双层圆柱壳舷间声振耦合特性及控制技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对双层圆柱壳体舷间振动和声辐射问题,开展了双层圆柱壳的舷间振动噪声传递机理、声振控制方法研究,采用模态展开法,建立了有限长双层加肋圆柱壳的振动和声辐射数学物理模型,分析了舷间水介质和连接结构的功率传递特性,提出了水下空气管隔声层和隔振实肋板控制措施,并通过模型试验验证了隔声层和隔振实肋板的降噪效果,为舷间声振控制提供了理论依据和解决方案,具有明确的工程应用背景和较高的实用价值。主要研究内容及创新点如下:
     针对双层壳体、横舱壁、环肋、周向连续实肋板、周向离散实肋板、龙骨、舷间声学覆盖层、舷间水层及外场水介质组成的复杂耦合系统,采用状态矢量概念和阻抗矩阵表达式,建立了以壳体振动模态位移矢量为变量的耦合系统振动矩阵方程,通过各子结构和声介质阻抗矩阵的增减,可以实现不同子结构对舷间声振耦合特性的分析;利用有限元软件分步校验了子系统建模方法。
     推导了舷间水层和实肋板的功率传递公式,计算分析了舷间水层、实肋板的功率传递特性,明确了舷间声振传递特征规律:0.5倍环频以下频段,双层壳体间功率传递以舷间水层传递为主,舷间水层传递的声功率比实肋板传递的声功率大10dB以上;0.5倍环频以上频段,实肋板传递的声功率对声辐射峰值的贡献更为明显;要控制低频声辐射,应以抑制舷间水层的声功率传递为主,要控制中高频声辐射,则应以控制实肋板声功率传递为主。
     提出了声学覆盖层敷贴在三维圆柱壳体的轴向波数扩展修正方法,在此基础上,提出了基于声阻抗测量的声学覆盖层的多层等效声阻抗模型,拟合了声学覆盖层的多层等效参数,计算了敷设声学覆盖层的圆柱壳振动和声辐射特性,分析了声学覆盖层应用于舷间的降噪效果,结果表明:声学覆盖层应用于舷间的降噪效果主要体现在300Hz以上频段,300Hz左右有2-3dB的降噪效果,700Hz以上有7dB以上的降噪效果,300Hz以下频段,声学覆盖层的降噪效果不明显。
     针对舷间水介质层和实肋板的声功率传递特征,提出舷间声振隔离措施,采用气管隔声层控制声传递、圆弧夹心型实肋板控制振动传递,计算分析了控制措施的降噪效果,并在大尺度双层圆柱壳模型上进行了试验验证,试验结果表明:100Hz以上频段,舷间声振隔离具有较好的降噪效果,使双层壳体的辐射声功率降低了2-10dB,为实现舷间声振传递控制提供了新技术。
     将简单双层壳体舷间声振耦合进一步扩展到多圆柱壳,计算分析了多圆柱壳结构的舷间共振耦合特性和辐射声场分布,揭示了50Hz以下低频段多壳体之间的共振声场耦合现象,明确了三圆柱壳的声遮蔽效应主要体现在正横方向,且随频率升高愈来愈明显;并针对三圆柱壳舷间声场耦合特性,提出了阻抗失配原理的列管式隔声单元,可在低频达到较好的隔声效果,200Hz隔声量达到5dB,2000Hz隔声量达到15dB以上。
Sound and vibration problem of the medial space of double shells is focused in thisdissertation, and the research on the sound and vibration transfer mechanism of medial space ofdouble shells together with its control methods are carried out. Modal expansion method isadopted to establish the math-physical model for the sound and vibration problem ofdouble-layer ribbed cylinder of finite length. Based on the power transmission characteranalysis of medial water layer and connecting structure, sound and vibration insulationstructure of air pipe layer and annular connected plates is presented. The noise reduction effectof sound insulation layer and vibration isolation annular connected plates is verified by modeltest, which provides theoretical foundation and practical solution for sound and vibrationcontrol problem of medial space of double shells. The work has specific engineeringapplication background and is practically useful. The main research content and innovation areas follows:
     Aimed at the complex coupling system consist of double layered shells, bulkhead plates,ring rib,annular connected plates,circular discrete connected plates,keel,acoustic coatingbetween medial space of double shells, medial water layer and outside acoustic medium,theconcept of state vector and impedance matrix expression is adopted to establish the vibrationmatrix equation of coupling system with modal displacement vector of vibrating shell asvariable. The modification of control function is achieved by increasing or decreasing theimpedance matrix of sub-structure and acoustic media which facilities the analysis of the effectof different sub-structure on the sound and vibration coupling character of medial space ofdouble shells. Every step of sub-structure modeling method is checked out by FEM software.
     The sound power transmission model of medial water layer and annular connected platesis established, the transmitting characteristics of sound power of medial water layer and annularconnected plates is analyzed with the model, which shows that the medial water layerdominates the sound power transmitting between double shells below the half ring frequency,10dB of the sound power over the annular connected plates by, while above the half ring frequency, the annular connected plates take the predominance of sound radiation power. As aresult, to reduce the sound radiation in low frequency, the sound power transmitted by medialwater layer should be taken into account superiorly; as for the sound control in mid-highfrequency, the vibration and sound transmission of annular connected plates should beconcerned.
