红酵母合成类胡萝卜素及体外转化维生素A的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对从福建黄酒酒糟中分离出来的产色素菌株进行了鉴定、诱变、培养基和发酵条件的优化研究,并对该菌株所产类胡萝卜素进行了分离纯化与体外转化为维生素A的研究。主要研究结果如下:
     (1)于酒糟中分离得到一株产色素菌株。对该菌株所产色素进行定性分析,结果表明该色素为类胡萝卜素;对菌株进行常规形态和生理生化特性分析,结果表明该菌株为单细胞,呈椭圆形,芽殖;无子囊孢子;无假菌丝形成。在固体培养基上,菌落呈粉红色,菌落表面湿润、粘稠,边缘整齐,易被挑起;在液体培养基中,产生沉淀。葡萄糖发酵试验为阴性,硝酸钾试验为阳性,耐50%葡萄糖高渗试验为阴性,产类淀粉化合物试验为阴性,在37℃下可正常生长。利用26SrDNA D1/D2区域序列分析法对该菌株进行序列比对鉴定,结果表明,该酵母菌的序列与粘性红圆酵母(Rhodotorula mucilaginosa)模式菌株的序列同源性为100%。因此,结合该菌株形态特征和生理生化特性,确定该菌株为粘性红圆酵母(Rhodotorula mucilaginosa),命名为RM-1。
     (2)为获得类胡萝卜素高产菌株,利用N+离子注入法对粘性红圆酵母RM-1进行诱变处理,结果表明,当注入能量为10keV,注入剂量为2.0×1014ion/cm2时,经二苯胺的初筛和复筛所得突变株RM-127类胡萝卜素产量最高,与出发菌株RM-1相比,增加了66.79%。再经紫外诱变,得突变株RM-213,发酵试验结果表明,该菌株的类胡萝卜素产量达到10.59mg/L,较出发菌株RM-1提高了89.67%,传代试验表明,突变株RM-213遗传性状稳定,可作为工业生产菌种。
     (3)以农业废弃物和副产物为发酵原料进行粘性红圆酵母RM-213发酵产类胡萝卜素的研究,经单因素试验、均匀设计试验和正交试验,获得了最佳的发酵工艺与参数。由单因素试验,得到最佳碳源为玉米秸秆水解液(50g/L),最佳氮源为玉米浆(40g/L)。通过均匀设计试验,得到影响发酵液中类胡萝卜素产量的几种添加物的回归方程为:Y=3.94+29.6X1+20.9X2-11.1X3-1.99X6,据此优化得到添加物及其最佳用量为:MgSO4·7H2O0.7g/L,K2HPO40.2g/L,乙醇0.7%,VB21.0g/L。通过正交试验,得出变温培养的最佳条件为0-40h培养温度30℃,40-72h培养温度24℃。通过正交试验对装液量、接种量、初始pH、摇床转速四个因素进行优化,优化结果为:装液量50mL/250mL、初始pH5.5、接种量10.0%、摇床转速170r/min。经过优化后的生物量(17.56g/L)、类胡萝卜素含量(1378.70gg/g)及产量(24.21mg/L)较未优化时(11.85g/L、891.34μg/g、10.56mg/L)分别提高48.19%、54.68%和129.26%。
     (4)利用大孔树脂对粘性红圆酵母RM-213所产类胡萝卜素进行了分离纯化,得到了最佳的吸附和解吸条件。静态吸附试验结果表明,最佳吸附树脂为X-5树脂,当温度为25℃,吸附时间为1h时该树脂对类胡萝卜素吸附率最大,可达71.01%;最佳洗脱剂为乙醚,当温度为30℃解吸1h时,解吸率高达95.32%。动态吸附试验结果表明粘性红圆酵母RM-213产类胡萝卜素的最佳分离纯化工艺参数为:上样质量浓度以β-胡萝卜素计为111.82μg/mL,以1mL/min的流速通过径高比为1:9的层析柱,再用乙醚以0.5mL/min的流速洗脱。经纯化,类胡萝卜素纯度达到33.29%。
     (5)对粘性红圆酵母液态发酵提取液成分β-胡萝卜素进行体外酶法转化试验表明该β-胡萝卜素经专一的β-胡萝卜素-15,15’-单加氧酶可转化为维生素A。通过对转化条件的优化研究,得出最佳转化体系为123mg/Lβ-胡萝卜素,3.5mmol/L脱氧胆酸钠,0.25%Tween40(w/v),pH8.0和0.5mmol/L d-a-生育酚。在此条件下,粘性红圆酵母液态发酵所产β-胡萝卜素在酶活力为2.69nmol mg-1h-1的β-胡萝卜素-15,15’-单加氧酶作用下于37℃水浴振荡反应7h,可再经硼氢化钠还原,转化成40.1mg/L维生素A,转化率达到61.11%(mol/mol)。
A strain which produces pigment was isolated from yellow wine lees in Fujian,then was identified. To obtain a high-yield strain of carotenoid, the mutation breeding and optimization of media ingredients and culture conditions on the strain were studied, and then the isolation and purification of carotenoid and the cleavage from carotenoid into retinol with β-carotene15,15'-monooxygenase were investigated. The main results were as follows:
     (1) A strain which produces pigment was isolated from yellow wine lees. The pigment was identified as carotenoid by qualitative analysis. The morphology, physiological and biochemical characteristics of the strain were analyzed, the results showed that the cell of the strain was single, oval and budding, and the strain had no ascospore and pseudohypha. Its colony was of regular edge, humid and sticky pink surface in solid medium and deposition in liquid medium. The strain showed negative response to glucose fermentation and positive response to potassium nitrate. It could neither endure hypertonic solution nor produce amyloid, it could grow at37℃. All of these results showed that the strain was a kind of Rhodotorula. The homology of the26S rDNA D1/D2domain sequence from the Rhodotorula showed that the genetic relationship between the strain and Rhodotorula mucilaginosa was closest and they were100%similarity at nucleotide acid sequence. According to its morphological, physiological and biochemical characteristics and molecular identification, the strain was identified as Rhodotorula mucilaginosa, and named RM-1after the strain.
     (2) In order to obtain a high-yield strain of carotenoid, R.mucilaginosa RM-1was mutated by10keV N+implantation with dose of2.0×1014ion/cm2implantation and then screened by diphenylamine resistance. Mutant RM-127was obtained, its production of carotenoid reached9.31mg/L, increased by66.79%over the5.58mg/L from the original strain. And then mutant RM-213was obtained by UV mutagenesis of RM-127and produced a large quantity of carotenoids (10.59mg/L), which was higher (with89.67%) than in the original strain RM-1. Its hereditary property was stable after ten times of subculture, which suggested a bright prospect of application.
