水波泵的流体力学理论和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,发明于18世纪的水锤泵,功能和作用原理都是完全不同于传统涡轮泵的一类水泵。因为从功能上讲,它无需输入外功,而是将水(源)流原有的能量进行重新分配,获得高压水流:从作用原理上讲,它是利用非定常水流的水锤现象来达到增压与分流的目的。世界上许多国家(特别是俄、美、英、中等国)在山区提水,农田灌溉等方面已有较广泛的应用。但是,由于它在运行中主要依靠两只阀门周期地开关来工作,存在(如间歇性供水、振动严重、噪声大、易损坏、占地面积多和维修频繁等)重大的缺陷,难以适应客观实用的要求。
     本文巧妙结合水锤泵和气波增压器两者的工作原理与效能转换方式,成功研究出不间断地产生水锤效应,能够连续获得高压水流的水波泵,随后进行了大量的实验研究,得到许多有用的数据。本文在研究过程中,主要取得了以下成果:
     1、首先利用流体的非定常现象——水击压力波动原理,创新性地提出了新型水泵——水波泵研制的理论依据,通过对水波泵的流体力学分析计算,得出了分析计算方法。并用特征线解法计算了水波泵平均半径处一维非定常流动问题,对水波泵出入口的径向平衡问题也进行理论计算与分析。
     2、首次完成了水波泵的结构型式及其机械制造工艺设计,并于2006年9月成功试制出水波泵,通过对水波泵进行的实验检测,对实验用水波泵存在的问题进行了必要的修改,从而完善了水波泵设计计算理论与机械制造技术。
     3、对成功试制的水波泵,进行为期一年多的实验与改进研究,解决了实验过程中发现的一些问题,为优化和完善水波泵机械构设计,提供了许多有用的数据。
     4、通过水波泵研制与实验测试,其实验结果初步验证了本文研究和采用的一维非定常流动的典型算例和水波泵设计计算流体力学理论与计算方法的正确性,为今后开展水波泵系列化工业用途研究,提供了理论基础与技术保障,尤其是还可以根据不同的用途选择不同的波型,为水波泵的广泛推广应用创造提供了可靠的条件。
     5、研制的水波泵有效地克服了水锤泵与气波增压器的缺陷,在国际上将率先开发具有独立知识产权的新型水泵。
     此外,水波泵设计结构简单,加工制造方便,运行性能优越于水锤泵。
It is well-known that the hydraulic ram pump, which was invented in the 18th century, is quite different from the traditional turbo pump in its function and action principle. So far as the function is concerned, the hydraulic ram pump does not require external work input, instead the high pressure stream is obtained through the energy inherent in the fluid flow; as for the action principle, the hydraulic ram pump achieves the objective of pressure increase and stream diversion by using the water hammer effect of the unsteady flow. The hydraulic ram pump has been widely applied to water lifting in mountain areas and agricultural irrigation etc in many countries (especially in Russia, U.S., England and China). However, because the hydraulic ram pump mainly depends on the periodic switch of two valves, it has many significant drawbacks, such as intermittent water supply, strong vibration, fragility, large occupied area, high maintenance frequency and so on, which make it difficult to satisfy the requirements of practical applications.
     In this paper, a water wave pump, which can incessantly produce the water hammer effect and gain high pressure flows, has been successfully developed by combining the work principle and efficiency-energy transfer mode of the hydraulic ram pump and the pressure wave supercharger. Subsequently, a number of experiments were performed and many useful data were obtained. During the course of this research, following achievements have been made:
     1. The theoretical foundation for the water wave pump, a new type of pump, has been proposed by using the principle of pressure wave of water hammer, the unsteady phenomenon of fluid flows. By analyzing the fluid dynamics involved in water wave pump, the methods for analysis and calculation were obtained. Furthermore, one-dimensional unsteady flow at the average radius of the water wave pump was calculated, and the problem for the radial equilibrium at the inlet and outlet of the water wave pump was also calculated and analyzed theoretically.
     2. The technical design for structural type and machinery manufacture of the water wave pump was finished for the first time, and a prototype water wave pump was successfully produced in September 2006. By testing the water wave pump, necessary modification for the prototype was performed, and consequently the computational theory and techniques for machinery manufacture of the design of water wave pump were improved.
     3. The experiments and improvement study for the prototype water wave pump had been performed for more than half a year, and some problems found during the experiments were solved, and a number of useful data for optimizing and improving the machinery structure of the water wave pump were provided.