     To investigate coupling of acoustical coating and cylindrical shell, the axial wave numberexpansion correction method is proposed, then the multiple layers equivalent impedance modelof acoustical coating by measurement of acoustical impedance is raised from the correctionmethod. The characteristics parameters of multiple layers acoustical coating are interpolated,then the vibration and sound radiation of cylindrical shell with acoustical coating is simulated,as well as the noise reduction in medial space of double shells. The analyze results show thatthe noise reduction induced by the acoustical coating works above300Hz, and the noisereduction is about2-3dB around300Hz, while more than7dB above700Hz. However, thenoise reduction of acoustical coating is ineffective below300Hz.
     According to the acoustic power transmission character of medial water layer and annularconnected plates, complex sound and vibration isolation methods for medial space of doubleshells are introduced: air pipe as isolator to reduce sound transmission, arc-section sandwichconnected plates to reduce vibration transmission. The noise reduction effect of complex soundand vibration isolation methods are calculated and analyzed. A large scale double-layer circularshells model is adopted in the experiment to verify the calculation results. Experiment resultsshow that, complex sound and vibration isolation methods bring good noise reduction effects inthe frequency span more than100Hz, the radiation power of double-layer circular shell modelreduced2-10dB. All the results show that complex sound and vibration isolation methods arenew technology to control the sound and vibration transmission of medial space of doubleshells.
     Sound and vibration coupling model of medial space of double shells is extended tomulti-shell model, the oscillation coupling character and radiation sound field distribution ofmulti-shell model are calculated, the calculation results show that, oscillation couplingphenomenon of multi-shell exists under50Hz, the sound masking effect of three-shell exists at abeam direction, and become larger when the frequency rise. According to the sound fieldcoupling character of three-shell, pipe-array sound isolation model are designed based onimpedance mismatching, which bring good sound isolation effects in low-frequency,5dB at200Hz,15dB at2kHz.
引文
[1]. H.LEE. Acoustic radiation from out-of-plane modes of an annular disk using thin and thick platetheories[J]. Journal of Sound and Vibration,2005,282:313-339.
    [2]. M.AMABILI, F.RIGHI. Effect of concentrated masses with rotary inertia on vibrations of rectangularplates[J]. Journal of Sound and Vibration,2006,295:1-12.
    [3]. G.MAIDANIK. Response of ribbed panels to reverberant acoustic fields[J]. Journal of the AcousticalSociety of America,1962.34:809-826.
    [4]. T.R.LIN. An analytical and experimental study of the vibration response of a clamped ribbed plate[J].JOURNAL OF SOUND AND VIBRATION,2012.331:902-913.
    [5]. C.J.CHAPMAN. The forced vibration of an elastic plate under significant fluid loading[J]. Journal ofSound and Vibration,2005.281:719-741.
    [6]. F.FAHY. Sound and Structural Vibration: Radiation, Transmission and Response[J]. Academic Press,London.1985.
    [7]. C.E.WALLACE, Radiation resistance of a rectangular panel[J]. Journal of the Acoustical Society ofAmerica,1972.51.946-952.
    [8]. X.ZHANG, W.L.LI, A unified approach for predicting sound radiation from baffled rectangular plateswith arbitrary boundary conditions[J]. Journal of Sound and Vibration,2010.329(25).5307-5320.
    [9]. A.BERRY, J.NICOLAS. A general formulation for the sound radiation from rectangular baffed plateswith arbitrary boundary conditions[J]. Journal of the Acoustical Society of America,1990.88.2792-2802.
    [10]. T.BALENDRA. Free vibration of plated structures by grillage method[J]. Journal of Sound andVibration,1985.99(3).333–350.
    [11]. D.J.MEAD. An approximate theory for the sound radiated from a periodic line-supported plate[J].Journal of Sound and Vibration,1978.61(3).315–326.
    [12]. R.F.KELTIE, Structural acoustic response of finite rib-reinforced plates[J]. Journal of the AcousticalSociety of America,1993.94(2).880–887.
    [13]. M.C.JUNGER. Sound Structures and Their Interaction[M].1993.
    [14]. M.HECKL. Wave propagation on beam–plate system[J]. Journal of the Acoustical Society of America,1961,33(5):640-651.
    [15]. UNGAR. Transmission of plate flexural waves through reinforcing beams: dynamic stressconcentration[J]. Journal of the Acoustical Society of America,1961,33(5):633-639.
    [16]. R.S.LANGLEY. Elastic wave transmission through plate beam junctions[J]. Journal of Sound andVibration,1990,143(2):241-253.
    [17]. MEJDI, N.ATALLA. Dynamic and acoustic response of bidirectionally stiffened plates with eccentricstiffeners subject to airborne and structure-borne excitations[J]. Journal of Sound and Vibration,2010.329(21):4422-4439.
    [18]. L.DOZIO. Free vibration analysis of ribbed plates by a combined analytical–numerical method[J].Journal of Sound and Vibration,2009.319:681-697.
    [19]. H.XU, W.L.LI. Vibrations of rectangular plates reinforced by any number of beams of arbitrary lengthsand placement angles[J]. Journal of Sound and Vibration,2010.329:3759-3779.
