燃气轮机转静系盘腔内流动与传热机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着燃气轮机技术的发展,透平前温不断升高,二次空气系统所需冷气量不断增加,由于这部分气体做功能力有限,因此通过优化设计以减少冷气用量是提高燃机性能的有效途径。二次空气系统中包含的结构形式多样,流动传热现象复杂多变,掌握其中的机理是进行优化设计的重要前提。本文研究以转静系盘腔为主,其多位于轮缘密封以及供给转子冷气的通路中,腔内的流动传热问题不仅关系到燃机的稳定运行也是整机优化设计的重要部分。
     本文首先对某重型燃机的二次空气系统进行一维网络分析,确定了各处冷气分配和压力分布,总结了透平中各盘腔实际工况对应的无量纲参数条件;并从轴向力和热分析的角度阐述了盘腔内流动传热计算对于重型燃机设计的重要性。
     为了对盘腔内流动传热机理进行实验研究,本文设计搭建了二次空气系统单元机理实验台。参数设计考虑了重型燃机二次空气系统的特点和盘腔基础研究的需求;结构方案考虑了对多种盘腔结构的研究需求,进行统一设计;实验台的测量系统包含传统的压力、流量、温度测量以及热敏液晶瞬态实验技术的应用。
     对转静系盘腔流动问题进行实验和数值研究:从源区边界和动盘面边界层流量两个方面对中心进气转静腔的一维模型进行修正,改进了其对腔内流动的模拟;从角动量和盘面转矩的角度对预旋进气转静腔进行分析,导出影响腔内流动的两个无量纲数为修正湍流流动参数λ't与来流雷诺数Rep,并总结了其对角动量系数cdisk的影响规律。
     通过分析指出,对于真实转静盘腔中动盘面传热的估计可转化为对两类理想情况的研究。对于第一类理想情况(非耦合),采用热敏液晶技术进行实验研究,验证了雷诺相似分析方法在该类问题上的适用性;对于第二类理想情况(气热耦合),研究以数值模拟为基础,结合轮盘一维导热分析,提出了简化模型,用以描述耦合情况下冷气量变化对动盘面换热的影响。根据两类理想情况的结果,可确定实际燃机中转静盘腔动盘面传热系数所处的范围。
     本文采用实验和数值模拟方法对转静系盘腔内的流动传热机理进行了研究,并将结果整理为一维形式,可应用于工程设计,以提高二次空气系统网络分析中对转静系盘腔的模拟能力。
With the development of gas turbine, the turbine inlet temperature keepsincreasing, and so does the amount of secondary air. As the coolant doesn'tmake much contribution to output power, optimisations which will reduce theamount of coolant are effective ways to improve the gas turbine efficiency. Theactual structure of secondary air system(SAS) is very complicated, and so arethe flow and heat transfer phenomena in it. An essential precondition ofoptimization would be the understanding of the mechanism. This paper focusedon the research of rotor-stator cavities, which usually exist with rim seals andthe network in which coolant is provided to rotor. The flow and heat transferwithin are not only related to the stability of engine but also important parts ofoptimization of gas turbine.
     1D analysis was carried on the flow network of SAS of some industrial gasturbine. The distribution of coolant flow rate and pressure is determined. Thenondimensional numbers of cavity flow in industrial gas turbine are summarized.The importance of accurate calculation of flow and heat transfer in cavities isexpounded in view of thrust and heat transfer analysis of the whole engine.
     In order to carry experimental research on flow and heat transfer in cavities,the "secondary air system unit test rig" was designed and built up. Theparameter design takes into account the features of SAS of industrial gas turbineand needs of fundamental research in cavity flow. The structure design takesinto account different types of cavities. The measurement system includes notonly normal techniques for pressure, flow rate and temperature measurement,but also the application of thermochromic liquid crystal(TLC) for transient heattransfer experiments.
     The flow dynamics in rotor-stator cavities were studied both numericallyand experimentally. The1D model of flow in rotor-stator cavity with centralinlet is corrected to improve the performance. Corrections are made to thecalculation of source region boundary and mass flow rate entrained by disk, based on the numerical results. As to rotor-stator cavity with pre-swirl inlet, twonondimensional numbers, corrected turbulent flow parameter λ'tand pre-swirlinlet Reynolds number Rep, are pointed out to be the dominant factors that affectthe flow in cavity, in view of angular momentum and torque. And the effects ofλ'tand Repon angular momenturm coefficient cdiskare explored.
     The estimation of heat transfer of rotating disk in rotor-stator cavities inreal engines can be realized by studying two types of ideal cases. As for the firsttype ideal case(non-conjugate), the experimental results by TLC proved that theReynolds analogy is adequate for this type of problem. As for the second typeideal case(conjugate heat transfer), a simplified model is brought out based onthe conjugate numerical simulation results together with1D conduction analysisof turbine disk, to describe the effect of coolant flow rate on heat transfer ofrotating disk. According to the results of the two types of ideal cases, the rangeof heat transfer coefficients of rotating disk in rotor-stator cavity in real enginecan be determined.
     This paper carried both experimental and numerical studies on flow andheat transfer mechanism in rotor-stator cavities. The results are presented in onedimensional form, which can be used in industrial design to improve thecapacity of modelling rotor-stator cavity in network analysis of SAS.
引文
[1]蒋洪德.加速推进重型燃气轮机核心技术研究开发和国产化[J].动力工程学报,2011(08):第563-566页.
    [2]李瞧.掣肘颇多我国燃气轮机产业发展备受困扰[N].中国工业报,2013-01-22(B1).