     4. The accuracy of the typical calculation cases for one-dimensional unsteady flow and the theory and calculation of computational fluid dynamics for design of the water wave pump, which were adopted in this paper, was proved initially by the results of developing and testing for the water wave pump, and it provided theoretical basis and technical guarantee for the future study for serialized industrial application of the water wave pump. Particularly, different wave type could be selected according to different purpose, and it provided a reliable condition for wide popularization and application of the water wave pump.
     5. The disadvantages of the hydraulic ram pump and the pressure wave supercharger have been overcome by the developed water wave pump, and a new type of pump with independent intellectual property rights would be the first to be developed in the world.
     In addition, the water wave pump is superior to the hydraulic ram pump in the operational performance for its simple designed structure and convenient manufacture.
引文
[1]刘高联,流体力学变分原理的建立与变换的系统性途径,工程热物理学报Vol.11(1990)No.2 136-142
    [2]John D.Anderson,JR.,Computational Fluid Dynamics,McGraw-Hill,New York,1995
    [3]刘高联,水波泵的研究、开发与成果转化,上海市科委新科技研究开发项目建议书,1999年4月28日
    [4]Liu,G.L.,Variational principles(VP) for 1-D unsteady compressible flow in a deforming tube of variable cross section,Int.J.Turbo & Jet Engines,15(1998) 1-6.
    [5]Benson,R.S.,The thermodynamics and gas dynamics of internal-combustion engines,Vol.Ⅰ,Clarendon Press,Oxford,1982.
    [6]Liu,G.L.,Derivation and transformation of VP with emphasis on inverse & hybrid problems in fluid mechanics:A systematic approach,Acta Mechanica,140(2000),73-89
    [7]周恒.新世纪对流体力学提出的要求.自然科学进展,2000,10(6):491-494
    [8]李家春.现代流体力学发展的回顾与展望.力学进展,1995,25(4):442-450
    [9]黄克智等人.世纪之交的力学.力学进展,2001,31(1):144-155
    [10]刘高联,张道方,朱为民.双曲型偏微分方程的特征线定向差分解法,全国第四届计算流体力学学术会议论文,1988年10月,上海
    [11]Shapiro,A.H.,The Dynamics and Thermodynamics of Compressible Fluid Flow,Vol.2,The Ronald Press Co.,New York,(1954).
    [12]蔡睿贤 一些一元变截面不定常可压素缩完全气体等熵流的解析解,工程热物理学报,第14卷第2期,1993年,142-145
    [13]Watters G.Z.,Analysis and Control of Unsteady Flow in Pipelines,Bufferworths,1984(2nd edi.)
    [14]刘高联,王甲升,叶轮机械气体动力学基础,北京,机械工业出版社 1980
    [15]Liu G.L.,The radial equilibrium problem of flow in wave machinery,Proc Instn Mech Engrs,Vol.207,pp.23-30.
    [16]中国专利大全,www.cpsfu.com
    [17]王学芳,工业管道中的水锤,北京:科学出版社,1995
    [18]童秉纲,张炳暄,崔尔杰,非定常流与涡运动,国防工业出版社,1993
    [19]顾宏中,内燃机中的气体流动及其数值分析,国防工业出版社,1985
    [20]庄礼贤,尹协远,马晖扬,流体力学,中国科技大学出版社,1991
    [21]L.D.Landau and E.M.Lifshitz,Fluid Mechanics,Butterworth-Heinemann,1987