    [20]. D.J.MEAD. Free wave propagation in periodically supported infinite beams[J]. Journal of Sound andVibration,1970.11:181-197.
    [21]. D.J.MEAD. A general theory of harmonic wave propagation in linear periodic system with multiplecoupling[J]. Journal of Sound and Vibration,1973.27:235-260.
    [22]. D.J.MEAD. Wave propagation and natural modes in periodic systems: II. Multi-coupled systems withand without damping[J]. Journal of Sound and Vibration,1975.40:19-39.
    [23]. LANGELY. On the modal density and energy flow characteristics of periodic structures[J]. Journal ofSound and Vibration,1994.172:491-511.
    [24]. G.MAIDANIK. Response of ribbed panels to reverberant acoustic fields[J]. Journal of the AcousticalSociety of America,1962.34(6):809-826.
    [25]. F.FAHY. Sound and Structural Vibration: Radiation, Transmission and Response[M]. Academic Press,London.1985.
    [26]. V. ZALIZNIAK, L.A. WOOD. Waves transmission through plate and beam junctions[J]. InternationalJournal of Mechanical Sciences,1999.41:831-843.
    [27]. S.B.HONG., VLAHOPOULOS. A hybrid finite element formulation for a beam-plate system[J].Journal of Sound and Vibration,2006.298:233-256.
    [28]. R.RUOTOLO. Influence of some thin shell theories on the evaluation of the noise level in stiffenedcylinders[J]. JOURNAL OF SOUND AND VIBRATION,2002.255(4):777-788.
    [29]. SOROKIN, O.ERSHOVA. Analysis of the energy transmission in compound cylindrical shells withand without internal heavy fluid loading by boundary integral equations and by Floquet theory[J].Journal of Sound and Vibration,2006.291(1-2):81-99.
    [30]. M.C.JUNGER. The physical interpretation of the expression of an outgoing wave in cylindricalcoordinates[J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA,1953.25(1):40-47.
    [31]. M.C.JUNGER. Closed-Form Solution of Forced Vibrations of Spherical Shells with Attachments[J].JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA,1970.4(5B):1292-1294.
    [32]. P.R.STEPANISHEN. Radiated power and radiation loading of cylindrical surfaces with non-uniformvelocity distributions[J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA,1978.63(2):328-338.
    [33]. P.R.STEPANISHEN. Modal coupling in the vibration of fluid loaded cylindrical shells[J]. Journal ofthe Acoustical Society of America,1982.71:813-823.
    [34]. P.R.STEPANISHEN, A.RAMAKRISHNA. Acoustic radiation from cylinders with a plane ofsymmetry using internal multipole line source distributions[J]. I. JOURNAL OF THE ACOUSTICALSOCIETY OF AMERICA,1993.93(2):658-672.
    [35]. C.WANG. The sound radiation effciency of finite length acoustically thick circular cylindrical shellsunder mechanicalexcitation I: Theoretical analysis[J]. Journal of Sound and Vibration,2000.232:431-447.
    [36]. B.E.SANDMAN. Fluid loading influence coefficients for a finite cylindrical shell[J]. JOURNAL OFTHE ACOUSTICAL SOCIETY OF AMERICA,1976.60(6):1256-1264.
    [37]. B.LAULAGNET. Modal anasys of a shells acoustic radiation in light and heavy fluids[J]. JOURNALOF SOUND AND VIBRATION,1989.131(3):397-415.
    [38]. M.C.JUNGER. The physical interpretation of the expression of an outgoing wave in cylindricalcoordinates[J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA,1953.25(1):40-47.
    [39]. R.H.LYON. Sound radiation from a beam attached to a plate[J]. JOURNAL OF THE ACOUSTICALSOCIETY OF AMERICA,1962.34:1265-1268.
    [40]. P.R.NAYAK. Line admittance of infinite isotropic fluid-loaded plates[J]. JOURNAL OF THEACOUSTICAL SOCIETY OF AMERICA,1970.47:191-201.
    [41]. B.R.MACE. Periodically stiffened fluid-loaded plates, I: Response to convected harmonic pressureand free wave propagation[J]. JOURNAL OF SOUND AND VIBRATION,1980.73(4):473-486.
    [42]. B.R.MACE. Periodically stiffened fluid-loaded plates, II: Response to point and line forces[J].JOURNAL OF SOUND AND VIBRATION,1980.73(4):487-504.
    [43]. D.G.CRIGHTON. Acoustic and vibration fields generated by ribs and fluid loaded panel I: Plane-waveproblems for a single rib[J]. JOURNAL OF SOUND AND VIBRATION,1981.75:437-452.
    [44]. C.B.BURROUGHS. Acoustic radiation from fluid-loaded infinite circular cylinders with doublyperiodic ring supports[J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA,1984.75(3):715-722.
    [45]. A.H.CHOI. The effect of periodically attached substructures on the excitation of submerged cylindricalshells[J]. JOURNAL OF SOUND AND VIBRATION,1994.177(3):379-392.
    [46]. B. LAULAGNET. Sound radiation by finite cylindrical ring stiffened shells[J]. Journal of Sound andVibration,1990.138.173-191.
    [47]. A.HARARI. Radiation and vibrational properties of submerged stiffened cylindrical shells[J].JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA,1990.88(4):1817-1830.