    [3]王华阁,陆海鹰,于恒洲,等.航空发动机设计手册:空气系统及传热分析[M].北京:航空工业出版社,2000.
    [4] Young C, Smout P D. Recent Advances in the Simulation of Gas Turbine Secondary AirSystems[C],25th International Congress of the Aeronautical Sciences,2006.
    [5] Laurello V, Masada J, Araki M, et al. Correlation of Pre-Swirl Effectiveness with theTurbulent Flow Parameter and Application to the Mitsubishi MF111Up-Grade[C]. ASMEPaper GT2006-90182
    [6] Rudolph R, Sunshine R, Woodhall M, et al. Innovative Design Features of the SGT5-8000HTurbine and Secondary Air System[C]. ASME Paper GT2009-60137.
    [7] Bayley F J, Owen J M. Fluid Dynamics of a Shrouded Disk System with a Radial Outflow ofCoolant[J]. Journal Of Engineering for Power,1970,92(3):335-341.
    [8] Owen J M. The Reynolds analogy applied to flow between a rotating and a stationary disc[J].International Journal of Heat and Mass Transfer,1971,14(3):451-460.
    [9] Owen J M, Haynes C M, Bayley F J. Heat Transfer from an Air-Cooled Rotating Disk[C].Proceedings of the Royal Society of London,1974, Series A, Mathematical and PhysicalSciences336(1607):453-473.
    [10] Haynes C M, Owen J M. Heat transfer from a shrouded disk system with a radial outflow ofcoolant[J]. Journal of Engineering for Power,1975,97(1):28:35.
    [11] Owen J M. Computation of Heat-Transfer Coefficients from Imperfect TemperatureMeasurements[J]. Journal Of Mechanical Engineering Science,1979,21(5):323-334.
    [12] Chew J W. Computation of Flow and Heat Transfer in Rotating Cavities[D]. UK, Universityof Sussex,1982.
    [13] Vaughan C. A numerical investigation into the effect of an external flow field on the sealingof a rotor-stator cavity[D]. UK, University of Sussex,1986.
    [14] El-Oun Z B. Flow in a shrouded rotor-stator cavity with pre-swirl coolant[D]. UK, Universityof Sussex,1986.
    [15] El-Oun Z B, Neller P H, Turner A B. Sealing of a Shrouded Rotor-Stator System WithPreswirl Coolant[J]. Journal of Turbomachinery,1988, Vol.110:218-225.
    [16] Northrop A, Owen J M. Heat transfer measurements in rotating-disc systems part1: The freedisc[J]. International Journal of Heat and Fluid Flow,1988,9(1):19-26.
    [17] Northrop A, Owen J M. Heat transfer measurements in rotating-disc systems Part2: Therotating cavity with a radial outflow of cooling air[J]. International Journal of Heat and FluidFlow,1988,9(1):27-36.
    [18] Morse A P. Numerical Prediction of Turbulent Flow in Rotating Cavities[J]. Journal ofTurbomachinery,1988,110(2):202-211.
    [19] Phadke U P, Owen J M. Aerodynamic aspects of the sealing of gas turbine rotor-statorsystems Part1: The behaviour of simple shrouded rotating disc systems in a quiescentenvironment[J]. Int. J. Heat and Fluid Flow,1988, Vol.9, pp.98-105.
    [20] Phadke U P, Owen J M. Aerodynamic aspects of the sealing of gas turbine rotor-statorsystems Part2: The performance of simple seals in a quasi-axisymmetric external flow[J]. Int.J. Heat and Fluid Flow,1988, Vol.9, pp.106-112.
    [21] Phadke U P, Owen J M. Aerodynamic aspects of the sealing of gas turbine rotor-statorsystems Part3: The effect of non-axisymmetric external flow on seal performance[J]. Int. J.Heat and Fluid Flow,1988, Vol.9, pp.113-117.
    [22] Dadkhah S. Ingestion and sealing performance of rim seals in rotor-stator wheelspaces[D].UK, University of Sussex,1989
    [23] El-Oun Z B, Owen J M. Preswirl Blade-Cooling Effectiveness in an Adiabatic Rotor-StatorSystem[J]. Journal of Turbomachinery,1989, Vol.111:522-529.
    [24] Owen J M, Rogers R H. Flow and Heat Transfer in Rotating-disc Systems, Volume1:Rotor-Stator Systems[M]. Research Studies Press, Taunton,1989.
    [25] Chew J W. A Theoretical Study of Ingress for Shrouded Rotating Disk Systems With RadialOutflow[J]. Journal of Turbomachinery,1991,113(1):91-97.
    [26] Chew J W, Dadkhah S, Turner A B. Rim sealing of rotor-stator wheelspaces in the absence ofexternal flow[J]. Journal of Turbomachinery,1992, Vol.114, pp.433-438.
    [27] Dadkhah S, Turner A B, Chew J W. Performance of radial clearance rim seals in upstreamand downstream rotor-stator wheelspaces[J]. J. Turbomach,1992, Vol.114, pp.439-445.
    [28] Farthing P R, Long C A, Owen J M, et al. Rotating cavity with axial throughflow of coolingair: flow structure[J]. Journal of Turbomachinery,1992, Vol.114, pp.237-246.
    [29] Owen J M, Rogers R H. Flow and Heat Transfer in Rotating Disc Systems, Vol.2: RotatingCavities[M]. Research Studies Press, Taunton,1995.
