液体粘性调速离合器工作机理研究与模糊控制器试制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液体粘性调速离合器是利用多个摩擦圆盘间的油膜剪切力来传递动力,并通过改变油膜厚度实行无级调速。本文主要从其工作机理的解析入手,分析液体粘性调速离合器的工作机理与输出特性,讨论了影响粘性离合器的各种因数,同时采用模糊技术,探讨实现模糊控制的可行性,以及对模糊控制器的研制作了尝试。
     鉴于近年来工程中广泛采用聚α-稀烃型、聚酯型等合成油作润滑剂;在调速范围内,液体粘性调速离合器中的摩擦副往往工作在流体润滑、混合润滑、边界润滑直到直接接触的工况;基于这些特点,笔者采用了幂律型非牛顿流体模型、Patir-Cheng的平均流量模型、GT两粗糙平面接触模型构建了粘性调速离合器摩擦副工作机理的研究模型,同时计入了油膜的惯性与热效应影响。文章详细地叙述与推导了适应粘性调速离合器摩擦副工作机理的雷诺方程、摩擦副之间的流体平均能量方程、摩擦副表面微凸体接触的压力方程、和固体传热方程。在流体润滑、流体混合润滑状态下,进行了的数值计算,对粘性调速离合器的摩擦副材料、沟槽形状、表面粗糙度、热效应等对传递转矩、平均推进压力、输出转速、以及膜厚比的影响进行了讨论分析。本文指出了被动盘表面开设沟槽不但可以形成动力润滑,而且更重要的是可以对摩擦副表面起冷却作用:不同沟槽形状对工作机理的影响不大。但沟槽数量与沟槽角度会对工作特性有一定的影响;对于粘性调速离合器而言,其摩擦副的热效应主要有于相对转速所致,相对转速越大,则热效应越显著;流体惯性效应通常不显著,只有当摩擦盘半径较大且绝对转速高于1500转/分时,才需考虑。本文还揭示了摩擦副工作时所涉及的输出转速、传递转矩、平均推进压力以及摩擦副间隙等参数之间的相互关系。所有这些将对粘性调速离合器的设计有着指导意义。
     基于工作机理的分析,根据粘性调速离合器的运行特性,作者建立了动态分析模型,首先采用了近似线性控制理论对其进行了定量分析与仿真,讨论了调速稳定性的基本要素。当粘性调速离合器工作在动力润滑区域,系统是稳定的,但进入混合润滑状态时,系统工作处于不稳定状态,需要采用反馈闭环系统来实现稳定控制。考虑到粘性调速离合器属于非线性系统,很难用数学方程组来描述其系统状态特性,所以尝试用模糊控制技术来实现调速控制。文章主要从实际应用的角度阐述了模糊控制技术的基本方法,对模糊控制技术在粘性调速离合器上的应用进行了讨论,建立了模糊控制的研究模型,构建了模糊变量、控制规则控制表,并对其完成了控制仿真,证实了实现模糊控制的可行性。本文还根据现有的技术与硬件条件,叙述了模糊控制器研制以及试验过程。这些分析与试验为未来控制器设计提供了依据。
Multi-frictional disks are employed to transmit the torque in speeding wet clutch, and the oil thickness within frictional disks could be adjusted for practical output speeding. The paper presents the analysis for behavior and output characteristics of speeding wet clutch, discusses factors which have impact on the speeding wet clutch. The fuzzy technology is applied for estimating feasibility of speeding wet clutch control. The fuzzy controller is made on trial and error.Since oil combined with a-hydrocarbon or polyester is getting widely used as lubricant and the frictional disks in speeding wet clutch work within hydrodynamic lubrication, mixture lubrication, boundary lubrication and contact situation, the author establishes the analysis model for investigating the behavior of frictional disks in speeding wet clutch based on above characters, which covers the power-law fluid model, Patir-Cheng average flow model, GT asperity contact model, oil film inertia and thermal effect. The paper describes and deduces the formulas for speeding wet clutch in detail, which are Reynolds equation, mean energy equation, aspect pressure equation, and heat conduction equation. The numeral calculation is executed in hydrodynamic lubrication and mixture lubrication. The analysis is presented for frictional material, groove shape, surface roughness, and thermal effect impacted on transmitted torque, mean push pressure, output speed, and film thickness rate in speeding wet clutch. The paper indicates that the groove in the passive frictional dish not only forms hydrodynamic film, but also cools surface of frictional dish, that the different shapes of the groove are less influence on the speeding wet clutch working behavior, but number and angle of the groove in speeding wet clutch have effect on the speeding wet clutch working behavior, that the more relative speed is, the more thermal effect does for speeding wet clutch, and that the fluid inertia could be ignored while the relative speed is less than 1,500 rad/ min, otherwise the thermal influence should be considered. The paper also discovers the relationship with output speed, transmitted torque, mean push pressure, and film thickness rate, which is significant to speeding wet clutch design.Based on behavior and operating performance of speeding wet clutch, the writer sets up dynamic analysis model. An approximate linear control theory is used to consider essential of speeding stability after quantitative analysis and simulation are executed. The speeding system