    [48].汤渭霖.水中有限长加肋圆柱壳体振动和声辐射近似解析解[J].声学学报,2001.1.
    [49].谢官模,罗斌,骆东平.环肋、舱壁和纵骨加强的无限长圆柱壳在水下的声辐射特性[J].船舶力学,2004.8(2).
    [50].曾革委.无限长双层加肋圆柱壳水下声辐射解析计算[J]振动工程学报,2004.17(2)
    [51]. JAFARI and M.BAGHERI. Free vibration of rotating ring stiffened cylindrical shells withnon-uniform stiffener distribution[J]. Journal of Sound and Vibration,2006.296(1-2):353-367.
    [52]. R.LIETARD, G.MAZE. Acoustic scattering from a finite cylindrical shell with evenly spaced stiffeners:Experimental investigation[J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA,2005.118(4):2142-2146.
    [53]. S.V.SOROKIN. Plane wave propagation and frequency band gaps in periodic plates and cylindricalshells with and without heavy fluid loading[J]. JOURNAL OF SOUND AND VIBRATION,2004.278:501-526.
    [54]. RAMACHANDRAN, S.NARAYANAN. Evaluation of modal density, radiation efficiency andacoustic response of longitudinally stiffened cylindrical shell[J]. Journal of Sound and Vibration,2007.304(1-2):154-174.
    [55]. D.T.HUANG.. Study of the forced vibration of shell-plate combination using the receptance method[J].JOURNAL OF SOUND AND VIBRATION,1993.166(2):341-369.
    [56]. A.H.CHOI. The effect of periodically attached substructures on the excitation of submerged cylindricalshells[J]. JOURNAL OF SOUND AND VIBRATION,1994.177(3):379-392.
    [57]. Y.P.GUO. Acoustic radiation from cylindrical shells due to internal forcing[J]. JOURNAL OF THEACOUSTICAL SOCIETY OF AMERICA,1996.99(3):1495-1505.
    [58]. J.BJARNASON. The effect of substructures on the acoustic radiation from axisymmetric shells offinite length[J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA,1994.96:246-255.
    [59]. J.M.CUSHIERI. Acoustic scattering from a fluid-loaded cylinder with discontinuities: Single platebulkhead[J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA,1995.98(1):320-338.
    [60]. Y.S.LEE. Free vibrations of circular cylindrical shells with an interior plate using the receptancemethod[J]. JOURNAL OF SOUND AND VIBRATION,2001.248(3):477-497.
    [61]. Z.H.WANG, W.G.PRICE. A study of power flow in a coupled plate-cylindrical shell system[J].JOURNAL OF SOUND AND VIBRATION,2004.271:863-882.
    [62]. J.MISSAOUI. Vibroacoustic analysis of a finite cylindrical shell with internal floor partition[J].JOURNAL OF SOUND AND VIBRATION,1999.226(1):101-123.
    [63]. A.SKELTON. Acoustic scattering by a cylindrical shell with symmetric line Constraints in the heavyfluid-loading limit[J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA,2003.113(1):299-309.
    [64]. H.A.SCHENCK. Improved integral formulation for acoustic radiation problems[J]. JOURNAL OFTHE ACOUSTICAL SOCIETY OF AMERICA,1968.44(1):41-58.
    [65]. FAHNLINE, G.H.KOOPMANN. A numerical solution for the general radiation problem based on thecombined methods of superposition and singular-value decomposition[J]. JOURNAL OF THEACOUSTICAL SOCIETY OF AMERICA.1991.90(5):2808-2819.
    [66]. P.R.STEPANISHEN, A.RAMAKRISHNA. Acoustic radiation from cylinders with a plane ofsymmetry using internal multipole line source distributions[J]. I. JOURNAL OF THE ACOUSTICALSOCIETY OF AMERICA,1993.93(2):658-672.
    [67]. M.VIKTOROVITCH, L.JEZEQUEL. A new random boundary element formulation applied to highfrequency phenomena[J]. Journal of Sound and Vibration,1999.223(2):273-296.
    [68]. M.VIKTOROVITCH, L.JEZEQUEL. An integral formulation with random parameters adapted to thestudy of the vibrationalbehavior of structures in the middle-and high-frequency field[J]. Journal ofSound and Vibration,2001.247(3):431-452.
    [69]. X.T.CAO. Acoustic radiation from shear deformable stiffened laminated cylindrical shells[J].JOURNAL OF SOUND AND VIBRATION,2012.331:651-670.
    [70]. J.K.KIM. Prediction of sound level at high-frequency bands by means of a simpli?ed boundaryelement method[J]. Journal ofthe Acoustical Society of America.2002.112(6):2645-2655.
    [71]. A.WANG, K.WU. Development of an energy boundary element formulation for computinghigh-frequency soundradiation from incoherent intensity boundary conditions[J]. Journal of Sound andVibration.278:413-436.
    [72]. J.ASSAAD, J.N.DECARPIGNY. Application of the finite element method to two-dimensionalradiation problems[J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA,1993.94(1):562-573.
    [73].刘涛,汤渭霖,何世平.数值/解析混合方法计算含复杂结构的有限长圆柱壳体声辐射[J].船舶力学,2003.7(4)
    [74]. R.M.GRICE. A method for the vibration analysis of built-up structures, part I: introductionandanalytical analysis of the plate stiffened beam[J]. Journal of Sound and Vibration,2000.230:825-849.
