樟芝菌发酵生产Antrodins等活性产物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
樟芝菌,又名牛樟芝,是我国台湾特有的珍稀食用和药用真菌,可产三萜、多糖、甾醇、苯环类化合物等多种活性成分;樟芝培养物具有保肝、抗癌、调节免疫力、抗炎症等药理活性。近年来,许多学者研究发现,樟芝菌丝体产物具有与子实体相近的药理活性功能。同时,樟芝菌丝体产物中鉴定出的Antrodins和Antroquinonol类化合物,在保肝、抗癌方面具有卓越的疗效。但是目前关于樟芝菌丝体产物中特征活性成分系统的鉴定分析较少,使得樟芝菌丝体产物的发酵调控缺乏目标性,产物的质量控制也不明确。大多数的发酵研究都是关于多糖、菌体量等非特征性活性产物,使得樟芝菌丝体产物的品质始终处于较低水平,市场竞争力差。
     本课题的目的是通过对樟芝菌丝体产物活性成分较为全面的鉴定解析,从中筛选出樟芝菌丝体产物的指标化合物,对来源不同的樟芝发酵产物HPLC图谱进行了对比分析;根据筛选出的指标化合物,对樟芝固态发酵和液态发酵两种人工培养方法进行优化,研究工艺条件和产物后处理方式;针对液态发酵产物的不足,建立高通量生产樟芝活性产物的耦合发酵方法,为樟芝的进一步推广打下基础。
     本课题主要研究结果如下:
     (1)利用柱层析、制备HPLC等技术,对樟芝发酵产物中的活性成分进行了鉴定解析。从樟芝产物中纯化出8个化合物,经质谱、核磁等手段分析,这8个化合物分别为:Ergostatrien-3β-o(lAC-1);Antrodin C(AC-2);Antrodin B(AC-3);Antrodin A(AC-4);Antroquinonol ( AC-5 ) ; Antroquinonol B ( AC-6 ) ;4,7-Dimethoxy-5-methyl-1,3-benzodioxole(AC-7);Ubiquinone-3(AC-8)。
     (2)对来源不同的樟芝发酵产物HPLC图谱进行了对比分析。通过分析可知,无论是樟芝固态发酵还是液态发酵产物,其活性物质与樟芝子实体还是有一定的差异,但是也有其自身的特点。樟芝液态发酵产物,其主要活性成分为Antrodins类化合物,尤其以Antrodin C含量最高。樟芝固态发酵产物,其主要活性成分为Antrodins类和Antroquinonol类化合物,各组分的含量较为均衡。
     (3)对樟芝固态发酵过程中影响Antrodins的因素进行了优化。实验确定的最适培养基(/1 L锥形瓶)为:大米100 g,黄豆粉0.6 g,K2HPO4 0.05 g,MgSO4 0.05 g。培养基初始含水量为52%,接种量为35%(v/m),培养24 d。发酵过程温度采用变温调控,第一阶段培养温度为28℃,培养16 d后将发酵温度调整为25℃继续培养8 d。在最佳培养条件下,樟芝固态发酵产物中Antrodin A-C的含量高达3096.9 mg/kg、6876.7 mg/kg和8095.7 mg/kg。
     (4)利用Plackett-Burman design和Box-Behnken响应面分析法,优化了樟芝液态发酵培养基成分对Antrodin C产量的影响,并建立了模型。得到最优液态发酵培养基为:葡萄糖72 g/L、黄豆粉5.91 g/L、MgSO4 0.614 g/L,樟芝液态发酵培养基理论上产Antrodin C的最大值178.59 mg/L。根据上述回归分析结果和响应面实验特点,在实验水平内安排验证实验,发酵7 d后实际产Antrodin C为177.83±0.32 mg/L,该模型能较好地预测实际产Antrodin C情况。
     (5)研究了樟芝液态发酵过程中高溶氧对樟芝活性产物Antrodin C合成的影响。结果显示,三种方式均可以在发酵中后期大幅度提高发酵液溶氧水平,从而提高Antrodin C产量。其中添加氧载体十二烷、流加过氧化氢是较适合樟芝液态发酵的方式。
     (6)考察调节细胞通透性对樟芝产Antrodin C的影响。添加0.3%M,胞外Antrodin C含量从41.72%提高到74.60%;摇瓶实验中,在发酵第4 d添加0.5%M,Antrodin C产量高达322.17 mg/L,比对照提高了84.03%。
     (7)将调解细胞通透性与原位萃取相结合,提出了能有效提高樟芝液态发酵生产Antrodins和Antroquinonol类化合物的原位萃取发酵技术。优化的耦合发酵体系为:在发酵第4 d添加0.7%表面活性剂M,之后在第5 d加入10%原位萃取剂十二烷,同时在发酵第4 d开始流加0.15 mmol/L/h过氧化氢提高发酵液溶氧。通过耦合发酵,Antrodin C总含量高达455.78 mg/L,而十二烷萃取相中Antrodin C和Antroquinonol的含量分别高达2624.42 mg/L、489.09 mg/L,
     (8)对樟芝菌丝体产物的一般性成分进行了分析,实验结果表明,樟芝产物含有丰富的高级脂肪酸、氨基酸、腺苷、活性多糖等营养功能成分,并且在发酵过程中能产生丰富的挥发性香气成分。
Antrodia camphorata, also named Niuchangchih, is an edible and medicinal fungus that only grown on the inner cavity of the Cinnamomum kanehirae Hayata (Lauraceae) in Taiwan. The bioactive compounds identified from A. camphorata including tritrpenoids, polysaccharides, steroids, benzenoids and other metabolites, have exhibit hepatoprotective, anti-cancer, immuno-modulatory and anti-inflammatory activities. Recently, both the mycelia and fruiting bodies of A. camphorata were reported to have similar pharmacological activities. Moreover, the maleic/succinic acid derivatives (Antrodins) and ubiquinone derivatives (Antroquinonols) isolated from the mycelia of A. camphorata have shown excellent hepatoprotective and anti-cancer activities. However, most of studies on the artificial culture of A. camphorata aimed at the non-characteristic compounds such as polysaccharides or biomass, resulting in the relativlely low value and weak mark competitiveness of the mycelial products.