引文
1.董勋、周益言.调速离合器传动机理研究[J].上海交通大学学报,1991,Vol.25(1):19-28
    2.魏宸官、赵家象.液体粘性传动技术[M].北京:国防工业出版社,1996
    3.杨乃乔、姜丽英.液力调速与节能[M].北京:国防工业出版社,2000
    4.王步康.粘性离合器设计及实验中的一些问题探讨[J].煤矿机械,1998,No.2:15-16
    5.郑志强、南玲玲.液体粘性调速离合器及其特性参数设计[J].开封大学学报,1999,Vol.13(2):5-15
    6.姜翎燕.线性离合器允许软启动时间的确定[J].煤矿机械,1999,No.11:8-11
    7.孙忠池,彭锡文.调速离合器控制系统分析[J].唐山工程技术学院学报,1992,No.3:52-56
    8.孙忠池,彭锡文.调速离合器转速稳定性与控制系统设计[J].唐山工程技术学院学报,1992,No.1:26-30
    9.张淑娥,杨再旺.调速型液体粘性离合器控制器的设计[J].电力情报,1995,No.4:57-59
    10. Fouad M, Ghassan D. The Twin Disc Omega Clutch Applied To Marine Gas Turbine Service, Gas Turbine International[J]. 1977, No. 7: 44~46
    11. Shinichi Natsumeda, Tatsuro Miyoshi. Numerical simulation of engagement of paper based wet clutch facing[J]. ASME Journal of Tribology, 1994, 116: 232~237
    12. Razzzaque M M, Kato T. Effects of groove orientation on hydro-dynamic behavior of wet clutch coolant films[J]. ASME Journal of Tribology, 1999, 121: 56~61
    13. Razzzaque M M, Kato T. Effects of a groove on the behavior of a squeeze film between a grooved and a plain rotating annular disk[J]. ASME Journal of Tribology, 1999, 121: 808~815
    14. Razzzaque M M, Kato, T. Squeezing of a porous faced rotating annular disk over a grooved annular disk[J]. STLE Tribology Transactions, 2001, 44: 97~103
    15. Berger E J, Sadeghi F, Krousgrill C M. Finite element modeling of engagement of rough and grooved wet clutches[J]. ASME Journal of Tribology, 1996, 118: 137~146
    16. Berger E J, Sadeghi F, Krousgrill C M. Analytical and numerical modeling of engagement of rough, permeable, grooved wet clutches[J]. ASME Journal of Tribology, 1997, 119: 143-148
    17. Berger E J, Sadeghi F, Krousgrill C M. Torque transmission characteristics of automatic transmission wet clutches: experimental results and numerical comparison[J]. STLE Tribology Transaction, 1997, 40: 539~548
    18. Jang J. Y., Khonsari M. M. Thermal Characteristics of a Wet Clutch[J]. ASME Journal of Tribology, 1999, Vol. 121: 610-617
    19. Jang J. Y., Khonsari M. M. Thermoelastic Instability Including Surface Roughness Effects[J]. ASME Journal of Tribology, 1999, Vol. 121: 648-658
    20. Jang J. Y., Khonsari M. M. Thermoelastic Instability With Consideration of Surface Roughness and Hydrodynamic Lubrication[J]. ASME Journal of Tribology, 2000, Vol. 122: 725-732
    21. Holgerson M. Optimizing the smoothness and temperatures of a wet clutch engaement through control of the normal force and drive torque[J]. ASME Journal of Tribology, 2000, 122: 119~125
    22. Holgerson M, Lundberg J. Engagement behavior of a paper-based wet dutch-Part 1: Influence of drive torque. Journal of Automobile Engineering, Proc of Mechanical Engineers Part D[J]. 1999, Vol 213: 341-348
    23. Holgerson M. Apparatus for measurement of engagement characteristics of a wet clutch[J]. Were, 1997, Vol. 213: 140-147
    24.张鹏顺、陆思聪.弹性流体动力润滑及其应用[M].北京:高等教育出版社,1995
    25.陈伯贤 裘祖干 张慧生.流体润滑理论及其应用[M].北京:机械工业出版社,1991.9
    26.郑林庆.摩擦学原理[M].北京:机械工业出版社,1994,
    27.孙大成.润滑力学讲义[M].北京:中国友谊出版公司,1991
    28.池长青.流体力学润滑[M].北京:国防工业出版社,1998
    29. Yu T H, Sadeghi F. Groove Effects on Thrust Washer Lubrication ASME Journal of Tribology, 2001, Vol. 123: 295-304
    30.魏宸官 刘金奎.四轮驱动汽车用液体粘性离台器的理论和试验研究.北京理工大学学报,1995,第15卷 (1):117-124
    31.张远君等.流体力学大全[M].北京.北京航空航天大学出版社.1991.5