     (3) Optimization of carotenoid production by RM-213using agricultural waste and by-product as raw matearial were studied. The single-factor method was employed for the optimization of growth and carotenoid production using corn straw hydrolysate (50g/L) as carbon source and corn steep liquor (40g/L) as nitrogen source. The experimental parameters of seven kinds of additives were added by uniform design experiment, the results showed that the optimum additives and quantity were as follows:MgSO4·7H2O0.7g/L, K2HPO40.2g/L, ethanol0.7%, VB21.0g/L, respectively. The corresponding regression equation was:Y=3.94+29.6X1+20.9X2-11.1X3-1.99X6. The optimum culture conditions were obtained as follows by orthogonal test:250mL Erlenmeyer flasks containing50mL fermentation liquid, initial pH5.5,10%inoculum size with agitation rate of170r/min. The temperature was varied during incubating, the first40h incubated at30℃, then kept32h at24℃. Under these conditions, the cell biomass, carotenoid content and carotenoid yield were respectively. Increased by48.19%,54.68%and129.26%over that before optimization.,
     (4) The carotenoid which were produced by RM-213was purified by macroporous adsorption resins and the optimum conditions of adsorption and desorption were investigated.. The static experiment results showed that X-5resin was the best adsorbent, the adsorption rate was up to71.01%when absorbed1h at25℃, and aether was the best eluent, the desorption rate was up to95.32%when desorbed1h at30℃. The dynamic experiment results showed that the optimum dynamic adsorption and desorption conditions were as follows:the concentration of sample111.82u.g/mL, ratio of column diameter to length1:9, rate of adsorption flow1mL/min, and rate of desorption flow0.5mL/min. Under optimum conditions, the purity of carotenoid was up to33.29%.
     (5) The conversion of β-carotene produced by R.mucilaginosa in vitro was conducted, the results showed that β-carotene15,15'-monooxygenase from chicken intestinal mucosa can cleaves β-carotene into retinal. The optimum reaction conditions for conversion were123mg/L β-carotene,3.5mmol/L sodium deoxycholate,0.25%(w/v) Tween40, pH8.0and0.5mmol/L d-a-tocopherol, respectively. The enzyme reaction was conducted at37℃for7h under optimum conditions with2.69nmol mg-1h-1enzyme activity,40.1mg/L retinol was obtained by reducing retinal with the NaBH4procedure, the conversion efficiency come up to61.11%(mol/mol).
引文
[1]王伟杰,徐昌杰.天然类胡萝卜素生物合成与生物技术应用[J].细胞生物学杂志,2006(28):839-843.
    [3]陶俊,张上隆,徐昌杰,安新民,张良诚.类胡萝卜素合成的相关基因及其基因工程[J].生物工程学报,2002,18(3):276-281.
    [4]Goodwin T W. The Biochemistry of the Carotenoids[M]. London:Chapman & Hall,1980.
    [5]Demming-A B, Gilmore A M, Adams W W. In vivo function of carotenoids in higher plants[J]. FASEB J,1996,10:403-412.
    [6]Fraser P D. Bramley P M. The biosynthesis and nutritional uses of carotenoids[J]. Progress in Lipid Research,2004,43(3):228-265.
    [7]惠伯棣.类胡萝卜素化学及生物化学[M].北京:中国轻工业出版社,2005:241-247.
    [8]王业勤,李勤生.天然类胡萝卜素—研究进展,生产,应用[M].北京:中国医药科技出版社,1997:175-250.
    [9]许青.类胡萝卜素研究进展[J].国外医学:生理、病理科学与临床分册.1996,16(4):249-251.
    [10]Sies H, Stahl W. Vitamins E and C, a-caroteme, and other carotenoids as antioxidants[J]. Am J Clin Nutr,1995,62:1325S-1321S.
    [11]Roberts R L, Green J, Lewis B. Lutein and zeaxanthin in eye and skin health[J]. Clinics in Dermatology,2009,27(2):195-201.
    [12]Krinsky N I, Johnson E J.Carotenoid actions and their relation to health and disease[J]. Mol Aspects Med,2005,26(6):459-516.
    [13]Sugiura M, Nakamura M, Ogawa K, Ikoma Y, Ando F, Yano M. Bone mineral density in post-menopausal female subjects is associated with serum antioxidant carotenoids [J]. Osteoporosis International,2008,19(2):211-219.
    [14]Granado-Lorencio F, Olmedilla-Alonso B, Herrero-Barbudo C, Blanco-Navarro I, Perez-Sacristan B. Seasonal variation of serum alpha and beta-cryptoxanthin and 25-OH-vitamin D (3) in women with osteoporosis[J]. Osteoporosis International,2008,19(5):717-720.
    [15]Yamaguchi M.β-cryptoxanthin and bone metabolism:the preventive role in osteoporosis [J]. Journal of Health Science,2008,54(4):356-369.
    [16]马乐,林晓明.叶黄素干预对长期荧屏光暴露者视功能的影响[J].营养学报,2008,30(5):438-442.
    [17]彭光华,李忠,张声华.6种类胡萝卜素对人乳腺癌细胞株细胞间隙连接通讯功能影响的比较[J].食品科学,2008,29(6):45-48.
    [18]Amiot-Carlin M J, Babot-Laurent C, Tourniaire F. Plant pigments as bioactive substances. In:Socaciu C (ed) Food colorants:chemical and functional properties[M]. CRC Press, Boca Raton,2008:127-146.
    [19]Kathiresan S, Melander O, Anevski D, Guiducci C, Burtt NP, Roos C, Hirschhorn JN, Berglund G, Hedblad B, Groop L, Altshuler DM, Newton-Cheh C, Orho-Melander M. Polymorphisms associated with cholesterol and risk of cardiovascular events[J]. N Engl J Med,2008,358(12):1240-1249.
    [20]Willer C J, Sanna S, Jackson A U. Newly identified loci that influence lipid concentrations and risk of coronary artery disease[J]. Nat Genet,2008,40:161-169.
    [21]Perry J R, Ferrucci L, Bandinelli S, Guralnik J, Semba R D, Rice N, Melzer D, Consortium D, Saxena R, Scott L J, McCarthy M I, Hattersley A T, Zeggini E, Weedon M N, Frayling T M. Circulating β-carotene levels and type 2 diabetes—cause or effect?[J]. Diabetologia,2009,52(10):2117-2121.
    [22]Sandmann G. Carotenoid biosynthesis and biotechnological application[J]. Arch Biochem Biophys,2001,385(1):4-12.
    [23]Sandmann G. Carotenoid biosynthesis in microorganism and plants[J]. Eur J Biochem,1994,223(1):7-24.
    [24]Cunningham F X J, Gantt E. Genes and enzymes of carotenoid biosynthesis in plants[J]. Ann Rev Plant Physiol, Plant Mol Biol,1998,49:557-583.