     The aim of this work was to isolate and identify the characteristic compounds from the mycelia of A. camphorata based on HPLC analysise. In order to improve the production of these characteristic compounds, the culture conditions of solid state fermentation (SSF) and submerged fermentation (SmF) were optimized, and methods for product treatment were also developed. Furthermore, a coupling fermentation system was established to overcome the deficiency in submerged fermentation system, in which the characteristic compounds were less than that of solid state fermentation system.
     The main results of this study are as follows:
     (1) By the application of column chromatography and preparative HPLC, eight compounds were isolation and purified. The structures of these compounds were elucidated according to the data of MS and NMR and identified to be: Ergostatrien-3β-ol(AC-1); Antrodin C(AC-2 ) ; Antrodin B(AC-3); Antrodin A(AC-4); Antroquinonol(AC-5) ;Antroquinonol B(AC-6) ; 4,7-Dimethoxy-5-methyl-1,3-benzodioxole(AC-7); Ubiquinone-3(AC-8).
     (2) The HPLC of A. camphorata were established based on the comparative analysis of characteristic compounds produced from A. camphorata by different culture methods. The result shows that there some differences in active compounds between mycelium and fruiting body and mycelial product has its own characteristics. The main bioactive components of A. camphorata in submerged fermentation were Antrodins, especially for Antrodin C, while in solid state fermentation were Antrodins and Antroquinonols.
     (3) The optimization on culture condition in solid state fermentation was carried out to improve the production of antrodins by A. camphorata. The composition of the medium optimal for Antrodins production were rice 100 g/L, soy bean meal 0.6 g/L, Na2HPO4 0.05 g/L, MgSO4 0.05 g/L with initial moisture content of 52%, inoculum density 35% (v/m) and cultivation for 24 d. The fermentation efficiency was improved by adapting a two-step temperature control strategy, by which the temperature was controlled at 28℃for 16 d and then changed to 25℃for 8 d. Under the optimal conditions, the concentrations of Antrodin A, B and C reached 3096.9 mg/kg, 6876.7 mg/kg and 8095.7 mg/kg, respectively. This is the first report on the Antrodins production by SSF of A. camphorata.
     (4) The medium for Antrodin C production by SmF of A. camphorata was optimized using the Plackett-Burman design and Response Surface Methodology.A model was constructed and furthermore, the accuracy and reliability of the model were verified by experiments, in which the results were in good agreement with the predicted ones. By solving the quadratic regression model equation, the optimal conditions were determined as: glucose 72 g/L, soybean powder 5.91 g/L, MgSO4 0.614 g/L and the predicted production of Antrodin C was 178.59 mg/L. After culturing under the optimized condition for 7 d, the prodeuction of Antrodin C reached 177.83±0.32 mg/L, increased by 85.8% compared with that of the former 95.72 mg/L.
     (5) Three approaches for improving dissolved oxygen (DO) concentration, including addition of certain proportion of oxygen, oxygen carrier and H2O2, were applied to study the effect of DO on Antrodin C production in SmF of A. camphorate. The results showed that all the three methods could increase the production of Antrodin C by improving DO, in which the addition of oxygen carrier and H2O2 seems more promising in large scale production.
     (6) Regulation of cellular permeability exhibited to be another way for improving Antrodin C biosynthesis in SmF of A. camphorate. Results showed that the extracellular Antrodin C content was improved from 41.72% to 74.6% by adding 0.3% surfactant M. Yield of Antrodin C reaeched 322.17 mg/L by adding 0.5% surfactant M in 4 d, according to 35.3% increase than that of control,. In a 5 L fermentor, the yield of Antrodin C and period of biosynthesis were also increased because surfactant M could improve cellular permeability and decrease negative feedback inhibition of high intracellular Antrodin C concentration.
     (7) The regulation of cellular permeability and in-situ extration were combined to construct a coupling fermentation system for A. camphorata to produce bioactive metabolites including Antrodins and Antroquinonols, which were similar to the production of SSF. The coupling fermentation system can carry out metabolites synthesis and extraction simultaneously. Hence, the yield of Antrodin C and other compounds were significantly increased. After extraction by ethanol, the extract phase can be recovered and reused in the coupling fermentation system. The optimal conditions of coupling fermentation system were determined as follows: adding 0.7% surfactant M and 10% extractant n-dodecane at day 4 and day 5, respectively, and feeding 0.15 mmol/L/h H2O2 to increase DO. Under the optimal conditions, yield of Antrodin C increased to 455.78 mg/L. Meanwhile, the concentration of Antrodin C and Antroquinonol were 2624.42 mg/L and 489.09 mg/L in extractant n-dodecane respectively.
     (8) Systematic studies were carried out on the basic chemical componentseof A. camphorata. The results showed that mycelium of A. camphorata almost contain all types of amino acid and also many kinds of fatty acids, adenosine and polysaccharides. Changes in chemical components of volatile compounds of A. camphorata during solid state fermentation were studied by GC-MS.