    [30] Chen J X, Gan X, Owen J M. Heat Transfer in an Air-Cooled Rotor--Stator System[J].Journal of Turbomachinery,1996,118(3):444-451.
    [31] Childs P R N, Greenwood J R, Long C A. Heat flux measurement techniques[J]. Journal ofMechanical Engineering Science,1999, Vol.213, pp.655-677.
    [32] Childs P R N, Greenwood J R, Long C A. Review of Temperature measurement[J]. Review ofScientific Instruments,2000, Vol.71, pp.2959-2978.
    [33] New P D. An investigation into the operating characteristics of a high radius pre-swirl coolingsystem [D]. University of Sussex,2002.
    [34] Gentilhomme O, Hills N J, Tuner A B, et al. Measurements and Analysis of IngestionThrough a Turbine Rim Seal. ASME Paper GT2002-30481.
    [35] Illingworth J B, Hills N J, Barnes C J.3D Fluid--Solid Heat Transfer Coupling of an AeroEngine Pre-Swirl System[C]. ASME Conference Proceedings.2005,2005(47268):801-811.
    [36] Wilson M, Pilbrow R, Owen J M. Flow and Heat Transfer in a Preswirl Rotor--StatorSystem[J]. Journal of Turbomachinery.1997,119(2):364-373.
    [37] Camci C, Glezer B, Owen J M, et al. Application of Thermochromic Liquid Crystal toRotating Surfaces[J]. Journal of Turbomachinery.1998, Vol.120.
    [38] Karabay H. Flow and heat transfer in cover-plate pre-swirl rotor-stator system.[D].University of Bath,1998.
    [39] Karabay H, Chen J X, Pilbrow R, et al. Flow in a "Cover-Plate" Preswirl Rotor-StatorSystem[J]. Journal of Turbomachinery.1999,121(1):160-166.
    [40] Pilbrow R, Karabay H, Wilson M, et al. Heat Transfer in a "Cover-Plate" PreswirlRotating-Disk System[J]. Journal of Turbomachinery.1999,121(2):249-256.
    [41] Karabay H, Pilbrow R, Wilson M, et al. Performance of Pre-Swirl Rotating-Disc Systems[J].Journal of Engineering for Gas Turbines and Power.2000,122(3):442-450.
    [42] Karabay H, Wilson M, Owen J M. Approximate Solutions for Flow and Heat Transfer inPre-swirl Rotating-Disc Systems[C]. ASME Paper2001-GT-0200.
    [43] Karabay H, Wilson M, Owen J M. Predictions of effect of swirl on flow and heat transfer in arotating cavity[J]. International Journal of Heat and Fluid Flow.2001,22(2):143-155.
    [44] Yan Y Y, Owen J M. Uncertainties in transient heat transfer measurements with liquidcrystal[J]. International Journal of Heat and Fluid Flow.2002,23(1):29-35.
    [45] Yan Y, Gord M F, Lock G D, et al. Fluid Dynamics of a Pre-Swirl Rotor-Stator System[J].Journal of Turbomachinery.2003,125(4):641-647.
    [46] Newton P J, Yan Y, Stevens N E, et al. Transient heat transfer measurements usingthermochromic liquid crystal. Part1: An improved technique[J]. International Journal of Heatand Fluid Flow.2003,24(1):14-22.
    [47] Owen J M. Transient heat transfer measurements using thermochromic liquid crystal. Part2:Experimental uncertainties[J]. International Journal of Heat and Fluid Flow.2003,24:23-28
    [48] Gord M F. Flow and heat transfer in a pre-swirl rotor-stator system [D]. UK, University ofBath,2003.
    [49] Farzaneh-Gord M, Wilson M, Owen J M. Numerical and Theoretical Study of Flow and HeatTransfer in a Pre-Swirl Rotor-Stator System[C]. ASME Paper GT2005-68135.
    [50] Lock G D, Yan Y, Newton P J, et al. Heat Transfer Measurements Using Liquid Crystals in aPreswirl Rotating-Disk System[J]. J. Eng Gas Turb Power.2005,127(2):375-382.
    [51] Lock G D, Wilson M, Owen J M. Influence of Fluid Dynamics on Heat Transfer in a PreswirlRotating-Disk System[J]. J Eng Gas Turb Power.2005,127(4):791-797.
    [52] Lewis P, Wilson M, Lock G, et al. Physical Interpretation of Flow and Heat Transfer inPre-Swirl Systems[C]. ASME Paper GT2006-90132.
    [53] Lewis P, Wilson M, Lock G, et al. Effect of Radial Location of Nozzles on Performance ofPre-Swirl Systems[C]. ASME Conference Proceedings.2008,2008(43147):1397-1406.
    [54] Lewis P R. Pre-swirl rotor-stator systems: Flow and heat transfer [D]. UK, University of Bath,2008.
    [55] Lock G D, Kakade V, M. Wilson J M O, Mayhew J E. Effect of Radial Location of Nozzleson Heat Transfer in Pre-Swirl Cooling System[C]. ASME Paper GT2009-59090.
    [56] Kakade V. Fluid Dynamic and Heat Transfer Measurements in Gas Turbine Pre-SwirlCooling Systems [D]. University of Bath,2009.
    [57] Carl M S, Oliver J P, Kunyuan Z, et al. Experimental Measurements of ingestion throughturbine seals Part1: Externally-induced ingress[C]. ASME Paper GT2011-45310
    [58] Carl M S, Oliver J P, Kunyuan Z, et al. Experimental Measurements of Ingestion throughTurbine Rim Seals Part2: Rotationally-induced ingress[C]. ASME Paper GT2011-45313.
