液体粘性传动研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液体粘性传动装置是一种通过油膜剪切力来传递动力的机电液一体化传动装置,该装置不仅能实现电机的空载起动,减小对机械和电网的冲击,而且能够实现无级调速,节约能源。
     本文通过对液体粘性传动摩擦副工作原理的分析与研究提出了主、从动摩擦片之间的油膜处于层流还是紊流的工作条件,并给出了油膜处于紊流工作状态下油膜剪切力计算公式。在对各种油槽结构的摩擦片进行分析的基础上,提出了在油槽的台阶处进行圆角或倒角工艺处理可以大大提高油膜的成型能力和承载能力,并对这种结构的油槽进行了受力分析。本文对液体粘性传动进行了热特性分析并设计出相应的液压系统。在分析摩擦片结合过程的基础上,提出了各个摩擦区的数学模型,对各个摩擦区数学模型进行分析得出了液体粘性传动的外特性曲线,并根据不同的负载给出了相应的控制油压曲线。文中根据所建立的液体粘性传动数学模型,分析了在滑差工作条件下输出转速的稳定性,并提出了提高输出转速稳定性的控制措施。本文在液体粘性传动特性实验台上对液体粘性传动的外特性以及不同负载条件下的控制特性进行了实验验证,并对恶劣工况下摩擦片的热变形进行了实验分析。以淮北矿务局某矿上山大倾角带式输送机为例设计了液体粘性传动装置的控制系统,并对液体粘性传动装置在多点驱动起车过程中功率平衡进行了研究。
Hydro viscous soft-start device is a new transmission which depends on the shear force of oil film to pass power. It not only can realize the no-load starting of the motor, reducing the impact of machine and power grid, but also can realize non-step speed regulation, saving energy.
     This article discusses the theory of the HVD and makes a design and stress analysis of the friction pair. It also put forward innovatively that the oil film is the condition of laminar flow or turbulent flow and oil film is the shear stress calculation formula when the status is turbulent flow. Based on the analysis of the structure of various friction plate in the oil trough, this article makes the stress analysis and presents innovatively that the fillet or chamfer at the steps of the oil trough can greatly improve forming ability and load carrying capacity of the oil film. It also makes a thermal analysis and hydraulic system design of the HVD. On the background of the analysis of integrating process of the friction plate, the paper gives the model and formula of each friction area. After the analysis of the model of each friction area, it obtains the foreign curve of the HVD by the experiment and gives their different curves of the controlling oil pressure. In addition, it builds the mathematical model of HVD and proposes the measure to improve the stability of the rotate speed of the exporting shaft. Furthermore, it builds the experimental equipment of HVD. Based on the equipment mentioned above, it makes an experiment about some basic properties of HVD and the thermal deformation of the friction plate. With the example of Huaibei Coal Mining Bureau Zhu Xian Wan Grand angle belt conveyor, this paper designs the control system of the HVD and makes a research of power balance of HVD during the starting process of the multi-point driving.
引文
1.徐晓丹.液粘调速装置在泵类负载上的应用研究[D].山东青岛:山东科技大学,2005:1-3.
    2.周满山.液体粘性软起动装置的理论与应用研究[D].北京:北京理工大学,2004:14-18.
    3.于卉.液粘离合金属带式软起动装置的研究[D].山东青岛:山东科技大学,2009:2-4.
    4.姜剑勇.液体粘性调速离合器试验系统的研制[D].浙江杭州:浙江大学,2006:1-3.
    5.李瑶瑶.液体粘性传动控制系统研究及其实验验证[D].山东青岛:山东科技大学,2008:1-4.
    6.魏宸官,赵家象.液体粘性传动技术[M].北京:国防工业出版社,1996:2-5;51-55.
    7.沈心敏,闻英梅.摩擦学基础[M].北京:北京航空航天大学出版社,1991:64-72;181-187;270-274.
    8.牛得学.大功率带式输送机液粘软制动[D].山东青岛:山东科技大学,2008:35-38.
    9.陈宁.液体粘性传动HVD技术的研究[D].浙江杭州:浙江大学,2003:18-30.
    10.钟苏丽.带式输送机液体粘性新型可控制动器[D].山东泰安:山东科技大学,2003:11-17.
    11.孟庆睿.液体粘性传动调速起动及其控制技术研究[D].江苏徐州:中国矿业大学,2008:17-18.
    12.邓星钟.机电传动控制[M].武汉:华中科技大学出版社,2001:49-81.
    13.孙可文.带式输送机的传动理论与设计计算[M].北京:煤炭工业出版社,2001:8-27.
    14.于学谦,方佳雨.矿山运输机械[M].徐州:中国矿业大学出版社,1998:103-112.
    15.洪跃.液体粘性调速离合器工作机理研究与模糊控制器试制[D].上海:上海大学,2004:10-23.
    16.王春行.液压控制系统[M].北京:机械工业出版社,2004:134-139.