引文
[1]臧穆,苏庆华.我国台湾产灵芝属一新种-樟芝[J].云南植物研究, 1990, 12(4): 395-396.
    [2] Wu SH, Leif R, Chang TT. Antrodia camphorata(“niu-chang-chih”), new combination on medicinal fungus in Taiwan [J]. Bot Bull Acad Sinica, 1997, 38: 273-275.
    [3]廖英明.菇类的许不了-樟芝[J].农药世界杂志, 1998, 176: 76-79.
    [4]黄大斌,杨箐,黄进华等.樟芝生物学特性研究[J].食用菌学报, 2001, 8(2): 24-28.
    [5] Shen CC, Kuo YC, Huang RL, et al. New ergostane and lanostane from Antrodia camphorata [J]. J Chin Med, 2003, 14: 247-258.
    [6] Hsu YL, Kuo YC, Kuo PL, et al. Apoptotic effects of extract from Antrodia camphorata fruiting bodies in human hepatocellular carcinoma cell lines [J]. Cancer Lett, 2005, 221: 77-89.
    [7] Hsu YL, Kuo PL, Cho CY, et al. Antrodia cinnamomea fruiting bodies extract suppresses the invasive potential of human liver cancer cell line PLC/PRF/5 through inhibition of nuclear factor-kB pathway [J]. Food Chem Toxicol, 2007, 45: 1249-1257.
    [8] Lu MC, Du YC, Chuu JJ, et al. Active extracts of wild fruiting bodies of Antrodia camphorata (EEAC) induce leukemia HL 60 cells apoptosis partially through histone hypoacetylation and synergistically promote anticancer effect of trichostatin A [J]. Arch Toxicol, 2009, 83: 121-129.
    [9] Liu FS, Yang PY, Hu DN. Antrodia camphorata Induces Apoptosis and Enhances the Cytotoxic Effect of Paclitaxel in Human Ovarian Cancer Cells [J]. Int J Gynecol cancer, 2011, 21: 1172-1179.
    [10] Hseu YC, Yang HL, Lai YC, et al. Induction of apoptosis by Antrodia camphorata in human premyelocytic leukemia HL-60 cells [J]. Nutr Cancer, 2004, 48: 189-197.
    [11] Wu H, Pan CL, Yao YC, et al. Proteomic analysis of the effect of Antrodia camphorata extract on human lung cancer A549 cell [J]. Proteomics, 2006, 6: 826-835.
    [12] Song TY, Hsu SL, Yen GC. Induction of apoptosis in human heptoma cells by mycelium of Antrodia camphorata in submerged culture [J]. J Ethnopharmacol, 2005b, 100: 158-167.
    [13] Hseu YC, Chen SC, Tsai PC, et al. Inhibition of cyclooxygenase-2 and induction of apoptosis in estrogen-nonresponsive breast cancer cells by Antrodia camphorata [J]. Food Chem Toxicol, 2007, 45: 1107-1115.
    [14] Dai YY, Chuang CH, Tsai CC, et al. The protection of Antrodia camphorata against acute hepatotoxicity of alcohol in rats [J]. J Food Drug Anal, 2003, 11: 177-185.
    [15] Hsiao G, Shen MY, Lin KH, et al. Antioxidant and hepatoprotective effective of Antrodia camphorata extract [J]. J Agr Food Chem, 2003, 51: 3302-3308.
    [16] Lu ZM, Tao WY, Zou XL, et al. Protective effects of mycelia of Antrodia camphorata and Armillariella tabescens in submerged culture against ethanol-induced hepatic toxicity in rats [J]. J Ethnopharmcol, 2007b, 110: 160-164.
    [17] Lin WC, Kuo SC, Lin WL, et al. Filtrate of fermented mycelia from Antrodiacamphorata reduces liver fibrosis induced carbon tetrachloride in rats [J]. World J Gastroenterol, 2006, 12: 2369-2374.
    [18] Lee IH, Huang RL, Chen CT, et al. Antrodia camphorata polysaccharides exhibit anti-hepatitis B virus effects [J]. FEMS Microbiol Lett, 2002, 209:63-67.
    [19] Haddad PS, Azar GA, Groom S, et al. Natural health products, modulation of immune function and prevention of chronic diseases [J]. eCAM, 2005, 2: 513-520.
    [20] Kaminogawa S, Nanno M. Modulation of immune functions by foods [J]. eCAM, 2005, 1: 241-250.
    [21] Rao YK, Fang SH, Tzeng YM. Evaluation of the anti-inflammatory and antiproliferation tumoral cells activities of Antrodia camphorata, Cordyceps sinensis, and Cinnamomum osmophloeum bark extracts [J]. J Ethnopharmacol, 2007, 114: 78-85.
    [22] Liu DZ, Liang HJ, Chen CH, et al. Comparative anti-inflammatory characterization of wild fruiting body, liquid-state fermentation, and solid-state culture of Taiwanofungus camphoratus in microglia and themechanism of its action [J]. J Ethnopharmacol, 2007a, 113: 45-53.
    [23] Wen CL, Chang CC, Huang SS. Anti-inflammatory effects of methanol extract of Antrodia cinnamomea mycelia both in vitro and in vivo [J]. J Ethnopharmacol, 2011, 137(1): 575-584.
    [24] Hseu YC, Wu FY, Wu JJ, et al. Anti-inflammatory potential of Antrodia camphorata through inhibition of NOS, COX-2 and cytokines via the NF-kappa B pathway [J]. Int Immunopharmacol, 2005, 5: 1914-1925.