    [75]. R.M.GRICE. A method for the vibration analysis of built-up structures apart II: analysis of theplatestiffened beam using a combination of finite element analysis and analytical impedance[J]. Journal ofSound andVibration,2000.230:851-875.
    [76]. R.S.LANGLEY. A hybrid method for the vibration analysis of complex structural-acoustic systems[J].Journal of the Acoustical Society of America,1999.105:1657-1671.
    [77]. A.D.PIERCE. RUSSELL.Fundamental structural-acoustic idealisations for structures with fuzzyinternals Transactions[J]. Journal of Vibration and Acoustics,1995.117:339-348.
    [78]. D.FEIT. Vibration damping of large structures induced by attached small resonant structure[J]. Journalof the Acoustical Society of America,1996.99:335-344.
    [79]. C.SOIZE. Estimation of the fuzzy substructure model parameters using the mean power flow equationof the fuzzy structure[J]. Journal of Vibration and Acoustics,1998.120:279-286.
    [80]. C.SOIZE. Estimation of fuzzy structure parameters for continuous junctions[J]. Journal of theAcoustical Society of America,2000.107(4):2011-2020.
    [81].和卫平,基于统计能量法的环肋圆柱壳中高频振动和声辐射性能数值分析[J].中国舰船研究,2008.3(6)7-12.
    [82]. G..F.LIN, J.M.G. Sound transmission through two periodically framed parallel plates[J]. Journal of theAcoustical Society ofAmerica,1977.61:1014-1018.
    [83]. TAKAHASHI. Sound radiation from periodically connected harmonic double-plate structures[J].Journal of Sound and Vibration,1983.90(4):541-557.
    [84]. R.J.M.CRAIK. Sound transmission through lightweight parallel plates-part II: structure-borne sound[J].Applied,2000. Acoustics61:247-269.
    [85]. J.WANG,J, WOODHOUSE, R.S.LANGLEY, J.EVANS. Sound transmission through lightweightdouble-leaf partitions: theoretical modeling[J]. Journal of Sound and Vibration,2005.286:817-847.
    [86]. URUSOVSKII. Sound transmission through two periodically framed parallel plates[J]. Journal ofSoviet Physics Acoustics,1992.38(4):411-413.
    [87]. D.J.MEAD. Free wave propagation in periodically supported infinite beams[J]. Journal of Sound andVibration,1970.11:181-197.
    [88]. D.J.MEAD. Ageneral theory of harmonic wave propagation in linear periodic system with multiplecoupling[J]. Journal of Sound and Vibration,1973.27:235-260.
    [89]. D.J.MEAD. Wave propagation and natural modes in periodic systems: II. Multi-coupled systems withand without damping[J]. Journal of Sound and Vibration,1975.40:19-39.
    [90]. E.B.MAGRAB and C.BURROUGHS. Forced Harmonic and Random Vibrations of ConcentricCylindrical Shells Immersed in Acoustic Fluids[J]. JOURNAL OF THE ACOUSTICAL SOCIETY OFAMERICA,1972.52(3B):858-864.
    [91]. S.YOSHIKAWA. Vibration of two concentric submerged cylindrical shells coupled by the entrainedfluid[J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA,1994.95(6):3273-3286.
    [92].吴文伟,沈顺根.双层加肋圆柱壳振动和声辐射研究[J].船舶力学,2002.6(1)
    [93].曾革委.加肋圆柱壳水下声辐射数值分析几个问题研究[J].振动工程学报,2004.17(2)
    [94].曾革委.无限长双层加肋圆柱壳水下声辐射解析计算[J].振动工程学报,2004.17(2)
    [95].陈美霞,陈小宁,沈瑞喜.复杂双层壳体声辐射性能分析[J].声学学报(中文版),2004.3.
    [96].姚熊亮,钱德进,明磊.壳间连接介质对双层壳声辐射性能的影响[J].声学技术,2009.28(3)
    [97].殷学文,华宏星,沈荣瀛.通过周向环板和附连流体的两同心圆柱壳体间的振动耦合效应[J].声学学报(中文版),2009.1.
    [98]. J.H.LEE. Analysis of sound transmission through periodically stiffened panels by space harmonicexpansion method[J]. Journalof Sound and Vibration,2002.251:346-366.
    [99]. J.H.LEE. Sound transmission through periodically stiffened cylindrical shells[J]. JOURNAL OFSOUND AND VIBRATION,2002.251(3):431-456.
    [100]. P.THAMBURAJ. Acoustic response of a non-circular cylindrical enclosure using conformalmapping[J]. JOURNAL OF SOUND AND VIBRATION,2001.241(2):283-295.
    [101]. D.S.LI. Analysis of structural acoustic coupling of a cylindrical shell with an internal floor Partition[J].JOURNAL OF SOUND AND VIBRATION,2002.250(5):903-921.
    [102]. TWERSKY. Multiple scattering of radiation by an arbitrary configuration of parallel cylinders[J]. J.Acoust. Soc. Am.,1952.24(1),42–46.