    [59] Carl M S, Oliver J P, James A S, et al. Experimental Measuresments of Ingestion ThroughTurbine Rim Seals: Part3-Single and Double Seals. ASME Paper GT2012-68493.
    [60] Reichert A W, Janssen M. Cooling and Sealing Air System in Industrial Gas TurbineEngines[C], ASME Paper96-GT-256.
    [61] Reichert A W, Brillert D, Simon H. Loss Prediction for Rotating Passages in Secondary AirSystems[C], ASME Paper97-GT-215.
    [62] Brillert D, Reichert A W, Simon H. Cooling Air Flow in a Multi Disc Industrial Gas TurbineRotor[C], ASME Paper98-GT-136.
    [63] Brillert D, Reichert A W, Simon H. Calculation of Flow Losses in Rotating Passages of GasTurbine Cooling Systems[C], ASME Paper99-GT-251.
    [64] Brillert D, Lieser D, Reichert A W, et al. Total Pressure Losses in Rotor Systems with RadialInflow[C], ASME Paper2000-GT-0283.
    [65] Brillert D, Reichert A W, Simon H. The Flow Structure in Rotating Hollow Shafts withRadial Inflow and Axial Throughflow[C], ASME Paper2001-GT-0203.
    [66] Brillert D, Benra F K, Dohmen H J, et al. Investigation of Internal Cooling Air Flow of GasTurbines With Attention to Heat Transfer[C]. ASME Paper FEDSM2003-45106.
    [67] Brillert D, Dohmen H J, Benra F K, et al. Application of Conjugate CFD to the InternalCooling Air Flow System of Gas Turbines[C]. ASME Paper GT2003-38471.
    [68] Schneider O, Dohmen H J, Benra F K, et al. Experimental and Numerical Analysis of theFlow structure and Dust Separation Inside a Pre-Swirl Cooling Air System[C], FEDSM2003-45096, FEDSM, Honolulu, Hawaii USA,2003.
    [69] Schneider O, Dohmen H J, Benra F K, et al. Investigations Of Dust Separation In AGasturbine Pre-Swirl Cooling Air System Using New Enhanced Simulation Methods[C],FEDSM2005-77212, FEDSM, Houston TX,2005.
    [70] Jarzombek K, Dohmen H J, Benra F K, et al. Flow Analysis in Gas Turbine Pre-SwirlCooling Air Systems: Variation of Geometric Parameters[C]. ASME Paper GT2006-90445.
    [71] Jarzombek K, Benra F K, Dohmen H J, et al. CFD Analysis of Flow in High-Radius Pre-SwirlSystems[C]. ASME Paper GT2007-27404.
    [72] Benra F K, Dohmen H J, Schneider O. Application of an Enhanced1D Network Model toCalculate the Flow Properties of a Pre-Swirl Secondary Air System[C]. ASME ConferenceProceedings.2008,2008(43147):1423-1430.
    [73] Hills N J, Chew J W, Turner A B. Computational and Mathematical Modelling of TurbineRim Seal Ingestion[C]. ASME Paper2001-GT-0204.
    [74] Chew J W, Hills N J, Turner A B. Measurement and Analysis of Flow in a Pre-SwirledCooling Air Delivery System[C]. ASME Paper GT2003-38084.
    [75] Cao C, Chew J W, Millington P R, et al. Interaction of Rim Seal and Annulus Flows in anAxial Flow Turbine. Journal of Engineering for Gas Turbines and Power,2004,126:786-793
    [76] Chew J W, Ciampoli F, Hills N J. Pre-swirl cooling air delivery system performance[C].ASME Paper GT2005-68323.
    [77] Autef V N D, Chew J W, Hills N J, et al. Turbine Stator-well Flow Modelling[C].8th ISAIF,2007, ISAIF8-008.
    [78] Ciampoli F, Chew J W, Shahpar S, et al. Automatic Optimization of Preswirl NozzleDesign[J]. Journal of Engineering for Gas Turbines and Power.2007,129(2):387-393.
    [79] Ciampoli F, Hills N J, Chew J W, et al. Unsteady Numerical Simulation of the Flow in aDirect Transfer Pre-Swirl System[C]. ASME Paper GT2008-51198.
    [80] Bohn D, Emunds R, Gorzelitz V. Experimental and Theoretical Investigations of HeatTransfer in Closed Gas-Filled Rotating Annuli II. ASME Paper94-GT-175.
    [81] Bohn D, Deutsch G N, Simon B. Flow Visualisation in a Rotating Cavity with AxialThroughflow. ASME Paper GT2000-0280.
    [82] Bohn D, Wolff M. Improved Formulation to Determine Minimum Sealing Flow-Cw, Min-for Different Sealing Configurations[C]. ASME Paper GT2003-38465.
    [83] Scanlon T, Wilkes J, Bohn D, et al. A Simple Method for Estimating Ingestion of AnnulusGas into a Turbine Rotor Stator Cavity in the Presence of External Pressure Variations[C].ASME Paper GT2004-53097.
    [84] Bunker R S, Metzger D E. Local Heat Transfer in Turbine Disk Cavities: Part I---Rotor andStator Cooling With Hub Injection of Coolant[J]. J Turbomach.1992,114(1):211-220.
    [85] Bunker R S, Metzger D E. Local Heat Transfer in Turbine Disk Cavities: Part II---RotorCooling With Radial Location Injection of Coolant[J]. J Turbomach.1992,114(1):221-228.