    [25] Wu YY, Chen CC, Chyau CC, et al. Modulation of inflammation-related genes of polysaccharides fractionated from mycelia of medicinal basidiomycete Antrodia camphorata [J]. Acta Pharmacol Sin, 2007c, 28: 258-267.
    [26] Song TY, Yen GC. Antioxidant properties of Antrodia camphorata in submerged culture [J]. J Agr Food Chem, 2002, 50: 3322-3327.
    [27] Hseu YC, Chang WC, Hseu YT, et al. Protection of oxidative damage by aqueous extract from Antrodia camphorata mycelia in normal human erythrocytes [J]. Life Sci, 2002, 71: 469-482.
    [28] Tsai MC, Song, TY, Shih PH, et al. Antioxidant properties of watersoluble polysaccharides from Antrodia cinnamomea in submerged culture [J]. Food Chem, 2007, 104: 1115-1122.
    [29] Shen YC, Chen CF, Wang YH, et al. Evaluation of the immuno-modulating activity of some active principles isolated from the fruiting bodies of Antrodia camphorata [J]. The Chinese Pharmaceutical Journal, 2003b, 55: 313-318.
    [30] Cheng PC, Hsu CY, Chen CC, et al. In vivo immunomodulatory effects of Antrodia camphorata polysaccharides in a T1/T2 doubly transgenic mouse model for inhibiting infection of Schistosoma mansoni [J]. Toxicol Appl Pharmacol, 2008b, 227: 291-298.
    [31] Kuo MC, Chang CY, Cheng TL, et al. Immunomodulatory effect of Antrodia camphorata mycelia and culture filtrate [J]. J Ethnopharmacol, 2008, 120: 196-203.
    [32] Chiang SY, Hsieh CL, Chang LL, et al. The safety and anti-genotoxic effects of Antrodia camphorata in vitro, in pregnant mice and their fetuses [J]. Toxicol Appl Pharmacol, 2004,197: 350-351.
    [33] Huang NK, Cheng JJ, Lai WL, et al. Antrodia camphorata prevents rat pheochromo cells from serum deprivation-induced apoptosis [J]. FEMS Microbiol Lett, 2005, 244: 213-219.
    [34] Lu MK, Cheng JJ, Lai WL, et al. Fermented Antrodia cinnamomea extract protects rat PC12 cells from serum deprivation-induced apoptosis: the role of the MAPK family [J]. J Agr Food Chem, 2008, 56: 865-874.
    [35]梁志钦.台湾特有真菌-樟芝的药用价值[C].中国菌物学会首届药用真菌产业发展暨学术研讨会论文集, 2005, 76-78.
    [36] Chang HL, Mau JL, Chen CC, et al. Non-volatile taste components of Agaricus blazei, Antrodia camphorata and Cordyceps militaris mycelia [J]. Food Chem, 2001, 74(2): 203-207.
    [37] Cronin DA, Ward MK. The characterisation of some mushroom volatiles [J]. J Sci Food Agric, 1971, 22: 477-479.
    [38] Fischer KH, Grosch W. Volatile compounds of importance in the aroma of mushrooms (Psalliota bispora) [J]. Lebensm Wiss Technol, 1987, 20: 233-236.
    [39] Venkateshwarlu G, Chandravadana MV, Tewari RP. Volatile flavour components of some edible mushrooms (Basidiomycetes) [J]. Flavour Fragrance J, 1999, 14: 191-194.
    [40] Chen CC, Chyau CC, Hseu TH. Production of a COX-2 inhibitor, 2,4,5-trimethoxybenzaldehyde, with submerged cultured Antrodia camphorata [J]. Lett Appl Microbiol, 2007, 44(4): 387-392.
    [41] Liu H, Jia W, Zhang JS, et a1. GC-MS and GC-olfactometry analysis of aroma compounds extracted from culture fluids of Antrodia camphorata [J]. World J Microbiol Biotechnol, 2008, 24: 1599-1602.
    [42] Chang HL, Chao CR, Chen CC, et al. Non-volatile taste camponents of Agaricus blazei, Antrodia camphorata, and Cordy cep militarismycelia [J]. Food Chem, 2001, 74(2): 203-207.
    [43] Liu JJ, Huang TS, Hsu ML, et al. Antitumor effects of the partially purified polysaccharides from Antrodia camphorata and the mechanism of its action [J]. Toxicol Appl Pharmacol, 2004, 201: 186-193.
    [44] Cheng JJ, Huang NK, Chang TT, et al. Study for anti-angiogenic activities of polysaccharides isolated from Antrodia cinnamomea in endothelial cells [J]. Life Sci, 2005, 76: 3029-3042.
    [45] Cheng PC, Hsu CY, Chen CC, et al. In vivo immunomodulatory effects of Antrodia camphorata polysaccharides in a T1/T2 doubly transgenic mouse model for inhibiting infection of Schistosoma mansoni [J]. Toxicol Appl Pharmacol, 2008, 227: 291-298.
    [46] Tsai MC, Song TY, Shih PH, et al. Antioxidant properties of water soluble polysaccharides from Antrodia cinnamomea in submerged culture [J]. Food Chem, 2007, 104: 1115-1122.
    [47] Kau SW. Studies on triterpenoids from the new species of Taiwan,Ganoderma comphoratum Zang et SU [D]:[Master’s Thesis]. Taipei: Medical Institute of Natural Chemicals,Taipei Medical University, 1992.