    [25]Porter J W, Lineoln R E. Lyco Persicon selections containing a high content of carotenes and colorless polyenes. II. The mechanism of carotene biosynthesis [J]. Arch Biochem Biophys,1950,27(3):390-403.
    [26]Goodwin T W. The biochemistry of the carotenoids, Plants[M].2nd ed. London:Chapman and Hall,1980.
    [27]Kuntz M, Romer S, Suire C, Hugueney P, Weil JH, Schantz R, Camara B. Identification of a cDNA for the plastid-located geranylgeranyl pyrophosphate synthase from Capsicum annuum:correlative increase in enzyme activity and transcript level during fruit ripening [J].Plant J.1992,2(1):25-34.
    [28]Coodwin T W. Biosynthesis of carotenoids:an overview. In:Packer L. Methods in enzymology carotenoids[J]. Part B. Metabolism, genetic and biosynthesis, 1993,214:330-340.
    [29]Andrewes A G, Phaffia H J, Starr M P. Carotenoid of Phaffia rhodozyma, a red-pigmented fermention yeast [J]. Phytochemistry,1976,15:1003-1007.
    [30]郝常明,王德培,丁友防.光合细菌类胡萝卜素发酵的研究[J].天津轻工业学院学报,1999(4):1-7.
    [31]郑晓冬,王友永.用红球菌生产类胡萝卜素的研究[J].浙江大学学报,2000,26(5):516-520.
    [32]Deming Chen, Yonbin Han, Zhenxin Gu. Application of statistical methodology to the optimization of fermentative medium for carotenoids production by Rhodobacter sphaeroides[J].Process biochemistry,2006,41 (8):1773-1778.
    [33]周佳,郭秒,黄遵锡.一株高产类胡萝卜素光合细菌Z1的研究[J].中国食品添加剂,2003(6):46-50.
    [34]杨革.红假单胞菌产类胡萝卜素条件的研究[J].曲阜师范大学学报,1999,25(2):76-77.
    [35]叶辉,李元广,詹文毅,陈佩林,武济民.诺卡氏菌属5205菌株产生类胡萝卜素研究[J].生物技术,2001,11(5):12-15.
    [36]叶辉,王兆慧,陈佩林,李元广,武济民.微生物诱导子对诺卡氏菌属No5205菌株发酵的影响[J].生物技术,2004,14(6):57-58.
    [37]郭秒,周佳,慕跃林.阳宗海中高产类胡萝卜素光合细菌的研究[J].食品与发酵工业,2004,30(1):34-37.
    [38]袁婀娜,石贵阳,蔡宇杰.微球菌产类胡萝卜素的初步研究[J].食品研究与开发,2005,26(6):125-128.
    [39]赵峰梅,赵春贵,赵邑,赵生旺,杨素萍.光合细菌ZY2159菌株发酵生产类胡萝卜素研究[J].食品科学,2007,28(6):209-212.
    [40]Misawa N, Nakagawa M, Kobayashi K, Yamano S, Izawa Y, Nakamura K, Harashima K. Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli[J]. J Bacteriol, 1990,172(12):6704-6712.
    [41]汪靖超,孙东平,李荣贵.噬夏孢欧文氏菌(Erwinia uredovora)类胡萝卜素合成相关基因crtE的克隆及其在大肠杆菌中的表达[J].食品科学,2007,28(7):276-279.
    [42]李丽,杜桂彩,凌树宽,陈建锋,李荣贵,郭道森.无机盐和碳氮源对噬夏孢欧文氏菌积累类胡萝卜素的影响[J].食品科学,2007,28(4):183-186.
    [43]Valduga E, Valerio A, Treichel H, Junior A F, Luccio M D. Optimization of the prod-uction of total carotenoids by Sporidiobolus salmonicolor (CBS 2636) using response surface technique[J]. Food and BioprocessTechnology,2009,2(4):415-421.
    [44]修宇,袁其朋.烟草和MPTA对三孢布拉氏霉合成番茄红素的影响[J].北京化工大学学报,2009,36(1):81-84.
    [45]Sakaki H, Nakanishi T, Tada A, Miki W, Komemushi S. Activation of torularhodin production by Rhodotorula glutinis using weak white light irradiation[J]. J Biosci Bioeng,2001,92(3):294-297.
    [46]梁晓华,杨莺莺,杨铿,陈永青.海洋红酵母Y2发酵产类胡萝卜素条件的研究[J].中国微生态学杂志,2011,23(12):1068-1073.
    [47]汪洪涛,徐学明,金征宇.发夫酵母利用淀粉水解液发酵合成虾青素的研究[J].饲料工业,2003(10):48-50.
    [48]王岁楼,吴晓宗,陈德经,邓百万.低能离子注入对产胡萝卜素红酵母NR06的诱变效应研究[J].食品工业科技,2008,29(2):107-110.
    [49]刘海丽,余晓斌.三孢布拉霉中类胡萝卜素合成与脂肪酶活力的关系[J].工业微生物,2008,38(3):17-21.
    [50]林舒乐,倪辉,肖安风,李丽君,杨远帆,蔡慧农.乳酸钠对法夫酵母产虾青素的影响[J].食品与发酵工业,2010(36):106-111.
    [51]梅艳珍,王立梅,郑丽雪.碳氮比对Phaffia rhodozyma CS0217虾青素合成的影响[J].食品科学,2010(31):114-117.
    [52]Olaizola M. Commercial production of astaxanthin from Haematococcus pluvialis using 25000-liter outdoor photobiore actors[J]. J Appl Phycol,2000, 12(3):499-506.
    [53]Orosa M, Franqueira D, Cid A, Abalde J. Carotenoid accumulation in Haematococcus pluvialisin in mixotrophic growth[J]. Biotechnol Lett,2001, 23(5):373-378.
    [54]黄水英,齐安翔,李哲,李晓梦,王蕴,蔡明刚.几种胁迫方式对雨生红球藻积累虾青素影响的初步研究[J].海洋科学集刊,2009(4):144-151.
    [55]Dominguez-Bocanegra A R, Guerrero Legarreta I, Martinez Jeronimo F, Tomasini Campocosio A. Influence of environme-ntal and nutritional factors in the production of astaxanthin from Haematococcus pluvialis[J]. Biores Technol,2004, 92(2):209-214.
    [56]Kang C D, Lee J S, Park T H, Sim S J. Comparison of heterotrophic and photo- autotrophic induction on astaxanthin production by Haematococcus pluvialis[J]. Appl Microbiol Biotechnol,2005,68(2):237-241.
    [57]王群,桑敏,李爱芬,张成武.雨生红球藻培养过程中色素动态变化与光合生理特性研究[J].天然产物研究与开发,2010,5(22):850-854.
    [58]Ben-Amotz A. New mode of Dunaliella biotechnology:two-phase growth for β-carotene production[J]. Journal of Applied Phycology,1995,7:65-68.