    [22]J.T.Oden,O.C.Zienkiewicz,R.H.Gallagher,C.Taylor,Finite Element Methods in flow Problems,UAH Press,the University of Alabama in Huntsville,Huntsville,Alabama,1974
    [23]潘锦珊,气体动力学基础,北京,国防工业出版社,1980
    [24]Zienkiewicz,O.C.Computational mechanics today.Int.J.for Numer.Methods in Engrg 1999,34(1):9-33
    [25]Jameson,A.A perspective on computational algorithms for aerodynamic analysis and design.Progress in Aerospace Sciences.2001,37,(1):197-243
    [26]钱伟长,变分法及有限元,科学出版社,1980
    [27]J.J.康纳,C.A.勃莱皮埃,流体流动的有限元法,科学出版社,1981
    [28]刘大恺,水力机械流体力学,上海交通大学出版社,1988
    [29]A.堪特劳维兹,非定常气体动力学的一维处理法,科学出版社,1988
    [30]周毓麟,一维非定常流体力学,科学出版社,1998
    [31]P.H.Rose,Potential Applications of wave machinery to energy and chemical processes,Proc.12th Intl.Symp.on Shock Tubes & Waves,Jerusalem,Israel,July 1979
    [32]刘伟,牟斌,非定常超音速流动数值计算方法比较,国防科技大学学报Vol.23(2001)No.11-4
    [33]王树人,刘天雄,彭天玫.水击理论与水击计算 北京 清华大学出版社 1981
    [34]Krol J.,The automatic hydraulic ram,Proc.IMech E,165(1951)53-65
    [35]刘高联,陶毅,刘英学,可变形管中一维非定常可压缩流动的变分原理族,中国工程热物理学会2002年学术会议,广东中山
    [36]G.L.Liu,Yi Tao,Yingxue Liu,Varitional Formulation of 1-D Unsteady Compressible Flow in A Deforming Tube,Journal of Thermal Science 2003,Vol.12,No.2:114-117
    [37]陶毅,刘英学,刘高联,水波泵内流体径向平衡问题的解法,上海大学学报(自然科学版)2003年第3期361-364
    [38]刘英学,陶毅,刘高联,新型水泵—水波泵的流体力学原理与设计计算,流体机械2003年第10期15-18
    [39]刘英学,陶毅,刘高联 水波泵研制的流体力学原理与设计计算 应用力学学报2005,22(5):202-206
    [40]Yingxue Liu,Yi Tao,G.L.Liu,Hydrodynamics Theory and Calculation in Water Wave Pump Design Journal of Hydrodynamics,Ser.B,2005,17(2):216-221
    [41]李文广 第21届IAHR水力机械及系统学术讨论会泵论文述评 水泵技术2003.4 24-32
    [42]陶毅,刘英学,刘高联。水波泵的流体力学分析与计算 第17届全国水动力学学术会议 中国香港,2004.1
    [43]陈佐一,蒋滋康,孙铴九 振荡流体力学 北京 水利电力出版社 1988
    [44]吴望一 流体力学 北京 北京大学出版社1982.2
    [45]陈克诚 流体力学实验技术 北京 机械工业出版社 1983.12
    [46]潘文全 流体力学基础 北京 机械工业出版社 1980.12
    [47]刘光临,邓华 伴随液柱分离的泵系统水锤计算与研究,水利学报,1995,12,18-23
    [48][德]赫尔姆特.舒尔茨著,吴达人、周达孝译,水锤(扬水)泵,《泵:原理、计算与结构(中译本)》(第十三版),北京:机械工业出版社,1991
    [49]翁爱和,水轮泵的技术发展 水轮泵 2001,2,1-7
    [50]马弛,农村可再生能源适用技术的经济性分析,能源工程,2001,6,20-23
    [51]沈兴全、张吉堂等,新型水锤泵设计与研究,新能源,1997,(7)
    [52]董克军,水锤泵及其应用,能源工程,1991,(3)
    [53]马弛、董克军,水锤泵的示范应用和经济性,能源工程,1993,(5)
    [54]Norman Carter[英],新型水锤泵的设计方法,水利水电快报,1996,17(13),15-16
    [55]沈兴全、张吉堂等,水锤泵自动阀门设计,阀门,1998,3,5-6
    [56]马弛、彼得·迪马,水锤泵在中国的示范与推广,能源工程,2000,(6)36-37
    [57]姚新、刘民钢,液压与传动,北京:中国人民大学出版社,2000
    [58]陈家瑞 水轮泵动力输出技术的基本分析 排灌机械式 1996年第1期9-12
    [59]关醒凡 我国泵技术的发展与展望 通用机械,2006,9,28-41
    [60]袁寿其,许安祥,中国排灌机械的确现状与展望,农业机械学报,33(5),117-118
    [61]黄汤烈,张全仁,水轮泵的生存和发展靠综合效益 水轮泵 2001,29-13
    [62]严敬,杨小林,国外水泵研究现状概述,排灌机械,21(3),1-3
    [63]吴华忠,新型节能的提水工具——水锤泵,能源工程,2001,3,38-39
    [64]龚传炳,姚远胜,21世纪泵的展望,水轮泵,2001,2,9-13
    [65]梁健维,任威炜,水轮泵可靠性指标体系,水轮泵,1991,1,5-9