    [48] Cheng IH, Chiang HC, ChengMC, et al. Three new triterpenoids from Antrodia cinnamomea [J]. J. Nat. Prod, 1995, 58: 365-371.
    [49] Cheng IH, Wu DP, Chiang HC. Triterpenoids from Antrodia cinnamomea [J]. Phytochem, 1996, 41: 263-267.
    [50] Yang SW, Shen YC, Chen CH. Steroids and triterpenoids of Antrodia cinnamomea a fungus parasitic on Cinnamomum micranthum [J]. Phytochem, 1996, 41: 1389-1392.
    [51]杨书威.中药樟芝活性成分之研究[D]:[硕士学位论文].台北:国立台湾大学药学研究所, 1990.
    [52]高晓薇.台湾灵芝属新种樟芝之三萜类成分研究[D]:[硕士学位论文].台北:台北医学院天然物医学研究所, 1991.
    [53]程一华.樟芝之成分研究[D]:[硕士学位论文].台北:国立台湾师范大学化学系, 1994.
    [54]吴德鹏.樟芝微量成分的研究[D]:[硕士学位论文].台北:国立台湾师范大学化学系, 1995.
    [55] Shen YC, Chen CF, Wang YH, et al. Evaluation of the immuno-modulating activity of some active principles isolated from the fruiting bodies of Antrodia camphorata [J]. Chin Pharmaceu J, 2003, 55: 313-318.
    [56] Shen YC, Wang YH, Chou YC, et al. Evaluation of the anti-inflammatory activity of zhankuic acids isolated from the fruiting bodies of Antrodia camphorata [J]. Planta Med, 2004, 70: 310-314.
    [57] Male KB, Rao YK, Tzeng YM, et al. Probing inhibitory effects of Antrodia camphorata isolates using insect cell-based impedance spectroscopy: inhibition vs chemical structure [J]. Chem Res Toxicol, 2008, 21: 2127-2133.
    [58] Nakamura N, Hirakawa A, Gao JJ. Five New Maleic and Succinic Acid Derivatives from the Mycelium of Antrodia camphorata and Their Cytotoxic Effects on LLC Tumor Cell Line [J]. J. Nat. Prod, 2004, 67: 46-48.
    [59] Phuong T, Ma CM, Hattori M, et al. Inhibitory effects of antrodins A-E from Antrodia camphorata and their metabolites on hepatitis C virus protease [J]. Phytother Res, 2009, 23(4): 582-584.
    [60] Shen CC, Yang HC, Huang RL, et al. Anti-HBV principle from the culture broth of Antrodia camphorata (strain # CCRC-35396) [J]. Journal of Chinese Medicine, 2005, 16: 57-61.
    [61] Wu MD, Cheng MJ, Wang BC, et al. Maleimide and Maleic Anhydride Derivatives from the Mycelia of Antrodia cinnamomea and Their Nitric Oxide Inhibitory Activities in Macrophages [J]. J. Nat. Prod, 2008, 71: 1258-1261.
    [62] Lee TH, Lee CK, Tsou WL. A New Cytotoxic Agent from Solid State Fermented Mycelium of Antrodia camphorata [J]. Planta Letter, 2007, 73: 1-3.
    [63] Yang SS, Wang GJ, Wang SY, et al. New constituents with iNOS inhibitory activity from mycelium of Antrodia camphorata [J]. Plant Med, 2009, 75: 512-516.
    [64] Yu CC, Chiang PC, Lu PH, et al. Antroquinonol, a natural ubiquinone derivative, induces a cross talk between apoptosis, autophagy and senescence in human pancreatic carcinomacells [J]. J Nutr Biochem, 2011.
    [65] Kumar KJ, Chu FH, Hsieh HW, et al. Antroquinonol from ethanolic extract of mycelium of Antrodia cinnamomea protects hepatic cells from ethanol-induced oxidative stress through Nrf-2 activation [J]. J Ethnopharmacol, 2011, 136: 168-177.
    [66] Kumar VB, Yuan TC, Liou JW, et al. Antroquinonol inhibits NSCLC proliferation by altering PI3K/mTOR proteins and miRNA expression profiles [J]. Mutat Res, 2011, 707: 42-52.
    [67]朱海文.牛樟芝椴木培养之研究探讨[D]:[硕士学位论文].台中:朝阳科技大学应用化学研究所, 2004.
    [68] Lin JY, Wu TZ, Chou JC. In vitro induction of fruiting body in Antrodia cinamomea-a medicinally important fungus [J]. Bot Stud, 2006, 47: 267-272.
    [69]李名训.樟芝栽培之研究[D].嘉义大学农学院林业暨自然资源研究所, 2006.
    [70]林志远.牛樟芝子实体形成之探讨[D]:[硕士学位论文].花莲:东华大学生物技术研究所, 2005.
    [71] Chang TT, Wang WR. Basidiomatal formation of Antrodia cinnamomea on artificial agar media [J]. Bot Bull Acad Sinica, 2005, 46: 151-154.
    [72] Chu YC, Yang RM, Chang TT, et al. Fructification of Antrodia cinnamomea was Strain Dependent in Malt Extract Media and Involved Specific Gene Expression [J]. J. Agr. Food Chem, 2010, 58: 257-261.
    [73]侯吉蒲.高产率牛樟芝菌丝体及产物产程的开发[D]:[硕士学位论文].桃园:长庚大学生化与生医工程研究所, 2004.
    [74] Shu CH, Lung MY. Effect of pH on the production and molecular weight distribution of exopolysaccharide by Antrodia camphorata in batch cultures [J]. Process Biochem, 2004, 39: 931-937.