    [59]Lers A, Biener Y, Zamir A. Photoinduction of massive β-carotenoid accumulation by the alga Dunalilla bardawil[J]. Plant Physiol,1990,93(2):389-395.
    [60]姜建国,姚汝华.氮磷比对盐藻生长及甘油和色素累积的影响[J].热带海洋,1999,18(1):68-72.
    [61]王培磊,袁子懿.盐度对盐生杜氏藻生长及其色素积累的影响[J].水产 科学,2009,28(2):71-74.
    [62]Zhi-Wei Ye, Jian-Guo Jiang, Guang-Hong Wu. Biosynthesis and regulation of carotenoids in Dunaliella:progresses and prospects[J]. Biotechnology advances, 2008,26(4):352-360.
    [63]Hirschberg J, Cohen M, Hark M, Lotan T, Mann V, Pecker I. Molecular genetics of the carotenoid biosynthesis pathway in plant and algas[J]. Pure Apple Chem,1997,69(10):2151-2158.
    [64]Wang G Y, Keasling J D. Amplification of HGM-CoA reductase production enhances carotenoid accumulation in Neurospora crassa[J]. Metab Eng,2002, 4(3):193-201.
    [65]Wang C W, Oh M K, Liao J C. Engineered isoprenoid pathway enhances astaxanthin production in Escherichia coli[J]. Biotechnol Bioeng,1999, 62(2):235-241.
    [66]Albrecht M, Misawa N, Sandmann G. Metabolic engineering of the terpenoid biosynthetic pathway of Escherichia coli for production of the carotenoids beta-carotene and zeaxanthin[J]. Biotechnol Lett,1999,21(9):791-795.
    [67]Alper H, Miyaoku K, Stephanopoulos G. Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets [J]. Nat Biotechnol,2005,23(5):612-616.
    [68]Alper H, Jin Y S, Moxley J F, Stephanopoulos G. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli[J]. Metab Eng, 2005,7(3):155-164.
    [69]刘敏,李荣贵,杜桂彩,范海.累积番茄红素的大肠杆菌工程菌及其培养条件的研究[J].中国生物工程杂志,2006,2(8):47-51.
    [70]杜桂彩,刘敏,赵瑜.不同培养条件对大肠杆菌工程菌产β-胡萝卜素的影响[J].食品科学,2008,29(7):272-276.
    [71]Ausich R L, Brinkhaus F L, Mukharji I, Proffitt J H, Yarger J G, Yen Huei-Che B. Biosynthesis of carotenoids in genetically engineered hosts[P]. PCT/US1991/001458.
    [72]Yamano S, Ishii T, Nakagawa M, Ikenaga H, Misawa N. Metabolic engineering for production of β-carotene and lycopene in Saccharom ycescerevisiae[J]. Biosci Biotechnol Biochem,1994,58(6):1112-1114.
    [73]Kondo K, Saito T, Kajiwara S, Takagi M, Misawa N. A transformation system for the yeast Candida utilis:use of a modified endogenousribosomal protein gene as a drug resistant marker and ribosomal DNA as an integration target for vector DNA[J]. J Bacteriol,1995,177(24):7171-7177.
    [74]Shimada H, Kondo K, Fraser P D, Miura Y, Saito T, Misawa N. Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isop renoid pathway[J]. Appl Environ Microbiol,1998,64(7):2676-2680.
    [75]Fell J W, Statzell-Tallman A, Ahearn D G. Rhodotorula Harrison. In the yeasts, a taxonomic study[M],3rd ed. Amsterdam:Elsevier Science Publishers,1984: 893-906.
    [76]Bhosale P, Gadre R V. Production of β-carotene by a mutant of Rhodotorula glutinis[J]. Appl Microbiol Biotechnol,2001,55(4):423-427.
    [77]Vijayalakshmi G, Shobha B, Vanajakshi V, Divakar, S, Manohar, B. Response surface methodology for optimization of growth parameters for the production of carotenoids by a mutasnt strain of Rhodotorula gracilis[J]. Eur Food Res Technol,2001,213(3):234-239.
    [78]牛春华,丁东红,徐文静,姜媛媛,李玉秋,王景会.用玉米浆发酵生产类胡萝卜素红酵母的紫外诱变选育[J].中国酿造,2010(1):61-63.
    [79]Bartlett D H. Pressure effects on in vivo microbial processes[J]. Biochemical Biophysical Acta,2002,1595:367-381.
    [80]王岁楼,韩北忠,孙君社,吴晓宗.黏红酵母高静水压诱变及其β-胡萝卜素发酵培养基的优化[J].食品科技,2007(5):20-25.
    [81]Sui-Lou Wang, Jun-She Sun, Bei-Zhong Han. Enhanced β-carotene production by Rhodotorula glutinis using high hydrostatic pressure[J], Korean J Chem Eng,2008,25(3):513-516.
    [82]樊永红,毛培宏,金湘,曾宪贤.离子束介导DNA大分子遗传转化研究[J].生物技术,2004,14(3):65-67.
    [83]余增亮.离子束生物技术引论[M].合肥:安徽科学技术出版社,1998.250-267.
    [84]张鑫,王岁楼,陈春涛,卫军,陈苏前.离子注入选育高产类胡萝卜素红酵母[J].无锡轻工大学学报,2002,21(4):347-349.
    [85]王岁楼,吴晓宗,陈德经,邓百万.黏红酵母离子注入诱变及其发酵产生β-胡萝卜素条件的研究[J].食品科学,2009,30(5):135-140.
    [86]Sakaiu H, Nakanishi T, Tada A, Miki W, Komemushi S. Activation of torularhodin production by Rhodotormla glutinis using weak white light irradiation[J]. J Biosci Bioeng,2001,92(3):294-297.
    [87]Tada M, Tsubouchi M, Matsuo K, Hiroyuki T, Yoshinobu K, Shigeaki T. Mechanism of photoregulated carotenogenesis in Rhodotorula minuta.Ⅷ. Effect of mecinolin on photoinduced carotenogeneses[J]. Plant Cell Physiol,1990, 31(3):319-323.
    [88]Bhosale P, Gadre R V. Manipulation of temperature and illumination conditions for enhanced β-carotene production by mutant 32 of Rhodotorula glutinis[J]. Lett Appl Microbiol,2002,34(5):349-353.
    [89]Tada M, Shiroishi M. Mechanism of photoregulated carotenogenesis in Rhodotorula minuta. I. Photocontrol of carotenoid production[J]. Plant Cell Physiol, 1982,23(3):541-547.
    [90]Hayman E P, Yokoyama H, Chichester C O, Simpson K L. Carotenoid biosynthesis in Rhodotorula glutinis[J]. J Bacteriol,1974,120(3):1339-1343.