    [103]. S.E.SHERER. Scattering of sound from axisymetric sources by multiple circular cylinders[J]. J.Acoust. Soc. Am.,2004.115(2):488-496.
    [104]. B.PETERSON, S.STRORM. Matrix formulation of acoustic scattering from an arbitrary number ofscatterers[J]. J. Acoust. Soc. Am.,1974.56(3):771–780.
    [105]. S.J.Young, J.BERTRAND. Multiple scattering by two cylinders[J]. J. Acoust. Soc. Am.,1975.58(6):1190–1195.
    [106].范威.浅海波导中目标散射的边界元方法[J].声学学报,2012.37(2):132-142.
    [107]. Y.DECANINI, A.FOLACII. Algebraic Aspects of Multiple Scattering By Two Parallel Cylinders:Classification and Physical Interpretation of Scattering Resonances[J]. Journal of sound and Vibration,1999.785-804.
    [108]. H.V.PANOSSIAN. Structural damping enhancement via non-obstructive particle damping technique[J].JVA,1992.114:101-105.
    [109]. E.M.FLINT.Experimental measurements of the particle damping effectiveness under centrifugalloads[C]. Proceedings of4th national turbine engine high cycle fatigue conference.
    [110].李长胜.颗粒阻尼隔振器[J].机械1998年第25卷增刊,1998.
    [111]. Z.W.XU. A particle damper for vibration and noise reduction[J]. JOURNAL OF SOUND ANDVIBRATION,2004.270:1033-1040.
    [112].林莎.颗粒阻尼的仿真与试验研究[D].南京航空航天大学,硕士学位论文,2009.2009.
    [113].邓长华.涡轮泵环形颗粒阻尼器设计[J].火箭推进,2009.35(5):29-33.
    [114]. Y.C.DU. Performance of a new fine particle impact damper. Hindawi publishing corporation advancesin acoustics and vibrations.2008. article Id140894,6pages, doi:10.1155/2008/140894.
    [115]. YILMAZ and N.KIKUCHI. Analysis and design of passive band-stop filter-type vibration isolators forlow-frequency applications[J]. Journal of Sound and Vibration,2006.291(3-5):1004-1028.
    [116]. H.OSMAN,C.R.FULLER, P. MARCOTTE. Interior noise reduction of composite cylinders usingdistributed vibrationabsorbers[C]. Proceedings of the Seventh AIAA/CEAS AeroacousticsConference,Maastricht, The Netherlands,2001. AIAA2001-2230-Vol.2. A01-30800-07-71.
    [117]. KAMAL. Increase in transmission loss of a double panel system by addition of mass inclusions to aporo-elastic layer: A comparison between theory and experiment[J]. Journal of Sound and Vibration,2009.323(1-2):51-66.
    [118]. M.H.HOLDHUSEN. A state-switched absorber used for vibration control of continuous systems[J].Journal of vibration and acoustics,2007,129:577~589.
    [119]. H.L.SUN, P.Q.ZHANG. Application of dynamic vibration absorbers in structural vibration controlunder multi-frequency harmonic excitations[J]. Applied acoustics,2008,69:1361~1367.
    [120]. E.NISHIDA, G.H.KOOPMANN. A method for designing and fabricating broadband vibrationabsorbers for structural noise control[J].Journal of vibration and acoustics,2007,129:397~405.
    [121]. Y.DU, R.A.BURDISSO. Control of internal resonances in vibration isolators using passive and hybriddynamic vibration absorbers[J]. Journal of sound and vibration.2005,286:697~727.
    [122]. P.W.WANG, C.C.CHENG. Design of vibration absorbers for structures subject to multiple-tonalexcitations[J], Transactions of the ASME,2006,128:106~114.
    [123]. V.D.LA. Semi-active on-off damping control of a dynamic vibration absorber using coriolis force[J].Journal of sound and vibration.2012,331:3429~3436.
    [124]. M.H.TSO, J.YUAN. Suppression of random vibration in flexible structures using a hybrid vibrationabsorber[J]. Journal of sound and vibration.2012,331:974~986.
    [125]. F.S.SAMANI, F. PELLICANO. Vibration reduction of beams under successive traveling loads bymeans of linear and nonlinear dynamic absorbers[J]. Journal of sound andvibration.2012,331:2272~2290.
    [126]. KERWIN. Damping of flexural waves by a constrained viscoelastic layer[J]. Journal of the AcousticalSociety ofAmerica,1959.31:952-962.
    [127]. M.D.RAO, S.H. Dynamic analysis and design of laminated composite beams with multiple dampinglayers[J]. American Institute of Aeronautics and Astronautics Journal,1993.31:736-745.
    [128]. MARKUS. Reined theory of damped axisymmetic vibrations of double-layered cylindrical shells[J].Journal of Mechanical EngineeringScience,1979.21(1):33-37.
    [129]. PALAN, W.SHEPARDJR, J.GREGORYMCDANIEL. Characterization of an experimentalwavenumber fitting method for loss factor estimation using a viscoelastically damped structure[J].Journal of Sound and Vibration,2006.291(3-5):1170-1185.
    [130]. S.MARKUS. Damping properties of layered cylindrical shells vibrating in axially symmetric modes[J].J. Sound and Vibration.1976,48(4):511-524.