    [86] Snowsill G D, Young C. Application of CFD to Assess the Performance of a Novel Pre-SwirlConfiguration[C]. ASME Conference Proceedings.2008,2008(43147):1555-1562.
    [87] Haaser F, Jack J, Mcgreehan W. Windage rise and flowpath gas ingestion in turbine rimcavities[J]. Journal of engineering for gas turbines and power.1988,110(1):78-85.
    [88] Mcgreehan W F, Schotsch M J. Flow Characteristics of Long Orifices With Rotation andCorner Radiusing[J]. Journal of Turbomachinery.1988,110(2):213-217.
    [89] R. S. Bunker G M L, J. C. Bailey P P, S. Kapetanovic G M I, et al. An Investigation ofTurbine Wheelspace Cooling Flow Interactions With a Transonic Hot Gas Path—Part1:Experimental Measurements[C]. ASME Paper GT2009-59237.
    [90] G. M. Laskowski R S B, J. C. Bailey S K, G. M. Itzel M A S, et al. An Investigation ofTurbine Wheelspace Cooling Flow Interactions With a Transonic Hot Gas Path—Part2: CFDSimulations[C]. ASME Paper GT2009-59193.
    [91] Johnson B V, Wang C, Roy R P. A Rim Seal Orifice Model With2Cds and Effects of Swirlin Seals[J]. ASME Conference Proceedings.2008,2008(43147):1531-1541.
    [92] Zhou D W, Roy P R, Wang C Z, et al. Main Gas Ingestion in a Turbine Stage for Three RimCavity Configurations[C]. ASME Paper GT2009-59851.
    [93] Mirzamoghadam A V, Heitland G, Hosseini K M. The Effect of Annulus PerformanceParameters on Rotor-Stator Cavity Sealing Flow[C]. ASME Paper GT2009-59380.
    [94] Laurello V, Yuri M, Fujii K, et al. Measurement and Analysis of an Efficient Turbine RotorPump Work Reduction System Incorporating Pre-Swirl Nozzles and a Free Vortex PressureAugmentation Chamber[C]. ASME Conference Proceedings.2004,2004(41693):249-256.
    [95] Laurello V, Masada J, Araki M, et al. Correlation of Pre-Swirl Effectiveness With theTurbulent Flow Parameter and Application to the Mitsubishi MF111Up-Grade[C]. ASMEConference Proceedings.2006,2006(4238X):1313-1320.
    [96] Zimmermann H. Some Aerodynamic Aspects of Engine Secondary Air Systems[J]. Journal ofEngineering for Gas Turbines and Power.1990,112(2):223-228.
    [97] Kutz K J, Speer T M. Simulation of the Secondary Air System of Aero Engines[J]. Journal ofTurbomachinery.1994,116(2):306-315.
    [98] Popp O, Zimmermann H, Kutz J. CFD Analysis of Coverplate Receiver Flow[J]. Journal ofTurbomachinery.1998,120(1):43-49.
    [99] Bohn D, Rudzinski B, Sürken N, et al. Experimental and numerical investigation of theinfluence of rotor blades on hot gas ingestion into the upstream cavity of an axial turbinestage. ASME Paper2000-GT-284.
    [100] Verdicchio J A, Chew J W, Hills N J. Coupled Fluid/Solid Heat Transfer Computation forTurbine Discs[C]. ASME Paper2001-GT-0205.
    [101] Smout P D, Chew J W, Childs P R N. ICAS-GT: A European Collaborative ResearchProgram on Internal Cooling Air Systems for Gas Turbines[C]. ASME Paper GT2002-30479
    [102] Dittmann M, Geis T, Schramm V, et al. Discharge Coefficients of a Preswirl System inSecondary Air Systems[J]. Journal of Turbomachinery.2002,124(1):119-124.
    [103] Geis T, Rottenkolber G, Dittmann M, et al. Endoscopic PIV-measurements in an enclosedrotor–stator system with pre-swirled cooling air[C]. Proceedings of the11th Internationalsymposium on application of laser techniques to fluid mechanics, Lisbon, Portugal, July2002.
    [104] Bohn D, Decker A, Ma H, et al. Influence of sealing air mass flow on the velocity distributionin and inside the rim seal of the upstream cavity of a1.5-stage turbine[C]. ASME-PaperGT2003-38459,2003.
    [105] Dittmann M, Dullenkopf K, Wittig S. Discharge Coefficients of Rotating Short Orifices WithRadiused and Chamfered Inlets[J]. J Eng Gas Turb Power,2004,126(4):803-808.
    [106] Geis T, Dittmann M, Dullenkopf K. Cooling Air Temperature Reduction in a Direct TransferPreswirl System[J]. J Eng Gas Turb Power,2004,126(4):809-815.
    [107] Owen J M, Powell J. Buoyancy-induced Flow in a Heated Rotating Cavity. ASME PaperGT2004-53210.
    [108] Dittmann M, Dullenkopf K, Wittig S. Direct-Transfer Preswirl System: A One-DimensionalModular Characterization of the Flow[J]. J Eng Gas Turb Power,2005,127(2):383-388.
    [109] Bricaud C, Richter B, Dullenkopf K, et al. Stereo PIV measurements in an enclosedrotor-stator system with pre-swirled cooling air[J]. Experiments In Fluids.2005,39:202-212.
    [110] Childs P, Dullenkopf K. Internal Air Systems Experimental Rig Best Practice[C]. ASMEPaper GT2006-90215.