    [91]Simpson K L, Nakayama T O M, Chichester C O. Biosynthesis of yeast carotenoids[J]. J Bacteriol,1964,88(6):1688-1694.
    [92]Buzzini P, Martin A. Production of carotenoids by strains of Rhodotorula glutinis cultured in raw materials of agro-industrial origin[J]. Bioresour Technol,1999, 71(1):41-44.
    [93]Vijayalakshmi G, Shobha B, Vanajakshi V, Divakar S, Manohar B. Response surface methodology for optimization of growth parameters for the production of carotenoids by a mutant strain of Rhodotorula gracilis[J]. European Food Research and Technology,2001,213(3):234-239.
    [94]Buzzini P. An optimization study of carotenoid production by Rhodotorula glutinis DBVPG 3853 from substrates containing concentrated rectified grape must as the sole carbohydrate source[J]. Journal of Industrial Microbiol.&Bioteno,2000, 24(1):41-45.
    [95]An G H, Jang B G, Cho M H. Cultivation of the carotenoid-hyperproducing mutant 2A2N of the red yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma) with molasses[J]. Journal of Bioscience and Bioengineering,2001,92(2):121-125.
    [96]Aksu Z, Eren A T. Carotenoids production by the yeast Rhodotorula mucilaginosa:Use of agricultural wastes as a carbon source[J]. Porcess Biochem, 2005,40(9):2985-2991.
    [97]张闯,何连芳,张玉苍.红酵母生物合成类胡萝卜素的培养条件优化[J].中国酿造,2010(11):80-84.
    [98]Valduga E, Valerio A, Treichel H, Furigo Junior A, Di Luccio M. Kinetic and stoichiometric parameters in the production of carotenoids by Sporidiobolus salmonicolor (CBS 2636) in synthetic and agroindustrial media[J]. Appl Biochem Biotech,2009,157(1):61-69.
    [99]Frengova G, Simova E, Beshkova D. Use of whey ultrafiltrate as a substrate for production of carotenoids by the yeast Rhodotorula rubra[J]. Appl Biochem Biotechnol,2004,112(3):133-141.
    [100]Bhosale P, Gadre R V. Manipulation of temperature and illumination conditions for enhance β-carotene production by mutant 32 of Rhodotorula glutinis[J]. Lett Appl Microbiol,2002,34(5):349-353.
    [101]Zalashko M. In:Solokova E (ed) Biotechnology of milk whey processing[M]. Science Press, Moscow,1990:161-163.
    [102]Sakaki H, Nochide H, Nakanishi T, Miki W, Fujita T, Komemushi S. Effects of culture conditions on the biosynthesis of carotenoids in Rhodotorula glutinis No.21[J]. Seibutsu-kogaku Kaishi,1999,77(2):55-59.
    [103]Komemushi S, Sakaki H, Yokoyama H, Fujita T. Effect of barium and other metals on the growth of a D-lactic acid assimilating yeast Rhodotorula glutinis No.21[J]. J Antibact Antifung Agt,1994,22:583-587.
    [104]Goodwin T W. Biosynthesis of carotenoids. In:Goodwin TW (ed) The biochemistry of the carotenoids[M], Chapman and Hall, London,1980:33-76.
    [105]Buzzini P, Martini A, Gaetani M, Turchetti B, Pagnoni U M, Davoli P. Optimization of carotenoid production by Rhodotorula graminis DBVPG 7021 as a function of trace element concentration by means of response surface analysis[J]. Enzyme Microb Technol.2005,36(5-6):687-692.
    [106]唐棠,黄乾明,杨群峰.红酵母Y-5产类胡萝卜素培养基无机盐组分的优化[J].食品科学,2011,32(3):130-133.
    [107]张颖鑫,辛嘉英,刘书娟,董静.金属离子对红酵母菌产类胡萝卜素影响的研究[J].食品工业科技,2010(31):65-68.
    [108]Kim B K, Park P K, Chae H J, Kim E Y. Eeffect of phenol on β-carotene content in total carotenoids production in cultivationn of Rhodotorula glutinis[J]. Korean J Chem Eng,2004,21(3):689-692.
    [109]刘月英.红酵母COS-5产胡萝卜素条件的研究[J].微生物学通报,1999,26(3):194-197.
    [110]D Somashekar, R Joseph. Inverse relationship between carotenoid and lipid formation in Rhodotorula gracilis according to the C/N ratio of the growth medium[J]. World Journal of Microbiology and Biotechnology,2000,16(5):491-493.
    [111]王岁楼.红酵母类胡萝卜素发酵助剂的筛选及应用[J].食品生物技术,2002,21(1):124.
    [112]翟红梅,张坤生,肖冬光.黏红酵母发酵产类胡萝卜素培养基中添加维生素的优化研究[J].食品科技,2008(3):31-34.
    [113]王海兵,吴晓英,梁文志,谢羽娜,袁思敏.烟碱协同过氧化氢对红酵母累积番茄红素的影响[J].食品科学,2010(31):254-257.
    [114]司菊萍.利用红酵母生产类胡萝卜素的研究[J].郑州粮食学院学报,1992(4):102-161.
    [115]石勇,谢爱娣,罗璇,王金华.红酵母产类胡萝卜素固态发酵工艺条件的研究[J].生物技术,2006,16(4):65-66.
    [116]何海燕,覃拥灵,李楠,梁智群.甘蔗糖蜜发酵培养高铁营养酵母的 菌种诱变选育[J].食品研究与开发,2007,137(4):50-53.
    [117]Tsuneo T, Yoko S, Koichi T. Extraction of dye from krill[P]. Jpn Kokai Tokkyo Koho JP:04057853 A2,1992.
    [118]王强.超临界二氧化碳萃取天然类胡萝卜素的研究[R].中国农业科学院博士后研究工作报告,2000.
    [119]Felix V L, Higuera C I, Goycoolea V F. Supercritical CO2/ethanol extraction of astaxanthin from blue crab(Callinectes sapidus) shell waste[J]. J Food Process Eng,2001,24(2):101-112.
    [120]Machmudah S, Shotipruk A, Goto M, Hirose T. Extraction of astaxanthin from Haematococcus pluvialis using supercritical CO2 and ethanol as entrainer[J]. Ind Eng Chem Res,2006,45(10):3652-3657.
    [121]Schonemann H, Gudinas A, Williams K, Wetmore P, Krukonis V. Method for extraction and concentration of carotenoids using supercritical fluids[P]. US2008146851.2008.
    [122]Lopez M, Arce L, Garrido J, Rios A, Valcarcel M. Selective extraction of astaxanthin from crustaceans by use of supercritical carbon dioxide [J]. Talanta,2004, 64(3):726-731.
    [123]廖益强,黄彪,陆则坚.超临界CO2流体萃取番茄红素[J].福建农林科技大学学报,2008,37(1):21-25.