    [131]. Y. KAGAWA. On the damping of cylindrical shells coated with viscoelastic materials[J]. ASMEPublication,1969.69:1-9.
    [132]. T.C.RAMESH. Vibration and damping analysis of cylindrical shells with constrained dampingtreatment comparison of three theories[J]. Journal of Vibration andAcoustics,1995.117:213-219.
    [133]. YAN. Vibrational power flow analysis of a submerged viscoelastic cylindrical shell with wavepropagation approach[J]. Journal of Sound and Vibration,2007.303(1-2):264-276.
    [134]. A.CASTEL. Complex power distribution analysis in plates covered with passive constrained layerdamping patches[J]. JOURNAL OF SOUND AND VIBRATION.2012,331:2485-2498.
    [135]. A.LOREDO. Numerical vibroacoustic analysis of plates with constrained-layer damping patches[J].JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA,2011.129(4):1905-1918.
    [136]. H.ZHENG. Minimizing vibration response of cylindrical shells through layout optimization of passiveconstrained layer damping treatments[J]. Journal of Sound and Vibration,2005.279(3-5):739-756.
    [137]. F.MOHAMMADI. Vibration analysis and design optimization of viscoelastic sandwich cylindricalshell[J]. JOURNAL OF SOUND AND VIBRATION.2012,331:2729-2752.
    [138]. A.LUMSDAINE. Shape optimization of unconstrained viscoelastic layers using continuum finiteelements[J]. Journal of Soundand Vibration,1998.216(1):29-52.
    [139]. SEWELL. The extinction of sound in a viscous atmosphere by small obstacles of cylindrical andspherical form[J]. Philosophical Transactions of the Royal Society of London,1910. A210:239-270.
    [140]. PARTRIDGE. Acoustic scattering from viscoelastically coated bodies[J]. Journal of the AcousticalSociety of,1996. America99:72-78.
    [141]. S.H.KO, S.PYO. Structure borne noise reduction for an infinite elastic cylindrical shell[J]. Journal ofthe Acoustical Society of America,2001.109(4):1483-1495.
    [142]. J.A.ROUMELIOTIS. Acoustic scattering from an infinite cylinder of small radius coated byapenetrable one[J]. Journal of the Acoustical Society of America,1995.97:2074-2081.
    [143].陈炜,张书吉,陈晓宁.敷设阻尼材料的环肋柱壳声辐射性能分析[J].声学学报(中文版),2000.1.
    [144].陈美霞,周锋,王祖华.阻尼材料敷设方式对双层壳体声辐射性能的影响[J].声学学报(中文版),2005.4.
    [145]. M.C.JUNGER. Short-wavelength backscattering cross sections of rigid and partially coatedcylindersand spheres[J]. Journal of the Acoustical Society of America,1974.56:1347-353.
    [146]. A.A.FERRI. ROGERS.Scattering of plane wave from submerged object withpartiallycoatedsurfaces[J]. Journal of the Acoustical Society of America,1992.92:1721-1728.
    [147]. ZHANG. Vibrational power?ow in a cylindrical shell periodically coated with viscoelastic materials[J].Journal of VibrationEngineering (in Chinese),1993.6(1):1-9.
    [148]. B. LAULAGNET. Sound radiation from a finite cylindrical shell covered with a compliant layer[J].JVA,1991.113:267-272.
    [149]. B.LAULAGNEt. Sound radiation from finite cylindrical shells, partially covered with longitudinalstrips of compliant layer[J]. J. Sound Vib,1995.186(5):723-742.
    [150]. B.LAULAGNET and J.L.GUYADER. Sound radiation from finite cylindrical coated shells, by meansof asymptotic expansion of three-dimension equation for coating[J]. J. Acoust. Soc. Am.1994,96(1):277-286.
    [151]. Y.N.LIU and A.J.TUCKER. The distribution of radiated and vibratory powers of a point-driven infinitecylindrical shell with a compliant layer[C].1998Proceedings of Noise-Con. West Lafayette,Indiana,1998.
    [152]. J.M.CUSCHIERI. Influence of circumferential partial coating on the acoustic radiation from afluid-loaded shell[J]. Journal of the Acoustical Societyof America,2000.107(6):3196-207.
    [153]. J.H.WEN. Effects of locally resonant modes on underwater sound absorption in visco-elasticmaterials[J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA.2011.130(3):1201-1208.
    [154]. M.HEIL. Quasi-resonances in sound-insulating coatings[J]. JOURNAL OF SOUND ANDVIBRATION.2012,331:4774-4784.
    [155]. LEGAULT, N.ATALLA. Sound transmission through a double panel structure periodically coupledwith vibration insulators[J]. Journal of Sound and Vibration,2010.329(15):3082-3100.
    [156]. LEGAULT, N.ATALLA. Numerical and experimental investigation of the effect of structural links onthe sound transmission of a lightweight double panel structure[J]. Journal of Sound and Vibration,2009.324(3-5):712-732.
    [157]. D.J.MEAD. Space-harmonic analysis of periodically supported beams: response to convected randomloading[J]. Journal ofSound and Vibration,1971.14(4):525-541.
    [158]. YU,S and W.CLEGHORN. Free flexural vibration analysis of symmetric honeycomb panels[J].Journal of Sound and Vibration,2005.284(1-2):189-204.