    [111] Bohn D E, Decker A, Ohlendorf N, et al. Experimental Investigations of the Influence ofSealing Air Mass Flow on the Adiabatic Wall Temperature Distribution on the Surface of theRotor Blisk in a1.5Stage Turbine. ASME Paper GT2006-90453.
    [112] Jeffrey A D, Ivan L B, Timothy J S, et al. Turbine stator well heat transfer and cooling flowoptimisation[C]. ASME paper GT2006-90306.
    [113] Snowsill G D, Young C. The Application of CFD to Underpin the Design of Gas TurbinePre-Swirl Systems[C]. ASME Paper GT2006-90443.
    [114] Bricaud C, Geis T, Dullenkopf K, et al. Measurement and Analysis of Aerodynamic andThermodynamic Losses in Pre-Swirl System Arrangements[C]. ASME Paper GT2007-27191.
    [115] Zixiang S, John C, Nicholas H, et al. Efficient FEA/CFD thermal coupling for engineeringapplications[C]. ASME Paper GT2008-50638.
    [116] Da S, Andreini F. Turbine stator well CFD tudies: Effects of coolant supply geometry oncavity sealing performance[C]. ASME Paper GT2009-59186.
    [117] Jeffrey A D, Antonio G V, Andreas B, et al. Heat Transfer in Turbine Hub Cavities Adjacentto the Main Gas Path[C]. ASME Paper GT2010-22130.
    [118] Coren D D, Atkins N R, Childs P R N, et al. An Advanced Multi Configuration TurbineStator Well Cooling Test Facility[C], ASME Paper GT2010-23450.
    [119] Antonio G V, Jeffrey A. D, et al. Heat Transfer in Turbine Hub Cavities Adjacent to the MainGas Path Including FE-CFD Coupled Thermal Analysis[C]. ASME Paper GT2011-45695.
    [120] Eastwood D, Coren D D, Long C A, et al. Experimental Investigation of Turbine Stator WellRim Seal, Re-ingestion and Interstage Seal Flows Using Gas Concentration Techniques andDisplacement Measurements[C]. ASME Paper GT2011-45874.
    [121] Jeffrey A D, Antonio G V, Coren D. Main Annulus Gas Path Interations-Turbine Stator WellHeat Transfer[C]. GT2012-68588.
    [122] Antonio G V, Jeffrey A D, Soghe R D, et al. An Investigation into Numerical AnalysisAlternatives for Predicting Reingestion in Turbine Disc Rim Cavities[C]. GT2012-68592.
    [123] Peter E J S, Jonathan M, Kok M T, et al. Conjugate Heat transfer CFD Analysis in TurbineDisc Cavities[C]. ASME Paper GT2012-69597.
    [124] Idris A, Pullen K, Barnes D. An investigation into the flow within inclined rotating orificesand the influence of incidence angle on the discharge coefficient[J]. Proc. Instn Mech. EngrsVol.218Part A: J. Power and Energy.2004,218(1):55-69.
    [125] Idris A, Pullen K R. Correlations for the discharge coefficient of rotating orifices based on theincidence angle[J]. J Power and Energy.2005,219(5):333-352.
    [126] Childs P R N. Rotating Flow[M]. Elsevier,2010.
    [127] Huning M. Comparison of Discharge Coefficient Measurements and Correlations for SeveralOrifice Designs With Cross-Flow and Rotation Around Several Axes[C]. ASME ConferenceProceedings.2008,2008(43147):1599-1612.
    [128] Foley D A. on the performance of gas turbine secondary air systems[C]. ASME Paper2001-GT-0199.
    [129] Alexiou A, Mathioudakis K. Development of gas turbine performance models using a genericsimulation tool[J]. Proceedings of the ASME Turbo Expo2005, Vol1.2005:185-194.
    [130] Alexiou A, Mathioudakis K. Gas turbine engine performance model applications using anobject-oriented simulation tool[C]. ASME Paper GT2006-90339.
    [131] Alexiou A, Mathioudakis K. Secondary Air System Component Modeling for EnginePerformance Simulations[J]. J Eng Gas Turb Power,2009,131(3):31202-31209.
    [132] Gallar L, Calcagni C, Pachidis V, et al. Development of a One-Dimensional Dynamic GasTurbine Secondary Air System Model---Part I: Tool Components Development andValidation[J]. ASME Conference Proceedings.2009,2009(48852):457-465.
    [133] Calcagni C, Gallar L, Pachidis V. Development of a One-Dimensional Dynamic Gas TurbineSecondary Air System Model---Part II: Assembly and Validation of a Complete Network[C].ASME Conference Proceedings.2009,2009(48852):435-443.
    [134] Carcasci C, Facchini B, Gori S. Heavy Duty Gas Turbine Simulation: Global PerformancesEstimation and Secondary Air System Modifications[C]. ASME Paper GT2006-90905
    [135] Daily J W, Nece R E,1960, Chamber dimension effects on induced flow and frictionalresistance of enclosed rotating disks[J]. Journal of Basic Engineering,82,217-232
    [136] Daily J W, Ernst W D, Asbedian V V. Enclosed rotating discs with superposed throughflow:Mean steady and periodic unsteady characteristics of induced flow[R]. MIT Department ofCivil Engineering, Hydrodynamics Laboratory Report No.64,1964.
    [137] Da Soghe R, Facchini B, Innocenti L, et al. Analysis of Gas Turbine Rotating Cavities by aOne-Dimensional Model: Definition of New Disk Friction Coefficient Correlations Set[J].Journal of Turbomachinery.2011,133(2):21020-21028.