    [124]张裕卿,张黎明,孟李,赵学明.大孔吸附树脂对番茄红素和β-胡萝卜素吸附分离的研究[J].中草药.2002,33(7):602-604.
    [125]李勇,赵杰文.玉米黄色素的提取纯化研究[J].中国粮油学报,2006,21(3):74-77.
    [126]王婷婷.微生物发酵法提取玉米黄色素的研究[D].东北林业大学,2010.
    [127]吕乔璐,黄梅,任其龙.蚕沙叶绿素铜钠盐生产废液中β-胡萝卜素的大孔吸附树脂分离方法[J].蚕业科学,2008,34(1):84-87.
    [128]苗振华,郑珩,劳兴珍,王聪,顾觉奋.X-5大孔吸附树脂纯化三孢布拉霉产生的番茄红素的初步研究[C].第14届反应性高分子学术讨论会论文集,广州,2008.
    [129]陆伟,钱骅,张卫明,赵伯涛.栀子黄色素的提取及精制研究[J].中国调味品,2009,34(11):84-87.
    [130]陈志强,金杨,任璐.非水介质大孔树脂分离纯化虾壳中虾青素[J].生物加工过程,2009,7(3):39-42.
    [131]赵瑶彦,陈启和.某保健乳饮料缓解视疲劳功能的实验研究[J].中国卫生检验杂志,2009(3):521.
    [132]Barber T, Borras E, Torres L, Garcia C, Cabezuelo F, Lloret A, Pallardo F V, Vina J R. Vitamin A defieiency causes oxidative damage to liver mitochondria in rats[J]. Free Radical Biology&Medieine,2000,29(1):1-7.
    [133]Miriam G, Wafaie W F. Antioxidants and prossion of human immunndeficieny virus(HIV)[J]. Nutrition research,1999,19(8):1259-1276.
    [134]Heinrich U, Neukam K, Tronnier H, Sies H, Stahl W. Long-term ingestion of high flavanol cocoa provides photoprotection against UV-induced erythema and improves skin condition in women [J]. Journal of Nutrition,2006,136 (6): 1565-1569.
    [135]Tang G, Qin J, Dolnikowski G G, Russell R M. Vitamin A equivalence of β-carotene in a woman as determined by a stable isotope reference method [J]. Eur J Nutr,2000,39(1):7-11.
    [136]韩军花.类胡萝卜素生物利用率的最新观点[J].国外医学卫生学分册,2000,27(6):377-378.
    [137]Lieshout M van. Bioavailability and bioefficacy of β-carotene measured using β-carotene and retinol, labeled withl3C, in Indonesian children[D]. Wageningen: Wageningen University,2001.
    [138]李蕾,王茵,武洁姝,朱染枫,赵显峰,汪之顼.学龄儿童体内植物源性胡萝卜素转化成维生素A的效率研究[J].卫生研究,2007(36):547-551.
    [139]汪之顼,谷贻光,张传东,苏冬,王茵,荫士安.中青年人体内β-胡萝卜素转化为维生素A的效率[J].卫生研究,2006(35):59-62.
    [140]汪之顼,焦华,曹敏光,赵显峰,荫士安,汤广文.中老年人β-胡萝卜素转化为维生素A的效率[J].营养学报,2004(26):13-18.
    [141]Goodman D, Huang H, Shiratori T. Mechanism of the biosynthesis of vitamin A from beta-carotene [J]. J Biol Chem,1966,241(9):1929-1932.
    [142]Goodman D, Huang H, Kanai M, Shiratori T. The enzymatic conversion of all-trans-β-carotene into retinal[J]. J Biol Chem.1967,242:3543-3554.
    [143]Wang X D, Krinsky N I. Subcellular biochemistry, In:Quinn, Fat-soluble vitamins[M]. NewYork:Plenum Press,1998,30:159-177.
    [144]Leuenberger M G, Engeloch-Jarret C, Woggon W D. The reaction mechanism of the enzyme-catalyzed central cleavage of β-carotene to retinal[J]. Angew Chem Int Ed.2001,40(14):2614-2617.
    [145]Olson J A, Hayaishi O.The enzymatic cleavage of beta-carotene into vitamin A by soluble enzymes of rat liver and intestine[J]. Proc Natl Acad Sci USA. 1965,54(5):1364-1370.
    [146]Lakshman M R, Mychkovsky I, Attlesey M. Enzymatic conversion of all-trans-beta-carotene to retinal by a cytosolic enzyme from rabbit and rat intestinal mucosa[J]. Proc Natl Acad Sci USA.1989,86(23):9124-9128.
    [147]van Vliet T, van Vlissingen M F, van Schaik F, van den Berg H. Beta-carotene absorption and cleavage in rats is affected by the vitamin A concentration of the diet[J]. J Nutr.1996,126(2):499-508.
    [148]Von Lintig J, Vogt K. Filling the gap in vitamin A research. Molecular identification of an enzyme cleaving beta-carotene to retinal [J]. J Biol Chem.2000, 275(16):11915-11920.
    [149]Paik J, During A, Harrison E, Mendelsohn C L, Lai K, Blaner W S. Expression and characterization of a murine enzyme able to cleave beta-carotene. The formation of retinoids[J]. J Biol Chem.2001,276 (34):32160-32168.
    [150]Lampert J M, Holzschuh J, Hessel S, Driever W, Vogt K, von Lintig J. Provitamin A conversion to retinal via the beta,beta-carotene-15,15'-oxygenase (bcox) is essential for pattern formation and differentiation during zebrafish embryogenesis[J]. Development,2003,130(10):2173-2186.
    [151]Lindqvist A, Andersson S. Biochemical properties of purified recombinant human beta-carotene 15,15'-monooxygenase[J]. J Biol Chem,2002,277(26): 23942-23948.
    [152]Redmond T M, Gentleman S, Duncan T, Yu S, Wiggert B, Gantt E, Cunningham F X Jr. Identification, expression, and substrate specificity of a mammalian beta-carotene 15,15'-dioxygenase[J]. J Biol Chem,2001,276(9): 6560-6565.
    [153]Lakshmanan M R, Chansang H, Olson J A. Purification and properties of carotene 15,15'-dioxygenase of rabbit intestine [J]. J Lipid Res,1972,13(4):477-482.
    [154]Fidge N H, Smith F R, Goodman D S. Vitamin A and carotenoids enzymic conversion of beta-carotene into retinal in hog intestinal mucosa[J]. Biochem J,1969, 114(4):689-694.
    [155]Devery J, Milborrow B V. β-Carotene-15-15'-dioxygenase (EC 1.13.11.21) isolation reaction mechanism and an improved assay procedure[J]. Br. J. Nutr,1994, 72(3):397-414.