    [159]. T.S.LOK. Free vibration of damped orthotropic sandwich panel[J]. Journal of Sound and Vibration,2000.229:311-327.
    [160]. P.THAMBURAJ. Optimization of anisotropic sandwich beams for higher sound transmission loss[J].Journal of Sound andVibration,2002.254(1):23-36.
    [161]. C.L.DYM. Transmission of sound through sandwich panels[J]. Journal of the Acoustical SocietyofAmerica,1974.56:1523-1532.
    [162]. PAN. Axisymmetrical vibrations of a circular sandwich shell with a viscoelastic core layer[J]. Journalof Soundand Vibration,1969.9:338-348.
    [163]. N.ALAM. Vibration damping analysis of a multilayered cylindrical shell, Part II: numerical results[J].American Institute of Aeronautics and Astronautics Journal,1984.22:975-981.
    [164]. HASHEMINEJAD, N.SAFARI. Acoustic scattering from viscoelastically coated spheres and cylindersin viscous fluids[J]. Journal of Sound and Vibration,2005.280(1-2):101-125.
    [165]. S.B.DONG.. Free Vibration of Laminated Orthotropic Cylindrical Shells[J]. JOURNAL OF THEACOUSTICAL SOCIETY OF AMERICA,1968.44(6):1628-1635.
    [166]. P.GARDONIO, F.J.Fahy. A modal expansion analysis of noise transmission through circularcylindrical shell structures with blocking masses[J]. JOURNAL OF SOUND AND VIBRATION,2001.244(2):259-297.
    [167]. A.HARARI, B.E.SANDMAN. Vibratory response of laminated cylindrical shells embedded in anacoustic fluid[J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA,1976.60(1):117-128.
    [168]. A.AKAY. Scattering of sound from concentric cylindrical shells[J]. JOURNAL OF THEACOUSTICAL SOCIETY OF AMERICA,1991.89(4):1572-1578.
    [169].朱蓓丽.效参数法研究带圆柱通道橡胶体的声学性能[J].上海交通大学学报,1997.7:20-25.
    [170].何世平.粘弹性圆柱管中波的传播研究及吸声覆盖层的声学特性分析[J].上海交通大学博士学位论文,2004.
    [171].何祚镛.水下非均匀复合层结构吸声的声特性研究[J].应用声学,1996.15(5):6-11.
    [172].何祚镛.水下非均匀复合层结构吸声的理论研究[J].应用声学,1996.15(5):12-19.
    [173]. M.A.GONZALZ. Analysis of a composite compliant baffle[J]. J. Acoust. Soc. Am.1978,64(5):1509-1513.
    [174]. S.H.KO Flexural wave baffling by use of a visco-elastic material[J]. J. of sound and Vib.1981,75(3):347-357.
    [175]. KO.S.H. Reduction of structure-borne noise using an air-voided elastomer[J]. J. Acoust. Soc. Am.1997,101(6):3306-3312.
    [176]. BRIGHAMG.A. Analysis of scattering from large planar gratings of Compliant cylindrical shells[J]. J.Acoust. Soc. Am.1977,61(1):48-59.
    [177]. P.M.RADLINSKIR. Scattering by multiple gratings of compliant tubes[J]. J. Acoust. Soc. Am.1982,72(2):607-614.
    [178]. R.P.RADLINSKI. Scattering from multiple gratings of compliant tubes in a viscoelastic layer[J]. J.Acoust. Soc. Am.1989,85(6):2301-2310.
    [179]. M.C.JUNGER. Water-borne sound insertion loss of a planar compliant-tube array[J]. J. Acoust. Soc.Am.1985,78(3):1010-1012.
    [180]. G.MAIDANIK, R.BIANCARDI. Use decoupling to reduce the radiated noise generated by panels[J]. J.Sound and Vibration,1982,81(2):165-185.
    [181]. A.CUMMINGS. Sound radiation from a plate into a porous medium[J]. J. Sound and Vibration,2001,247(3):389-406.
    [182]. O.FOIN, A.BERRY. Acoustic radiation from an elastic baffled rectangular plate covered by adecoupling coating and immersed in a heavy acoustic fluid[J]. J. Acoustic Soc. Am.,2000,107(5):2501-2501.
    [183]. C.J.WU. Sound radiation from a finite fluid filled submerged cylindrical shell with porous materialsandwich[J]. J. Sound and Vibration.2000,238(3):425-441.
    [184]. B. E. SANDMAN. Motion of a three-layered elastic-viscoelastic plate under fluid loading[J]. J. Acoust.Soc. Am.,1975,57(5):1097-1107.
    [185].白振国,俞孟萨.多层声学覆盖层复合的有限长弹性圆柱壳声辐射特性研究[J].船舶力学,2007.11(5).
    [186].陶猛,汤渭霖.覆盖多柔性层的有限长圆柱壳声辐射特性[J].声学学报(中文版),2008.3.
    [187].姚熊亮,刘庆杰.双层圆柱壳振动传递及近场声辐射特性研究[J].声学技术,2007.26(6)
    [188].姚熊亮,翁强.水下加筋圆柱壳体的振动与近场声辐射研究[J].中国舰船研究,2006.1(2)
    [189].徐芝纶.弹性力学[M].高等教育出版社.1988.