    32.裘祖千 陈伯贤.Oldroyd流体的动载径向轴承分析[J].复旦大学学报.1991.第30卷(2):136-142
    33.陈学科,裘祖干.幂律流体的平均流动模型在粗糙径向滑动轴承中的应用[J].复旦大学学报,1995,第34卷 (6):671-677
    34.张朝.计入剪切变薄和粘弹效应的数据库辅助曲轴轴承分析[J].内燃机学报,1998,“第16卷(1):100-108
    35. Zhang C, Cheng H S. Transient Non-NewtonianThermohydrodynamic Mixed Lubrication of Dynmically Loaded Journal Bearings[J]. ASME Journal of Tribology, 2000, Vol. 122: 156-161
    36. Greenwood J A. Two-dimensional flow of a non-Newtonian lubrication[J]. Proc Instn Mech Engrs, 2000, Vol. 214 Part J: 29-41
    37. Dien I K, Elrod H G. A Generalized Steady-State Reynolds Equation for Nonnewtonian Fluids, With Application to Journal Bearings[J]. ASME Journal of Lubrication Technology, 1983, Vol. 105: 385-390.
    38. Wang-long Li. Surface Roughness Effects in Hydrodynamic Lubrication Involving the Mixture of Two Fluids[J]. ASME Journal of Tribology, 1999, Vol. 120: 772-780
    39. O.G.Chekina, and L. M. Keer. A New Approach to Calculation of Contact Characteristics[J]. ASME Journal of Tribology, 1999, Vol. 121: 20-27
    40. Sawyer W G, Tichy J A. Non-Newtonian Lubrication With the Second-Order Fluid[J]. ASME Journal of Tribology, 1998, Vol. 120: 622-628
    41. Li Wang-long, Weng Cheng-I, Hwang Chi-Chuan. Surface Roughness Effects in Journal Bearings with Non-Newtonian Lubrication[J]. STLE Tribology Transactions, 1996, Vol. 39: 819-826.
    42. Li Wang-long, Weng Cheng-I, Hwang Chi-Chuan. An Average Reynolds Equation for Non-Newtonian Fluid with Application to the Lubrication of the Magnetic Head-Disk Interface[J]. STLE Tribology Transactions, 1997, Vol. 40: 111-119
    43. Dai F, Khonsari M M. A Theory of Hydrodynamic Lubrication Involving the Mixture of Two Fluids[J]. ASME Journal of Applied Mechanics,1994, Vol. 61: 634-641
    44. Patir N, Cheng H. S. An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication[J]. Trans. of ASME, Journal of Lubrication Technology, 1978 Vol. 100: 12-17
    45. Patir N, Cheng H. S. Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces[J]. Trans. of ASME, Journal of Lubrication Technology, 1979, Vol. 101: 220-230
    46. Hu Y, Zheng L. Some Aspects of Determining the Flow Factors[J]. ASME Journal of Tribology, 1989, Vol. 111: 525-531
    47.吴承伟 郑林庆.接触因子及其在研究部分流体润滑中的应用[J].润滑与密封,1989,(3):1-6
    48. To H Y, Farshid S. Groove Effects on Thrust Washer Lubrication[J]. ASME Journal of Tribology, 2001, Vol. 123: 295-304
    49. Greenwood J A, Williamson J B P. Contact of Nominally Flat Surface[J]. Proc. Roy. Soc., London, 1966, A295 pp300-319
    50. Whitehouse D J, Archard J F. The Properties of Random Surfaces of Significance in Their Contact[J]. Proc. Roy. Soc., London, 1970, A 316: 97-121
    51. Nayak P R. Random Process Model of Rough Surfaces[J]. Trans. of ASME, Journal of Lubrication Technology, 1971. Vol. 93: 398-407
    52. Greenwood J A, Tripp J H. The Contact of Two Nominally Flat Rough Surfaces[J]. Proc. Instn. Mech. Engrs. 1971, Vol. 185: 625-633
    53. Susan R. Harp, Richard F. Salant. An Average Flow Model of Rough Surface Lubrication With Inter-Asperity Cavitation[J]. ASME Journal of Tribology, 2001, Vol. 123: 134-143
    54. Tomoyuki Miyazaki, Takayuki Matsumoto, Takashi Yamamoto. Effect of Visco-Eiastic Property On Friction Characteristics of Paper Based Friction Materials for Oil Immersed Clutches[J]. ASME Journal of Tribology, 1988, Vol. 120: 393-398
    55. Gelinck E R M, Schipper D J. Deformation of Rough Line Contacts[J]. ASME Journal of Tribology, 1999, Vol. 121: 449-454.