    [156]Nagao A, During A, Hoshino C, Terao J, Olson JA. Stoichiometric conversion of all trans-beta-carotene to retinal by pig intestinal extract[J]. Arch Biochem Biophys,1996,328(1):57-63.
    [157]Kim Y S, Oh D K. Substrate specificity of a recombinant chicken β-carotene 15,15'-monooxygenase that converts β-carotene into retinal[J]. Biotechnol Lett,2009,31(3):403-408.
    [158]Takitani K, Zhu C L, Inoue A, Tamai H. Molecular cloning of the rat β-carotene 15,15'-monooxygenase gene and its regulation by retinoic acid[J]. Eur J Nutr,2006,45(6):320-326.
    [159]周光宏,高峰,朱旭东.动物吸收类胡萝卜素的肠道内环境控制研究[J].食品科学,2005,26(9):196-201.
    [160]During A, Nagao A, Terao J.β-carotene 15,15'-dioxygenase activity and cellular retinol-binding protein Type II level are enhanced by dietary unsaturated Triacylglycerols in Rat Intestines.1998,128(10):1614-1619.
    [161]陈波,周光宏,刘清.胆盐和游离脂肪酸影响离体小肠细胞类胡萝卜素吸收的研究[J].动物营养学报,2001,13(2):47-50.
    [162]周光宏,Tume R K, Larson T W离体牛小肠细胞对β-胡萝卜素和黄体素吸收的研究[J].动物营养学报,1996,8(4):15-18.
    [163]刘清,周光宏.离体小肠黏膜细胞对类胡萝卜素的吸收[J].南京农业大学学报,1997,20(4):54-59.
    [164]Hollander D H, Rim E, Muralidhara K S. Mechanism and site of small intestinal absorption of a-tocopherol in the rat[J]. Gastroenterology,1975, 68(6):1492-1499.
    [165]Hollander D H, Dadufalza V. Lymphatic and portal absorption of vitamin E in aging rats[J]. Dig Dis Sci,1989,34(5):768-772.
    [166]Wang X D, Marini R P, Hebuterne X, Fox J G, Krinsky N I, Russell R M. Vitamin E enhances the lymphatic transport of β-carotene and its conversion to vitamin A in the ferret[J]. Gastroenterology,1995,108(3):719-726.
    [167]Moore A C, Gugger E T, Erdman J W. Brush border membrane vesicles from rats and gerbils can be utilized to evaluate the intestinal uptake of all-trans and 9-cis β-carotene[J]. J Nutr,1996,126(11):2904-2912.
    [168]Lee C M, Lederman J D, Hofmann N E, Erdman J W. The Mongolian gerbil (Meriones unguiculatus) is an appropriate animal model for evaluation of the conversion of β-carotene to vitamin A[J]. J Nutr,1998,128(2):280-286.
    [169]宋建婷,高峰,周光宏.日粮VA和油脂对肉鸡β-胡萝卜素-15及15'-加双氧酶活性的影响[J].家畜生态学报,2007,28(2):25-28.
    [170]De H A, Burke R, Bont J. Microbial production of food colorants[J]. Med Fac Landbouww Rijisuniv Gent,1991,56:1655-1660.
    [171]Buckley H R, Van Uden N. Five new Candida species[J]. Mycopathol Mucol Appl.1968,36(3-4):783-791.
    [172]Kurtzman C P, Fell J W. The Yeasts, a taxorromic study[M]. Amsterdam: Elsevier Science Publishers,1998.
    [173]巴尼特等,胡瑞卿译.酵母菌的特征与鉴定手册[M].青岛:青岛海洋大学出版社,1991.
    [174]郝常明,王德培.光合细菌中类胡萝卜素的提取及性质的研究[J].天津轻工业学报,1999(3):5-11.
    [175]周德庆,微生物学实验手册[M].上海:上海科学技术出版社,1986.
    [176]白逢彦,贾建华,梁慧燕.假丝酵母属疑难菌株大亚基rDNA D1/D2区域序列分析及其分类学意义[J].菌物系统,2002,21(1):27-32.
    [177]Kurtzman C P, Robnett C J. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in 5'end of the large-subunit (26S) ribosomal DNA gene[J]. J Clin Microbiol,1997,35(5):1216-1223.
    [178]余增亮,何建军,邓建国.离子注入水稻诱变育种机理初探[J].安徽农业科学,1989(1):12-16.
    [179]吴跃进,王学栋,刘贵富,余增亮,何建军,邓建国.离子束注入水稻诱变效应的研究[J].安徽农业科学,1989(2):12-15.
    [180]余增亮,霍裕平.离子注入生物学研究述评[J].安徽农业大学学报,1994,21(3):221-226.
    [181]李淑荣,孟宪军,张涛,赵宏伟,吕加平,赵芸,高艳红,李庆鹏.离子注入诱变植物乳杆菌选育CLA高产突变株的研究[J].核农学报,2009,23(5):794-797.
    [182]杜丽平,肖冬光,时丽萍.高产谷胱甘肽酵母菌株的选育[J].酿酒科技,2010,2(188):47-49.
    [183]Frengova G I, Simova E D, Beshkova D M. Improvement of carotenoid-synthesizing yeast Rhodotorula rubra by chemical mutagenesis[J]. Z Naturforsch,2004,59c:99-103.
    [184]Kim J H, Kim C W, Chang H I. Screening and characterization of red yeast Xanthophyllomyces dendrorhous mutants[J]. J Microbiol Biotechnol,2004, 14(3):570-575.
    [185]Wang S L, Sun J S, Han B Z, Wu X Z. Optimization of β-carotene production by Rhodotorula glutinis using high hydrostatic pressure and response surface methodology [J]. J Food Sci,2007,72(8):325-329.
    [186]林晓,周蓬蓬,鲁明波,汪文俊,余龙江.低能离子注入诱变选育高产虾青素红法夫酵母突变株[J].激光生物学报,2007,16(6):781-785.
    [187]李市场,刘红霞,朱朝阳,王冬冬.低能离子注入油脂高产菌株黏红酵母(Rhodotorula glutinis)的选育,中国粮油学报,2011,26(8):31-35.
    [188]宋道军,姚建铭,吴丽芳,王纪,涂友斌,余增亮.离子注入对微生物细胞的刻蚀与对DNA的损伤及修复[J].遗传,1999,21(4):37-40.
    [189]宋道军,姚建铭,邵春林,余增亮.离子注入微生物产生“马鞍型”存活曲线的可能作用机制[J].核技术,1999,22(3):129-132.
    [190]Sguina F M, Yamashita F, Pereira J L, Mercadante A Z. Production of carotenoids by Rhodotorula rubra and Rhodotorula glutinis in culture medium supplemented with sugar cane juice[J]. Food Biotechnol,2002,16(3):227-235.