    [75] Hsu FL, Chou CJ, Chang YC. Promotion of hyphal growth and underlying chemical changes in Antrodia camphorata by host factors from Cinnamomum camphora [J]. Int J Food Microbiol, 2006, 106: 32-38.
    [76]张谦裕.樟芝菌丝体量产技术开发及相关功能性之探讨[D]:[博士学位论文].台北:国立台湾大学生命科学院微生物与生化学研究所, 2007.
    [77]陈劲初.台湾特有真菌[J].中华真菌学会会刊, 2001, 16(1,2): 7-22.
    [78] Ho YC, Lin MT, Duan KJ, et al. The hepatoprotective activity against ethanol-induced cytotoxicity by aqueous extract of Antrodia cinnamomea [J]. J Chinese Inst Chem Engineers, 2008, 39: 441-447.
    [79] Chang CY, Lee CL, Pan TM. Statistical optimization of medium components for the production of Antrodia cinnamomea AC0623 in submerged cultures [J]. Appl Microbiol Biotechnol, 2006, 72: 654-661.
    [80] Yang FC, Huang HC, Yang MJ. The influence of environmental conditions on the mycelial growth of Antrodia cinnamomea in submerged cultures [J]. Enzyme Microb Technol, 2003, 33: 395-402.
    [81] Shu CH, Lung MY. Effect of pH on the production and molecular weight distribution of exopolysaccharide by Antrodia camphorata in batch cultures [J]. Process Biochem, 2004,39: 931-937.
    [82] Lin ES, Sung SC. Cultivating conditions influence exopolysaccharide production by the edible Basidiomycete Antrodia cinnamomea in submerged culture [J]. Int J Food Microbiol, 2006, 108: 182-187.
    [83] Lin ES, Chen YH. Factors affecting mycelial biomass and exopolysaccharide production in submerged cultivation of Antrodia cinnaraomea using complex media [J]. Bioresource Technol, 2007, 98: 2511-2517.
    [84] Shih IL, Pan K, Hsieh CY. Influence of nutritional components and oxygen supply on the mycelial growth and bioactive metabolites production in submerged culture of Antrodia Cinnamomea [J]. Process Biochem, 2006, 41: 1129-1135.
    [85]贾薇,刘艳芳,张劲松等.樟芝深层发酵培养条件的优化[J].食品科学, 2004, 25: 52-55.
    [86]刘华,贾薇,刘艳芳等.珍稀药用真菌-樟芝深层发酵培养条件的优化[J].微生物学通报, 2007, 34: 70-74.
    [87]朱会霞,孙金旭.樟芝真菌发酵条件优化研究[J].中国酿造, 2008, 20: 46-49.
    [88]张宏海,张仲欣,马海乐.樟芝深层液体发酵条件的试验研究[J].食品与药品, 2008, 10: 18-21.
    [89]薛姿娟.培养条件对樟芝菌丝固态培养之影响[D]:[硕士学位论文].台北:东海大学化学工程研究所, 2005.
    [90]王柏森.樟芝固态发酵培养产物之成分分析与抗氧化活性之研究[D]:[硕士学位论文].屏东:国立屏东科技大学生物科技研究所, 2008.
    [91]陈启桢,苏庆华,蓝明煌.樟芝固体栽培及其生物活性之研究[J].中华真菌学会会刊, 2001, 16(1,2): 65-72.
    [92] Wang HY. Chemical constituents of Antrodia camphorata submerged whole broth [D]:[Master thesis]. Shih Chien University, 2004.
    [93] Liu YL, Di X, Liu XC, et al. Development of a LC–MS/MS method for the determination of antrodin B and antrodin C from Antrodia camphorata extract in rat plasma for pharmacokinetic study [J]. J Pharmaceut Biomed Anal, 2010, 53: 781-784.
    [94]陈政则.固态栽培牛樟芝成分之探讨[D]:[硕士学位论文].台北:台北医学大学生药学研究所, 2010.
    [95] Wu DP, Chiang CH. Constituents of Antrodia cinnamomea [J]. J Chin Chem Soc, 1995, 42: 797-800.
    [96] Lin TY, Chen CY, Chien SC, et al. Metabolite Profiles for Antrodia cinnamomea Fruiting Bodies Harvested at Different Culture Ages and from Different Wood Substrates [J]. J Agr Food Chem, 2011, 59: 7626-7635.
    [97] Balakrishnan K, Pandey A. Production of biologically active secondary metabolites in solid state fermentation [J]. J Sci Ind Res, 1996, 55(2): 365-372.
    [98] Pandey A, Soccol CR, Mitchell D. New developments in solid state fermentation: I-bioprocesses and products [J]. Process Biochem, 2000a, 35: 1153-1169.
    [99] Pandey A, Selvakumar P, Soccol CR, et al. Solid state fermentation for the production of industrial enzymes [J]. Current Science, 1999a, 77: 149-162.
    [100] Memck MJ, Edwards RA. Nitrogen control in bacteria [J]. Microbiol. Rev, 1995, 59(4): 604-622.
    [101] Liu B, Tzeng Y. Water content and water activity for the production of cyclodepsipeptides in solid state fermentation by Metarhizium anisopliae [J]. Biotechnol Lett, 1999, 21: 657-661.
    [102] Penna ML, Etcheverry M. Impact on growth and aflatoxin B1 accumulation by Kluyveromyces isolates at different water activity conditions [J]. Mycopathologia, 2006, 162: 347-353.