    [138] Micio M. Gas turbine secondary air system: experimental analysis and design toolsdeveloping[D]. University of Florence,2010.
    [139] Poncet S, Chauve M P, Legal P. Turbulent rotating disk flow with inward throughflow[J].Journal of Fluid Mechanics.2005,522(-1):253-262.
    [140] Poncet S, Chauve M P, Schiestel R. Batchelor versus Stewartson flow structures in arotor-stator cavity with throughflow[J]. Physics of fluids.2005,17:75110.
    [141] Nour F A, Poncet S, Debuchy R, et al. A Combined Analytical, Experimental and NumericalInvestigation of Turbulent Air Flow Behaviour in a Rotor-Stator Cavity:19ème CongrèsFran ais de Mécanique[C]. Marseille:2009.
    [142] Debuchy R, Della Gatta S, D'Haudt E, et al. Influence of external geometrical modificationson the flow behaviour of a rotor-stator system: numerical and experimental investigation[J].Journal of Power and Energy.2007,221(A6):857-864.
    [143] Debuchy R, Nour F A, Bois G. On the Flow Behavior in Rotor-Stator System withSuperposed Flow[J]. International Journal of Rotating Machinery.2008,2008.
    [144] Littell, H. S. And Eaton J. K., Turbulence Characteristics of the Boundary-Layer on aRotating-Disk[J]. Journal of Fluid Mechanics,1994.266: P.175-207.
    [145] Elkins C J, Eaton J K. Turbulent heat and momentum transport on a rotating disk[J]. Journalof Fluid Mechanics.2000,402:225-253.
    [146] Kang H S, Yoo J Y. Turbulence characteristics of the three-dimensional boundary layer on arotating disk with jet impingement[J]. Experiments in Fluids.2002,33(2):270-280.
    [147] Schouveiler, L., Le Gal, P.&Chauve, M.-P.2001Instabilities of the flow between a rotatingand a stationnary disk[J]. J. Fluid Mech.443,329–350.
    [148] Ewa T, Wojciech M, Kamil K. Heat Transfer in Rotor/Stator Cavity[J]. Journal of Physics:Conference Series.2011,318(2011).
    [149] Tuliszka-Sznitko E, Majchrowski W, Kie czewski K. Investigation of transitional andturbulent heat and momentum transport in a rotating cavity[J]. International Journal of Heatand Fluid Flow.2012,35(0):52-60.
    [150] Roy R P, Feng J, Narzary D, et al. Experiments on Gas ingestion through axial-flow turbinerim seals[C]. ASME Paper GT2004-53394
    [151] Meierhofer B, Franklin C J. An investigation of a Pre-swirled Cooling Airflow to a TurbineDisc by Measuring the Air Temperature in the Rotating Channels. ASME Paper81-GT-132.
    [152] Benim A C, Brillert D, Cagan M. Investigation Into the Computational Analysis ofDirect-Transfer Pre-Swirl Systems for Gas Turbine Cooling[C]. ASME Paper GT2004-54151
    [153] Roy R P, Xu G, Feng J. A Study of Convective Heat Transfer in a Model Rotor--Stator DiskCavity[J]. Journal of Turbomachinery.2001,123(3):621-632.
    [154] Pellé J, Harmand S. Heat Transfer Study in a Rotor Stator System Air Gap with an AxialInflow[J]. Applied Thermal Engineering.2009,29(8-9).
    [155] Le Wang, Wilson M. Computatoins of Flow and Heat Transfer in Rotor-Stator System withExternally-Indeced Ingestion[J]. Int J Gas Turb Prop Power,2012,4(1):10-18.
    [156] Yuan Z X, Saniei N, Yan X T. Turbulent heat transfer on the stationary disk in a rotor-statorsystem[J]. Internaltional Journal of heat and mas transfer.2003,46(2003):2207-2218.
    [157] Howey D A, Holmes A S, Pullen K R. Measurement and CFD Prediction of Heat Transfer inAir-Cooled Disc-Type Electrical Machines[J]. IEEE T IND APPL,2011,47(4):1716-1723.
    [158] Howey D A, Childs P R N, Holmes A S. Air-gap convection in rotating electrical machines[J].Industrial Electronics, IEEE Transactions on Industrial Electronics,2012,59(3):333-352
    [159] Metzger D E, Partipilo V A. Single and multiple jet impingement heat transfer on rotatingdisks[C].1989. AIAA-89-0174.
    [160] Metzger D E, Bunker R S, Bosch G. Transient Liquid Crystal Measurement of Local HeatTransfer on a Rotating Disk With Jet Impingement[J]. J Turbomach.1991,113(1):52-59.
    [161] Metzger D E, Larson D E. Use of Melting Point Surface Coatings for Local Convection HeatTransfer Measurements in Rectangular Channel Flows With90-deg Turns[J]. Journal of HeatTransfer.1986,108(1):48-54.
    [162] Goldstein R J, Ibele W E, Patankar S V, et al. Heat transfer—A review of2005literature[J].International Journal of Heat and Mass Transfer.2010,53(21-22):4397-4447.
    [163] Syson B J, Pilbrow R G, Owen J M. Effect of Rotation on Temperature Response ofThermochromic Liquid Crystal[J]. International Journal of Heat and Fluid Flow,17:491-499.
    [164] Elena, L. and Schiestel, R., Turbulence modeling of rotating confined flows[J]. InternationalJournal of Heat and Fluid Flow,1996.17(3): p.283-289.