    17.于岩,李维坚.运输机械设计[M].徐州:中国矿业大学出版社,1998:67-68.
    18.廖常初.PLC编程及应用[M].北京:机械工业出版社,2006:3-5.
    19.张以都.新型液体粘性软启动装置的研究[D].北京:北京航空航天大学,2001:50-63.
    20.于岩.带式输送机多电机拖动功率平衡调节系统的研究[J].山东泰安:山东矿业学院 学报,1994,13(2):130-134.
    21.曾励.机电一体化系统设计[M].北京:高等教育出版社,2004:80-117.
    22.刘豹,唐万生.现代控制理论[M].北京:机械工业出版社,2006:90-210.
    23.邓永胜.双滚筒传动带式输送机的电动机功率平衡[J].东北大学学报,2000,21(5):520-523.
    24.张以都,张启先.液体粘性软启动装置的启动特性研究[J].北京航空航天大学学报,2002,28(5):578-580.
    25.秦曾煌.电工学[M].北京:高等教育出版社,1999:20-53.
    26.郭建军,郭建廷.带式输送机多机拖动功率平衡问题的探讨[J].煤炭科学技术,2008,36(1):88-91.
    27.于晓春,张媛.电液比例控制器的设计[J].山东科技大学学报,2002,(6):27-28.
    28.郭永存.多电机传动带式输送机功率配比的研究[J].煤炭科学技术,2003,31(1):46-48.
    29.王鸿雁,常雅莉.可控起动传输系统(CST)技术初探[J].煤矿机电,200,4,(2):40-43.
    30.阎超.粘性流体力学[M].北京:北京航空航天大学出版社,2005:36-102.
    31.花家寿,何维廉.液粘调速器的结构和理论分析[J].传动技术,2002,(2):32-38.
    32.于岩,朱路群.油膜离合器实现带式输送机软启动过程的研究[J].煤矿自动化,1995,(2):28-31.
    33.孙芹.基于PID控制技术的HVD调速系统特性分析及其实验研究[D].山东泰安:山东科技大学,2005:33-46.
    34.张以都.液体粘性软启动过渡过程的研究[J].机械科学与技术,2003,21(2):185-187.
    35.许益民.电液比例控制系统分析设计[M].北京:机械工业出版社,2006:85-90.
    36.孙海林.微机控制调速型液里偶合器实现胶带机软起动及功率平衡[J].煤矿设计,1996,(10):85-88.
    37.马洪礼,李永学.CST可控传输系统在长运距带式输送机的应用[J].煤矿机电,2004,(5):54-57.
    38.张炳良.PLC技术在带式输送机自动控制系统中的应用与研究[J].煤矿工程,2004,(6):69-71.
    39.栾桂冬.传感器及其应用[M].西安:西安电子科技大学出版社,2002:224-228.
    40. YAN Qingdong, SU Xindong. Distribution and Dissipation of Braking Power of Wet Multi-disc Brake [J]. Journal of Beijing Institute of Technology,2000,9(1):87-93.
    41. Ser S. Dual drives for belt conveyers [J]. Bulk Solid Handling,1987,7(4).
    42. Michael L.Besl. Transmitting Torque with an Oil-Shear Break and Cluth [J]. Mechanical Engineering,1993,115(11):74-77.
    43. Bardos A. Starting Ramps of Overland Belt Conveyors [J]. Bulk Solids Handling.2000, 20(2):153-157.
    44. Harrison A. Non-linear Process and Chaos in Belt Conveyor Systems [J]. Bulk solids handling,1991,11(1).
    45. Hou Youfu, Meng Qingrui. Experimental Investigation on Dynamic Characteristics of Conveyors Belt [J]. Journal of China University of Mining and Technology,2008, (4).
    46. M.Holgerson, M.Mansouri. Thermal and Dynamic Characterization of Wet Clutch Engagement With Provision for Drive Torque [J]. Journal of Tribology,2001,4(1):123.
    47. Gisbert Schuiz. Further results in the analysis of dynamic characteristics of belt conveyors [J]. Bulk Solids Volume,1993, (13):17-21.
    48. Anon, oil-shear Clutches [J]. Power Transmission Design,1979, (7).
    49. ZHOU Manshan. Oil-Film Clutch in Soft-Start of Belt Conveyor [J]. Journal of Beijing Institute of Technology.2002,11(2):142-145.
    50. Ronald Keck. Designing with industrial hydro viscous drives [J]. Power Transmission Design,1970,(6).
    51. HUANG Xiaoguang. Stability of Oil Film and Output Speed of Hydro viscous Drive Affected by the Pressure of Control Oil [J]. Journal of Beijing Institute of Technology, 2001, (10):266-271.
    52. Meng Qingrui, Hou Youfu. Effects of friction disc surface groove on speed regulating start [J]. Industrial Lubrication and Tribology,2009, (6).