797-1802.
    [120] G. W. Liu, M. L. Muolo, F. Valenza, et al. Survey on wetting of SiC by moltenmetals [J]. Ceramics International,2010,36(4):1177-1188.
    [121] H. H. Pan, I. Itoh, M. Matsubara. Mechanical properties of diffusion bondingjoint of SiC and Al-Sn alloys at elevated temperature [J]. MaterialsTransactions,2001,42(12):2543-2547.