    56. Tripp J H. Surface Roughness Effects in Hydrodynamic Lubrication: The Flow Factor Method[J]. ASME Journal of Lubrication Technology, 1983, Vol. 105: 458-465
    57. Hu Yuanzhong, Zheng Lingqing. Some Aspects of Determining the Flow Factors[J]. ASME Journal of Tribology, 1989, Vol. 111: 525-529.
    58. Elrod H G. A Cavitation Algorithm[J]. ASME Journal of Lubrication Technology, 1981, Vol. 103: 350-354
    59. Payvar P, and Salant R F. A Computation Method for Cavitation in a Wavy Mechanical Seal[J]. ASME Journal of Tribology, 1992, Vol. 114: 119-240
    60.饶柱石、夏松波、汪光明.粗糙平面接触刚度的研究[J].机械强度,1994,Vol.16(2):72-75
    61.张辅荃.离合器摩擦片的温升分析”,机械设计与研究[J].1998,No.1:50-52
    62. Yun-Bo Yi, Shuqin Du, Barber J R, and Fash J W. Effect of Geometry on Thermoelastic Instability in Disk Brakes and Clutches[J]. ASME Journal of Tribology, 1999, Vol. 121: 661-666.
    63. Zagrodzki P. Analysis of thermomechanical phenomena in multidisc clutches and brakes[J]. Wear, 1990, Vol. 140: 291-195
    64.杨世铭,陶文铨.传热学[M].北京.高等教育出版社.1998
    65. Oscar Pinkus, J. W. Lund. Centrifugal Effects in Thrust Bearings and Seals Under Laminar Conditions[J]. ASME Journal of Lubrication Technology, 1981, Vol. 103: 126-136
    66.南京大学数学系计算数学专业编.偏微分方程数值解法[M].北京.科学出版社.1979
    67.杨华中,汪蕙编著.数值计算方法与C语言工程函数库[M].北京.科学出版社.1996.1.
    68.胡健伟,汤怀民著.微分方程数值方法[M].北京.科学出版社.1999.1.
    69.洪跃,刘谨,金士良,王云根.液体粘性离合器中摩擦副的调速分析[J].机械设计与研究,2002(6):53-56
    70.洪跃、刘谨.粘性调速离合器传动机理与数值计算[J].润滑与密封,2003(2):6~11
    71.洪跃,刘谨,金士良.液体调速离合器中摩擦副热效应简化分析[J].润滑与密封,2003(5):6~9
    72.洪跃,刘谨,王云根.液体调速离合器中摩擦副热效应分析[J].中国工程科学,2003(3):55-60
    73、Hong Y, Liu J, Jin S L. Analysis Groove Characteristics of Friction Dishes in Wet Speeding Clutch [J], Engineering Science, 2004(2): 56-60
    74. Hong Y, Liu J, Wang Y G. Thermal Analysis of Frictional Disk in Speeding Wet Clutch [J], Mechanical Engineering, 2004 (1): 102-106
    75.绪方胜彦著.现代控制工程[M].北京:科学出版社,1981
    76.上海科鑫.电子-液压产品电液伺服比例控制产品手册.阿托斯技术服务中心
    77.王立新.模糊系统与模糊控制教程[M].北京:清华大学出版社,2003
    78.诸静.模糊控制原理与应用[M].北京:机械工业出版社,1995
    79.Kevin.M,Stephen Yurkovich.Fuzzy Control[M].北京:清华大学出版社,2001
    80.张国良等.模糊控制及其MATLAB应用[M].西安:西安交通大学出版社,2002
    81.朱麟章.模糊集合及模糊控制设计基础[J].电子·仪器仪表用户,1997(3):1-7
    82.王建华.智能控制基础[M].北京:科学出版社,1998
    83.李士勇.模糊控制·神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1998
    84.李友善,李军.模糊控制理论及其在过程控制中的应用[M].北京:国防工业出版社,1993
    85.李圣怡.智能制造技术基础:智能控制理论、方法及应用[M].长沙:国防科技大学出版社,1995
    86. Dennis S. Bernstein. What Makes Some Control Problems Hard[J]. IEEE Control Systems Magazine, 2002, No. 8: 8-19
    87. Visioli A. Tuning of PID Controllers with Fuzzy Logic[J]. IEE Proc.-Control Theory Appl., 2001, Vol. 148(1): 1-7