    [191]Moriel D G, Chociai M B, Machado I M P, Fontana J D, Bonfim T M B. Effect of feeding methods on the astaxanthin production by Phaffia rhodozyma in fed-batch process[J]. Braz Arch Biol Technol,2005,48(3):397-401.
    [192]Meyer P, Du Preez J. Astaxanthin production by a Phaffia rhodozyma mutant on grape juice [J]. World J Microbiol Biotechnol,1994,10(2):178-183.
    [193]Longo E, Siero C, Velazquez J B, Calo P, Cansado J, Villa T G. Astaxanthin production from Phaffia rhodozyma. Biotechnol Forum Eur,1992,9: 565-567.
    [194]Tinoi J, Rakariyatham N, Deming R L. Utilization of mustard waste isolated for improved production of astaxanthin by Xanthophyllomyces dendrohous[J]. J Ind Microbiol Biotechnol,2006,33:309-314.
    [195]Martin A, Lu C, Patel T. Growth parameters for the yeast Rhodotorula rubra grown in peat extracts[J]. J Ferment Bioeng,1993,76(4):321-325.
    [196]Vazquez M, Martin A M. Optimization of Phaffia rhodozyma continuous culture through response surface methodology [J]. Biotechnol Bioeng,1998,57(3): 314-320.
    [197]Tinoi J, Rakariyatham N, Deming R L. Simplex optimization of carotenoid production by Rhodotorula glutinis using hydrolyzed mung bean waste flour as substrate[J]. Process Biochem,2005,40(7):2551-2557.
    [198]张强,陆军,侯霖,金花,朴敬惠.玉米秸秆发酵法生产燃料酒精的研究进展[J].饲料工业,2005,26(9):20-23.
    [199]田沈,姚莹秋,蔺增曦,杨秀山.木质纤维素稀酸水解糖液乙醇发酵研究进展[J].微生物学通报,2007,34(2):355-358.
    [200]袁权.能源化学进展[M].北京:化学工业出版社,2005:19.
    [201]Perrier V, Dubreucq E, Galzy P. Fatty acid and carotenoid composition of Rhodotorula strains[J]. Arch Microbiol,1995,164(3):173-179.
    [202]孙军德,杨冉.产油酵母菌的筛选及其利用玉米秸秆发酵产油研究[J].沈阳农业大学学报,2010,41(3):335-338.
    [203]丁绍峰,谭天伟.豆粕水解液为氮源细菌厌氧流加发酵生产L-乳酸[J].过程工程学报,2006,6(1):77-81.
    [204]浦军平,朱国芳,杨东明,刘海航,李忠民.麸皮水解液在L-异亮氨酸发酵中的应用[J].大连轻工业学院学报,1999,18(4):298-291.
    [205]Gu W L, An G H, Johnson E A. Ethanol increases carotenoid production in Phaffia rhodozyma[J].J Ind Microbiol Biotechnol,1997,19(2):114-117.
    [206]Hoshino T, Ojima K, Setoguchi Y.3-Hydroxy-3-methylglutaryl-CoA reductase polynucleotides in isoprenoid production[P].US 6284506,2001.
    [207]Kim S J, Kim G J, Park D H, Ryu Y W. High-level production of astaxanthin by fed-batch culture of mutant strain Phaffia rhodozyma AJ-6-1[J]. J Microbiol Biotechnol,2003,13(2):175-181.
    [208]Yamane Y, Higashida K, Nakashimada Y, Kakizono T, Nishio N. Astaxanthin production by Phaffia rhodozyma enhanced in fed-batch culture with glucose and ethanol feeding[J]. Biotechnol Lett,2007,19(11):1109-1111.
    [209]唐刚,陈育如,刘友芬.间型脉孢菌产类胡萝卜素研究[J].南京师范大学学报,2009,9(1):73-77.
    [210]方开泰.均匀设计——数论方法在试验设计的应用[J].应用数学学报,1980,3(4):363-372.
    [211]胡雅琴.恒温发酵与高温发酵柠檬酸过程及其比较[J].科技情报开发与经济,2003,13(9):203-204.
    [212]刘爱民.微生物资源与应用[M].南京:东南大学出版社,2008.
    [213]何炳林,黄文强.离子交换与吸附树脂[M].上海:上海科教出版社,1995.
    [214]刘绍.食品分析与检验[M].武汉:华中科技大学出版社,2011:205-206.
    [215]李干禄,吴启赐,武振军,石楠,万红贵.大孔树脂对三孢布拉霉菌产番茄红素的吸附性能研究[J].中国生物工程杂,2010,30(4):71-76.
    [216]Nagao A. Oxidative conversion of carotenoids to retinoids and other products[J]. J. Nutr.2004,134(1):237S-240S.
    [217]Nagao A, Olson J A. Enzymatic formation of 9-cis,13-cis, and all-trans retinals from isomers of β-carotene[J]. FASEB J,1994,8(12):968-973.
    [218]刘绍.食品分析与检验[M].武汉:华中科技大学出版社,2011:202-204.
    [219]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem,1976,72(1/2),248-254.
    [220]During A, Nagao A, Hoshino C, Terao J. Assay of β-carotene 15,15'-dioxygenase activity by reverse-phase high-pressure liquid chromatography[J]. Anal Biochem,1996,241 (2):199-205.
    [221]张坤生.利用红酵母发酵生产类胡萝卜素及其功能性质研究[D].天津科技大学,2004.
    [222]Goodman D S, Huang H S. Biosynthesis of Vitamin A with rat intestinal enzymes[J]. Science,1965,149(3686):879-880.
    [223]Swenson M J. Duke's physiology of domestic animals[M].8th ed. New York:Vail-Ballou Press, Inc,1970.
    [224]宋建婷,周光宏,高峰.胆酸盐、游离脂肪酸、黄体素对β-胡萝卜素 -15,15'-加双氧酶活性的影响[J].南京农业大学学报,2004,27(3):70-73.
    [225]Wyss A, Wirtz G M, Woggon W D, Brugger R, Wyss M, Friedlein A, Riss G, Bachmann H, Hunziker W. Expression pattern and localization of β,β-carotene 15,15'-dioxygenase in different tissues[J]. J Biochem,2001,354(Pt 3):521-529.
    [226]Kim Y S, Kim N H, Kim H J, Lee J K, Kim S W, Oh D K. Effective production of retinal from β-carotene using recombinant mouse β-carotene 15,15'-monooxygenase[J]. Appl Microbiol Biotechnol,2007,76(6):1339-1345.
    [227]Wang X D, Tang G, Fox J G, Krinsky N I, Russell R M. Enzymatic conversion of β-carotene into β-apo-carotenals and retinoids by human, monkey, ferret, and rat tissues[J]. Arch Biochem Biophys,1991,285(1):8-16.
    [228]Olson J A. Provitamin A function of carotenoids:the conversion of β-carotene into vitamin A [J]. J Nutr,1989,119(1):105-108.