    [103]黄大斌,杨箐,黄进华等.樟芝生物学特性研究[J].食用菌学报, 2001, 8(2): 24-28.
    [104]宋爱荣.台湾樟芝对碳素营养源利用的研究[J].中国食用菌, 2002, 21(5): 41-43.
    [105]刘红,蔡绍皙,潘红春.溶氧对L-天冬酰胺酶发酵的影响及其控制[J].中国生物制品学杂志, 2003, 16(6): 345-347.
    [106]岑仡,童涌,杨峰.溶氧浓度对rhG-CSF工程菌高密度发酵的影响[J].药学实践杂志, 2011, 29(3): 197-199.
    [107] Amaral PFF, Freire MG, Rocha MHM, et al. Optimization of oxygen mass transfer in a multiphase bioreactor with perfluorodecalin as a second liquid phase [J]. Biotechnol Bioeng, 2008, 99: 588-598.
    [108] Cascaval D, Galaction AI, Folescu E, et al. Comparative study on the effects of n-dodecane addition on oxygen transfer in stirred bioreactors for simulated, bacterial and yeasts broths [J]. Biochem Eng J, 2006, 31: 56-66.
    [109] Elibol M, Mavituna F. A remedy to oxygen limitation problem in antibiotic production: addition of perfluorocarbon [J]. Biochem Eng J, 1999, 3: 1-7.
    [110] Galaction AI, Cascaval D, Oniscu C, et al. Enhancement of oxygen mass transfer in stirred bioreactors using oxygen vector 1. Simulated fermentation broths [J]. Bioprocess Biosyst Eng, 2004, 26: 231-238.
    [111] Yegneswaran PK, Gray, MR. Effect of dissolved oxygen control on growth and antibiotic production in Streptomyces clavuligerus [J]. Fermentations. Biotechnol. Pmg, 1991, 7: 246-250.
    [112] Mattiasson B, Adlerereutz P. Perfluorochemicals in biotechnology [J]. Bo Mattiasson and Patrick adlercreutz TIBTECH, 1987, 5: 250-254.
    [113] Leung K. Enhancenment of oxygen transfer rate using microcapsulated silicons oil as oxygen carriers [J]. J. Chem. Technol, 1997, 68: 37-46.
    [114]贾士儒,毛希琴,王明霞等.氧载体发酵体系的氧传递特性及提高衣康酸产酸能力的研究[J].工业微生物, 1997, 27(4): 9-13.
    [115] Wang JL. Enhancement of citric acid production by Aspergillus niger using n-dodecane as an oxygen-vector [J]. Process Biochem, 2000, 35(10): 1079-1083.
    [116] Kreiner M, McNeil B, Harvey LM. Oxidative stress response in submerged cultures of Aspergillus niger (B1-D) [J]. Biotechnol. Bioeng, 2000, 70: 662-669.
    [117] Emri T, Pocsi I, Szentirmai A. Analysis of the oxidative stress response of Penicillium chrysogenum to menadione [J]. Free Radic. Res, 1999, 30: 125-132.
    [118] Gujarathi NP, Linden JC. Oxytetracycline inactivation by putative reactive oxygen species released to nutrient medium of Helianthus annuus hairy root cultures [J]. Biotechnol. Bioeng, 2005, 92: 393-402.
    [119] Rao YM, Sureshkumar GK. Improvement in bioreactor productivities using free radicals: HOCl-induced overproduction of xanthan gum from Xanthomonas campestris and its mechanism [J]. Biotechnol. Bioeng, 2001, 72: 62-68.
    [120] Lilly MD. Two-liquid-phase biocatalytic reaction [J]. J. Chem. Tech. Biotechnol, 1982, 32: 162-169.
    [121]吕晴,于德顺,雷邦星.气相色谱法测定真菌的脂肪酸组成[J].贵州工业大学学报, 2000, 29(5): 23-27.
    [122]吴国欣,李永星,陈密玉等. GC-MS法分析南瓜籽油脂肪酸组成[J].中草药, 2003, 34(12): 1079.
    [123]周文兰,童列波.苯酚-硫酸法测定康克胶囊中多糖[J].时珍国医国药, 2001, 12(7): 595
    [124] Young SH, Jacobs RR. Sodium hydroxide-induced conformational change in schizophyllan detected by the fluorescence dye, aniline blue [J]. Carbohyd res, 1998, 310: 91-99.
    [125] Zhao SS, Leung KSY. Quality evaluation of mycelial Antrodia camphorata using high-performance liquid chromatography (HPLC) coupled with diode array detector and mass spectrometry (DAD-MS) [J]. Zhao and Leung Chinese Medicine, 2010, 5: 1-6.
    [126]陆震鸣,陶文沂,陆奕宇等.樟芝液体发酵粉化学成分分析[J].天然产物研究与开发, 2008, 20: 283-285, 294.
    [127]岳运勇,宋爱荣,田雪梅.樟芝菌丝体的氨基酸成分分析[J].菌物研究, 2006, 4(2): 45-48.
    [128]李志军,刘海良,黄芳等.樟芝液体发酵菌丝脂肪酸组分分析[J].食用菌学报, 2009, 16(2): 60-62.
    [129]白满英,张金诚,崔育京.橄榄油的开发应用[J].粮油食品科技, 2003, 11(2): 31-33.
    [130] Zawirska-Wojtasiak R. Optical purity of (R)-(-)-1-octen-3-ol in the aroma of various species of edible mushrooms [J]. Food Chem, 2004, 86(1): 113-118.