    [165] Vasiliev V I. On the Prediction of Axisymmetric Rotating Flows by a One-EquationTurbulence Model[J]. Journal of Fluids Engineering.2000,122(2):264-272.
    [166] Vadvadgi A S, Yavuzkurt S. Calculation of Disk Temperatures in Gas Turbine Rotor-StatorCavities Using Conjugate Heat Transfer[J]. ASME Paper GT2010-22838.
    [167] Granovskiy A, Kostege V. Impact of the Pre-Swirl Nozzle Location on the Air TransferSystem (ATS) Characteristic[C]. ASME Paper GT2009-59355.
    [168]徐国强,曹玉璋,邱绪光.中心进气的旋转盘平均换热特性研究[J].航空动力学报.1994(01):27-30.
    [169]徐国强,丁水汀,邱绪光,等.具有中心进气外缘加热旋转盘的局部换热特性研究[J].航空动力学报.1995(03):229-232.
    [170]丁水汀,徐国强,陶智,等.外缘预旋进气的旋转空腔主盘局部换热及流阻特性研究[J].推进技术.1998(06):45-49.
    [171]丁水汀,陶智,等.旋转盘腔冷却问题的工程评价[J].航空动力学报.1999(01):83-86.
    [172]徐国强.转静系旋转盘腔内冷气的流动与换热特性研究[D].北京航空航天大学,1999.
    [173]罗翔,王建宁,徐国强.流量变化对中心进气旋转盘平均换热的影响[J].航空动力学报.2000(03):278-281.
    [174]徐国强,陶智,丁水汀,等.高位垂直进气旋转盘流动与换热的实验研究[J].航空动力学报.2000(02).
    [175] Luo X, Zhang C, Xu G, et al. Measurements of Surface Temperature Distribution on aRotating Disk With Blade Cooling Holes Using Thermochromic Liquid Crystal[C]. ASMEConference Proceedings.2004,2004(41693):365-371.
    [176]张崇,罗翔,徐国强,等.中心进气复杂旋转盘压力特性的实验研究[J].北京航空航天大学学报.2005(04):385-388.
    [177]丁水汀,姜祖岗,徐国强,等.对流换热系数的瞬态测量技术[J].北京航空航天大学学报.2010(08):883-886.
    [178]罗翔,徐国强,陶智,等.进气角度对旋转盘冷却效果的影响[J].推进技术.2007(03).
    [179]于霄,罗翔,等.用PIV技术测量径向进气旋转盘腔内的流动[J].航空动力学报.2009(11).
    [180]李夫庆,罗翔,等.中心进气转静盘腔的冷气流阻特性实验[J].航空动力学报.2011(06).
    [181]孙纪宁,罗翔,刘金楠,等.瞬态法测量高转速旋转盘表面传热系数[J].航空动力学报.2012(05):969-974.
    [182]蔡旭,徐国强,罗翔,等.直接供气预旋转静系流动特性的实验[J].航空动力学报.2012(10):2222-2228.
    [183]白洛林,冯青.湍流参数对复杂形状涡轮盘腔流场的数值研究[J].推进技术.2003(04).
    [184]白洛林,郑光华.带有微型涡轮的旋转盘腔局部换热特性[J].推进技术.2005(03).
    [185]周雷声,冯青.旋转涡轮盘腔中等转速下内部流场分布实验[J].推进技术.2006(04).
    [186]武亚勇.反预旋进气旋转盘腔系统的流场实验与计算研究[D].西北工业大学,2007.
    [187]霍晨,冯青.带微型涡轮的旋转盘腔内流场的数值仿真研究[J].计算机仿真.2007(11).
    [188]朱晓华,刘高文,刘松龄,等.带盖板的预旋系统温降和压力损失数值研究[J].航空动力学报.2010(11).
    [189]张靖周,吉洪湖,王锁芳.具有径向进出流的转—静盘腔流动与换热的数值研究[J].工程热物理学报.2001(S1).
    [190]张靖周,吉洪湖.旋转盘腔紊流流动的数值研究[J].推进技术.2002(06).
    [191]朱强华.预旋孔径向位置变化对转—静盘腔内换热影响的研究[D].南京,南京航空航天大学,2006.
    [192]陈阳春,王锁芳.有去旋进气共转盘腔内流动换热数值模拟[J].航空动力学报.2010(08).
    [193]黄力森,陈红英. M701F型燃气轮机冷却空气系统[J].热力发电.2006,35(010):54-56.
    [194]蔡青春. M701F型燃气轮机中的冷却技术[J].燃气轮机技术.2009,4.
    [195]赵世全,贾文,艾松,等. M701F燃气轮机联合循环热平衡计算及优化[J].东方电气评论.2009(04):53-56.
    [196]毛丹.三菱M701F燃气轮机叶片冷却技术分析[J].重庆电力高等专科学校学报.2010(04)
    [197]陈文炎. GE9FA燃气轮机若干关键技术特点[J].热力发电.2007(11):4-6.
    [198]徐强,崔耀欣,张楹. V94.3A燃气轮机的技术分析[J].热力透平.2006(03):169-174.
    [199]吉荣生.西门子V94.3A型燃气轮机技术升级改造介绍[J].燃气轮机技术.2011(04):66-69.
    [200]闻邦椿.机械设计手册(第5版).机械工业出版社,2010.
    [201] Miller D S. Internal Flow Systems[M]. BHRA Fluid Engineering,1978.
    [202] Agilent34980A Multifunction Switch/Measure Unit User's Guide(3rd Edition)[M]. ManualPart Number:34980-90001. Malaysia,2005.