    [131] Mosandl A, Heusinger G, Gessner M. Analytical and sensory differentiation of 1-octen-3-ol enantiomers [J]. J Agr Food Chem, 1986, 34: 119-122.
    [132] Venkateshwarlu G, Chandravadana MV, Tewari RP. Volatile flavour components of some edible mushrooms (Basidiomycetes) [J]. FlaVour Fragrance J, 1999, 14: 191-194.
    [133] Breheret S, Talou T, Rapior S, et al. Monoterpenes in the aroma of fresh wild mushrooms (Basidiomycetes) [J]. J Agr Food Chem, 1997, 45(3): 831-836.
    [134] Saidana D, Mahjoub MA, Boussaada O, et al. Chemical composition and antimicrobial activity of volatile compounds of Tamarix boveana (Tamaricaceae) [J]. Microbiol Res, 2008, 163: 445-455.
    [135] Liu H, Jia W, Zhang JS, et al. GC-MS and GC-olfactometry analysis of aroma compounds extracted from culture fluids of Antrodia camphorata [J]. World J MicrobiolBiotechnol, 2008, 24: 1599-1602.
    [136] Lu ZM, Tao WY, Xu HY, et al. Analysis of volatile compounds of Antrodia camphorata in submerged culture using headspace solid-phase microextraction [J]. Food Chem, 2011, 127(2): 662-668.
    [137]马刚,田雪梅,张振宇等.樟芝挥发油的提取及其GC-MS分析与抑菌作用的研究[J].西南农业学报, 2011, 24(3): 970-973.
    [138] Larsen TO, Frisvad JC. Characterization of volatile metabolites from 47 Penicillium-Taxa [J]. Microbiol Res, 1995a, 99: 1153-1166.
    [139] Camazine SM, Resch JF, Eisner T, et al. Mushroom chemical defense: pungent sesquiterpenoid dialdehyde antifeedant to opossum [J]. J Chem Ecol, 1983, 9: 1439-1447.
    [140] Jelen H, Mirocha C, Wasowicz E, et al. Production of volatile sesquiterpenes by Fusarium sambucinum strains with different abilities to synthesize trichothecenes [J]. Appl Environ Microbiol, 1995, 61: 3815-3820.
    [141] Seitz LM, Sauer DB, Burroughs R, et al. Ergosterol as a measure of fungal growth [J]. Phytohathology, 1979, 69: 1202-1203.
    [142] Koliander B, Hampel W, Roehr M. Indirect estimation of biomass by rapid ribonucleic acid determination [J]. Appl Microbiol Biotechnol, 1984, 19: 272-276.
    [143] Desgranges C, Vergoignan C, Georges M, et al. Biomass estimation in solid state fermentation I. Manual biochemical methods [J]. Appl Microbiol Biotechnol, 1991, 35: 200-205.
    [144] Smits JP, Rinzema A, Tramper J, et al. The influence of temperature on kinetics in solid-state fermentation [J]. Enzyme Microb Technol, 1998, 22: 50-57.
    [145] Larroche C, Moskia J, Gros JB. A convenient method for initial dry weight determination in samples from solid state cultivations [J]. Process Biochem, 1998, 33: 447-451.
    [146] Card A, Avisse C. Comparative study of the aroma of raw and cooked mushrooms (Agaricus bisporus L.) [J]. Ann Technol Agric, 1977, 27: 287.
    [147] Chen CC, Wu CM. Studies on the enzymic reduction of 1-octen-3-one in mushroom (Agaricus bisporus) [J]. J Agr Food Chem, 1984, 32: 1342-1344.
    [148] Cho IH, Namgung HJ, Choi HK, et al. Volatiles and key odorants in the pileus and stipe of pine-mushroom (Tricholoma matsutake Sing.) [J]. Food Chem, 2008, 106:71-76.
    [149] Ewen RJ, Jones PRH, Ratcliffe NM, et al. Identification by gas chromatography-mass spectrometry of the volatile organic compounds emitted from the wood-rotting fungi Serpula lacrymans and Coniophora puteana, and from Pinus sylvestris timber [J]. Mycol Res, 2004, 108: 806-814.
    [150] Assaf S, Hadar Y, Dosoretz CG. Biosynthesis of 13-hydroperoxylinoleate, 10-oxo-8-decenoic acid, and 1-octen-3-ol from linoleic acid by a mycelial-pellet homogenate of Pleurotus pulmonarius [J]. J Agr Food Chem, 1995, 43: 2173-2178.
    [151] Assaf S, Hadar Y, Dosoretz CG. 1-Octen-3-ol and 13-Hydroperoxylinoeate are products of distinct pathways in the oxidative breakdown of linoleic acid by Pleurotus pulmonarilus [J]. Enzyme Microb Technol, 1997, 21: 484-490.
    [152] Bisakowski B, Kermasha S, Lavorel V, et al. Partial characterization of a lipoxygenasefrom Fusarium proliferatum [J]. Food Biotechnol, 1995, 9: 189-205.
    [153] Emilie C, Janey H, Daniel C, et al. Eight-carbon volatiles in mushrooms and fungi: properties, analysis, and biosynthesis [J]. Mycoscience, 2006, 47: 317-326.
    [154] Chen CJ, Krishna RV, Tsai CC, et al. Structure and functions of c-dodecalactone isolated from Antrodia camphorata for NK cell activation [J]. Bioorg. Med. Chem, 2010, 18: 6896-6904.
    [155]水野卓,川合正允.菇类的化学[M].台湾:国立编译馆, 1999. 42-45.